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Generic helical edge states due to Rashba spin-orbit coupling in a topological insulator
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We study the helical edge states of a two-dimensional topological insulator without axial spin symmetry due
to the Rashba spin-orbit interaction. Lack of axial spin symmetry can lead to so-called generic helical edge
states, which have energy-dependent spin orientation. This opens the possibility of inelastic backscattering and
thereby nonquantized transport. Here we find analytically the new dispersion relations and the energy dependent
spin orientation of the generic helical edge states in the presence of Rashba spin-orbit coupling within the
Bernevig-Hughes-Zhang model, for both a single isolated edge and for a finite width ribbon. In the single-edge
case, we analytically quantify the energy dependence of the spin orientation, which turns out to be weak for a
realistic HgTe quantum well. Nevertheless, finite size effects combined with Rashba spin-orbit coupling result
in two avoided crossings in the energy dispersions, where the spin orientation variation of the edge states is
very significantly increased for realistic parameters. Finally, our analytical results are found to compare well to
a numerical tight-binding regularization of the model.
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I. INTRODUCTION

An insulating bulk energy gap along with gapless edge
states is a hallmark of a two-dimensional (2D) topological
insulator (TI) [1–4]. At each boundary, two counterpropa-
gating edge states with opposite spin polarization and wave
numbers form Kramers pairs, i.e., two distinct degenerate
states connected by time-reversal symmetry. These states
are denoted helical edge states due to their connection
between spin and propagation direction. Due to time-reversal
symmetry, elastic backscattering of a single electron from a
helical edge state (HES) to its Kramers partner is not possible
by any time-reversal invariant potential, e.g., disorder [5].
Thereby an important mechanism to hinder ballistic transport
is absent and quantized conductance of 2e2/h per pair of
HESs is within reach. The first experimentally realized 2D
TI in a HgTe quantum well (QW) indeed found quantized
conductance in micrometer-sized samples [6–9], along with
evidence of edge-state transport in both two-terminal [6] and
multiterminal [7] configurations. Prior to the experiments,
HgTe QWs were in fact predicted to be 2D TIs beyond a certain
QW thickness [10]. These efforts also resulted in a rather
generic Dirac-like model describing the essential physics of
some 2D TIs, which is now known as the Bernevig-Hughes-
Zhang (BHZ) model. Recently, also InAs/GaSb double QWs
were suggested theoretically to be 2D TIs described using
the BHZ model [11], which afterwards have been tested
experimentally [12–16].

Deviations from the quantized conductance have also been
found experimentally for longer edges in both HgTe [6,7,9,17–
19] and InAs/GaSb [20] QW TIs. Conduction reduction due to
inelastic backscattering has been studied theoretically [21–28],

since it is not a priori ruled out by time-reversal invariance.
Most studies of inelastic backscattering combine some energy-
exchange mechanism (e.g., phonons [24] or electron-electron
interactions [21,22,24,27]) with a way to manipulate the spin
(often some form of spin-orbit coupling [24,26,27]). Scattering
of localized spins [29–33] such as magnetic impurities or
nuclear spins [34] has also been analyzed.

In a particularly interesting proposal for inelastic backscat-
tering, Schmidt et al. [21] considered HESs without axial spin
symmetry. The Rashba spin-orbit coupling (RSOC) [35–37]
and bulk inversion asymmetry (BIA) [11,38,39] can break
the axial spin symmetry of the HESs. In this case, a pair of
HESs acquire a more generic and intriguing spin structure
than merely having opposite and constant spin orientations
independently of energy. Time-reversal symmetry still dic-
tates that the two counterpropagating Kramers partners have
orthogonal spinors, but it does not require equal spinors at
different energies as illustrated in Fig. 1. These states were

FIG. 1. Illustration of the dispersion relation and spin orientation
for (a) helical edge states with constant spin orientation and
(b) generic helical edge states with energy-dependent spin orientation.
In this paper, we analyze the generic helical edge states and their spin
orientation variation due to the Rashba spin-orbit coupling within the
BHZ model.
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named generic helical edge states (GHESs) [21]. Recently,
Kainaris et al. [27] extended the original work [21] on transport
in short GHESs with electronic interaction and disorder to
longer ones. Furthermore, the spin structure of the GHESs was
also shown to change the noninteracting transport properties of
a point contact and of disordered 2D TI strips [40]. Moreover,
the spin structure of GHESs plays a role in the umklapp-
scattering-induced energy gap suggested to host parafermions,
a generalization of Majorana fermions [41].

These studies show that it is worthwhile to analyze the
GHESs and their microscopic origin further, which is the
purpose of this paper. Very recently, Rod et al. [42] studied
the spin texture of GHESs due to BIA within the BHZ
model and also numerically for the Kane-Mele model [1,2]. In
contrast, we consider how RSOC [35] can produce GHESs
within the BHZ model. We develop analytical models for
the GHESs appearing at an isolated boundary and in the
case of a finite width ribbon, where the overlap of the edge
states on different boundaries plays an important role. For an
isolated edge, we are able to give an analytical formula for the
so-called spin-structure parameter, which describes how much
the spin orientation of the GHESs changes. This parameter was
originally introduced phenomenologically [21]. Using realistic
numbers for a HgTe QW, we find that an isolated edge is
in fact rather robust against spin rotation produced by the
RSOC. In contrast, we discover that the combination of RSOC
and the finite width enhanced significantly the spin rotation
versus energy of the GHESs. Throughout the paper, spin
rotation refers to the spin orientation variations of the GHES.
Furthermore, we show that our analytical models compare well
to full numerical tight-binding calculations.

We organize the paper as follows. First, we outline the
phenomenology of the GHESs (Sec. II) and the BHZ model
including the RSOC that breaks the axial spin symmetry
(Sec. III). Then, we consider an isolated pair of GHESs at
a single boundary in Sec. IV A and finally analyze the case
of a finite width ribbon both analytically and numerically
(Sec. IV B). Section V summarizes the paper and the appen-
dices give various technical details.

II. PHENOMENOLOGY OF THE GENERIC
HELICAL EDGE STATES

In this section, we discuss the GHESs phenomenologically.
GHESs can be modelled as two counterpropagating one-
dimensional (1D) states with linear dispersion relations εk,± =
±�vk, i.e.,

H0 =
∑

k,η=±1

η�vkc
†
kηckη, (1)

as in Refs. [21,27,40,41]. Here, c
†
kη (ckη) creates (annihilates)

a state |k,η〉 with momentum k and propagating direction η.
The states of opposite k and η are Kramers partners such that
elastic scattering due to, e.g., impurities is still absent. The spin
sj (j = x,y,z) expectation values of the Kramers partners are
also opposite, i.e.,

〈k,+|sj |k,+〉 = −〈−k,−|sj |−k,−〉, j = x,y,z. (2)

The counterpropagating states at each k can be related to the
spin states σ = ↑,↓ along a definite direction by a momentum

dependent (and thereby energy dependent) SU(2) matrix Bk

as [21] (
ck↑
ck↓

)
= Bk

(
ck+
ck−

)
. (3)

Time-reversal symmetry and Bk ∈ SU(2) lead to Bk = B−k .
Consistent with these facts, Schmidt et al. [21] introduced the
following expansion for small |k| � k0:

Bk =
(

1 − k4/
(
2k4

0

) −k2/k2
0

k2/k2
0 1 − k4/

(
2k4

0

)
)

, (4)

where the spin-quantization axis is chosen such that at the
band crossing point k = 0, we have ck=0,+ = ck=0↑ and
ck=0,− = ck=0↓ as in Fig. 1(b). In other words, a constant
rotation of all the spins regardlessly of k has been removed
from Bk in Eq. (4) following Ref. [21]. Such a k-independent
rotation corresponds to a constant rotation matrix and can be
removed by choosing a rotated basis for the spin. Importantly,
a phenomenological spin-structure parameter k0 has been
introduced in the expansion (4), which measures the velocity of
spin rotation in momentum space. Schmidt et al. [21] showed
using perturbation theory that the correction to the quantized
conductance due to backscattering processes possible within
a pair of GHESs scales as temperature to the fourth power
with a prefactor depending on k0. In this paper, we find k0

analytically within the BHZ model including the RSOC for an
isolated edge.

To gain more insights into the spin structure of the GHESs,
we also evaluate the total spin rotation of the edge states, which
we define as

Ts =
∫

dk(|〈k1,↑|k1,+〉|2 − |〈k,↑|k,+〉|2). (5)

Here, k1 is a fixed reference momentum and the integration
is over the range of k space where the edge states exist. The
idea behind Ts is to quantify the total variation of the spin
orientation of the edge state |k,+〉 over all relevant k. We have
constructed Ts such that if |k,+〉 is a HES (i.e., |k,+〉 = |k,↑〉),
then Ts = 0. Likewise, if the spin of |k,+〉 is rotated by the
same amount for all k, then we still get Ts = 0. This is due to
the reference term |〈k1,↑|k1,+〉|2 with an arbitrary, but fixed,
momentum k1. In our calculations, we choose k1 to be the
momentum where the edge-state dispersion crosses the up-
per bulk band gap edge. In the cases we have analyzed, the
reference term |〈k1,↑|k1,+〉|2 is very close to one and quite
unaffected by small changes in k1. However, generally, the
choice of k1 does affect the numerical value of Ts , but it does
not change the variations of Ts versus some physical parameter.
The behavior of the spin rotation is more complex for a ribbon
than for a single edge, especially for narrower ribbons, as the
edge-state wave function can have components on both edges.
The quantity Ts is useful in that case as this kind of behavior is
difficult to capture with the parameter k0, which quantifies the
rotation close to k = 0. The unit of both Ts and k0 is inverse
length.

Before proceeding, we consider a simple 1D model Hamil-
tonian for a pair of HESs with a generic linear spin-orbit
coupling, i.e.,

H = �vkσz + (axσx + ayσy)k. (6)
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Here, σi,i = x,y,z, are the Pauli matrices and ax,ay are
the spin-orbit coupling strengths. By diagonalization, we
see that this often used [31,32] simple model does not
introduce a k-dependent Bk , since all matrix elements are
linear in momentum k. Thereby, it does not give rise to
energy-dependent spin orientation and to GHESs, i.e., Ts = 0.
This is consistent with the lack of the lowest-order inelastic
backscattering due to a linear spin-orbit coupling combined
with a phonon exchange [23]. In order to get nontrivial GHESs,
we resort to calculations for the realistic BHZ model with
RSOC.

III. THE BHZ MODEL WITH RASHBA
SPIN-ORBIT COUPLING

The BHZ model is an effective four-band model describing
the basic physics of a 2D TI [10]. It was derived using
k · p theory for the band structure of a HgTe QW and
therefore valid for small wave vectors k = (kx,ky), i.e., close
to the � point. It accounts correctly for the physics of HgTe
QWs close to the critical well thickness, which marks the
transition between a normal semiconductor band structure
and an inverted band structure with topologically protected
edge states [10]. The BHZ Hamiltonian consists of two
disconnected blocks connected by time reversal symmetry.
Each block has the form of a massive Dirac model in 2D
in addition to quadratic terms crucial for the band inversion
and thereby the topological properties of the material. In fact,
the Dirac-like nature makes the BHZ model rather generic
for 2D TIs—even though it grew out of a specific material
choice. The BHZ basis states consist of two Kramer pairs of
electronlike, |E±〉, and hole-like, |H±〉, states, respectively.
The states labeled with + (−) are often referred to as the spin up
(spin down), since they have positive (negative) total angular
momentum projection [34]. In this sense, the time-reversed
blocks of the BHZ model have opposite spin. In the basis
{|E+〉,|H+〉,|E−〉,|H−〉}, the BHZ Hamiltonian is

H0 =

⎛
⎜⎝

εk + Mk Ak+ 0 0
Ak− εk − Mk 0 0

0 0 εk + Mk −Ak−
0 0 −Ak+ εk − Mk

⎞
⎟⎠, (7)

where k± = kx ± iky , εk = −Dk2, Mk = M0 − Bk2 and k2 =
k2
x + k2

y . The sign of M0/B determines the existence of the
HESs [43] and D �= 0 induces particle-hole asymmetry in H0.
Table I gives the parameters for two different systems modelled
by the BHZ model, namely HgTe QWs [10] and InAs/GaSb
double QWs [11].

In this paper, we utilize an extension of the BHZ model
derived in Ref. [35] for the inclusion of structural inversion
asymmetry (SIA) terms including the RSOC. Importantly, the
RSOC couples the two blocks of H0 such that the axial spin
symmetry is broken. Here, we include only the most important
RSOC linear in momentum, i.e.,

HR =

⎛
⎜⎝

0 0 −iR0k− 0
0 0 0 0

iR0k+ 0 0 0
0 0 0 0

⎞
⎟⎠, (8)

TABLE I. The BHZ model parameters for two QW systems in the
topological regime [44]. The parameters for the HgTe QW correspond
to a well width of 7 nm, while the values for the InAs/GaSb double
QWs are for equal widths of 10 nm for both wells. The RSOC constant
R0 includes a value for the external electric field εz (in meV) in the
case of HgTe.

Material HgTe InAs/GaSb

A (meV nm) 365.0 37.0
B (meV nm2) − 686.0 − 66.0
D (meV nm2) − 512.0 − 58.0
M0 (meV) − 10.0 − 7.8
R0 (meV nm) 15.6 εz − 7.0

and therefore our full Hamiltonian is H = H0 + HR . Interest-
ingly, the Rashba term in HR only couples the electronlike
bands, which makes our model more complex than the simple
2 × 2 model Hamiltonian in Eq. (6). Moreover, GHES are now
possible as we shall see below. The strength of the RSOC, R0,
depends of the amount of SIA, which is often related to an
internal or external electric field. For a HgTe QW one can
control the RSOC with an external field [35], whereas it is an
internal field for InAs/GaSb double QWs [11]. Rothe et al.
[35] also derives higher-order RSOC terms in momentum as
we briefly discuss in Appendix E.

The HgTe has a zinc-blende crystal structure such that
inversion symmetry of the crystal is lacking. Therefore bulk-
inversion-asymmetric terms can, in principle, be included [38]
but are often disregarded due to their small size [3,38].
However, in InAs/GaSb double QWs BIA terms are in fact
significant [11], so our calculations for this system without
BIA terms are not an attempt to model the real system in
detail.

Before we proceed to the GHESs, we briefly comment on
the bulk bands including the RSOC. By diagonalizing H =
H0 + HR , we find

En
1,2 = −Dk2 ± R0k

2
−

√
Jk + K±

k

2
, (9a)

E
p

3,4 = −Dk2 ± R0k

2
+

√
Jk + K±

k

2
, (9b)

where p (n) is the bulk band with positive (negative) en-
ergy and we define Jk = 4A2k2 + 4B2k4 + R2

0k
2 + 4M2

0 and

K±
k = −4Bk2(2M0 ± R0k) ± 4M0R0k and k =

√
k2
x + k2

y > 0.

Figure 2 shows the bulk energy bands with RSOC (together
with the edge-state dispersions that we consider below). The
bulk bands shift due to the RSOC such that the band gap for
HgTe becomes indirect. Moreover, the size of the bulk band
gap is changed slightly, but not enough to change the topology
of the system.

IV. GENERIC HELICAL EDGE STATES

The RSOC breaks the spin degeneracy of the BHZ model in
such a way that GHESs with energy-dependent spin orientation
now become feasible. We treat the GHESs below in two cases:
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FIG. 2. Bulk and edge-state dispersion with the RSOC for a single
edge (top) and a ribbon (bottom) in a HgTe QW. The parameters are
given in Table I and the electric field εz is such that R0 = A. The
bulk gap is marked by dashed horizontal lines and the bulk bands,
Eq. (9), are for H0 + HR with periodic boundary conditions in both
directions. Analytical results are not shown in the entire bulk energy
gap, because our method requires the existence of both edge states
at the same time. The insets show the edge-state dispersions close to
k = 0.

(i) a single isolated edge and (ii) a finite width ribbon with two
parallel edges. The isolated edge case offers more analytical
insights and we are able to extract the spin-structure parameter
k0 defined in Eq. (4).

Without the RSOC, it is possible to obtain the HESs
analytically for both an isolated edge and a ribbon with
two edges [43]. In Appendix B, we give the details of the
analytical wave functions and dispersion relations of the
HESs in both cases. Including the RSOC, it becomes much
more challenging to obtain exact analytical forms by the
same method, since it is now a problem with four coupled
differential equations, see Appendix B 1. Nevertheless, we are
able to obtain analytical results by assuming that the GHESs
with RSOC are combinations of the HESs without RSOC,
neglecting the possible contribution of the bulk bands. This
is a good approximation, since the edge states naturally have
a small spatial overlap with the bulk states as long as the
edge states are well-localized at the boundary. This is well

satisfied especially for momenta close to zero and well into
the bulk gap. We find that the bulk gap is reduced as R0

increases and so does the range of applicability of the analytical
results. Moreover, we also compare our analytical results
with the solution via exact diagonalization of a tight-binding
regularization of the BHZ Hamiltonian for a ribbon of width W

with periodic boundary conditions in the x direction and edges
at y = −W/2 and y = W/2. The details of the tight-binding
formulation is discussed in Appendix D and follows Ref. [45].
This calculation allows us to unambiguously check the validity
of our analytical model.

In the next subsection, we find the GHESs in the presence
of RSOC for an isolated edge. We obtain explicit expressions
for the spin orientation versus energy and find good agreement
with the large-width limit of the numerics. We show that for
a single edge, the spin orientation is only weakly dependent
on energy for a real HgTe sample, i.e., the spin orientation is
actually quite robust against RSOC. The following subsection
is devoted to a ribbon. Now the expressions become much
more complicated but the results as a function of the width of
the sample show more interesting patterns, where spin rotation
versus energy cannot be neglected.

A. The case of a single isolated edge

Now we find the pair of GHESs appearing at an isolated
boundary of a 2D TI described by the BHZ model including
the RSOC. As mentioned above, the starting point is the exact
HESs without the RSOC. The HES dispersions are linear [46],
i.e., Eσky

= E0 + s�vky , where s = +(−) for σ = ↑(↓), v

is the constant velocity and E0 an energy shift. The HESs
located at the boundary of the half-plane x > 0 are given
by

ψkyσ (x,y) = 1√
L

eikyygsky
(x)φ̂σ , (10)

i.e., a plane-wave running along the y axis combined with
a transverse wave function gsky

(x) determining the width of
the HES and a ky-independent four-component spinor φ̂σ .
There is one spinor from each time-reversed block of the
BHZ model, i.e., φ̂↑ (φ̂↓) only has nonzero components on
the two first (last) entries with positive (negative) total angular
momentum projection. Periodic boundary conditions are used
along the edge of length L. The HES wave functions and
dispersions are given explicitly using the BHZ parameters in
Appendix B 2.

To include the RSOC analytically, we write the full
Hamiltonian H = H0 + HR in a basis of the HESs for R0 = 0
given in Eq. (10), i.e.,

H0 + HR =
∑

ky ,σ∈{↑,↓}
Eσky

c
†
σky

cσky

+
∑
ky ,k′

y

∑
σσ ′

〈
ψkyσ

∣∣HR

∣∣ψk′
yσ

′
〉
c
†
σky

cσ ′k′
y
, (11)

where c
†
σky

(cσky
) creates (annihilates) a particle in the HES

ψkyσ . In this approach, we neglect the matrix elements between
the edge and bulk states. These are presumably very small,
since bulk and edge states to a very large extend are spatially
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separated. This is an excellent assumption well within the bulk
gap close to the � point, whereas the bulk states begin to play
a role close to the bulk band gap edge as our numerics show.
The full Hamiltonian (11) simplifies by noting that the matrix
elements of HR are diagonal in ky due to the plane-wave part
of the HESs (10). Moreover, HR only couples opposite spins,
so we find

H =
∑
ky

(
c
†
↑ky

,c
†
↓ky

)(E0 + �vky kyαky

kyαky
E0 − �vky

)(
c↑ky

c↓ky

)
, (12)

where an effective RSOC αky
≡ 〈ψky↑|HR|ψky↓〉/ky is

introduced. In terms of the BHZ parameters, we
find

αky
= R0

B − D

2Bky

∫ ∞

0
dxgky

(x)[∂x + ky]g−ky
(x)

= R0
(B − D)2

2B2

(
1 − ak2

y

) + O
[
k4
y

]
. (13)

where a = D2[A2B+2(B2−D2)M0]
2B(B2−D2)M2

0
and we expanded in ky in the

last step. The exact result for αky
and details of the calculation

are found in Appendix C 1.
The effective RSOC (13) only includes the first-order

RSOC in the BHZ basis given in Eq. (8). In Appendix E, we
discuss the effects of higher-order RSOC terms. We show that
the second-order term does not contribute to αky

, while the
third-order term, in principle, could contribute even though
we face technical difficulties in this case due to the hard
wall boundary condition used to find the HESs analytically.
However, the third-order RSOC term cannot introduce terms
of a different order in ky in αky

than the ones found here.
Therefore it cannot change the physics of the GHESs discussed
below. Moreover, the magnitude of the effects of the third-
order term can partly be incorporated into the prefactor
R0.

The form of H in Eq. (12) is clearly very similar to the
simple 1D Hamiltonian for a pair of HESs with a generic
spin-orbit coupling (6), since the effective spin-orbit term
αky

σxky resembles axσxk. The important difference is that
our effective RSOC αky

depends on ky and therefore gives
rise to GHESs with ky-dependent (or equivalently energy-
dependent) spin orientation as we shall see shortly. In contrast,
the spin-orbit coupling in Eq. (6) only leads to a constant
wave-vector-independent spin rotation. In other words, the
effective spin-orbit term αky

σxky has to be nonlinear in ky for
GHESs to arise.

By diagonalizing H in Eq. (12), we get the dispersion
relations including the RSOC,

ERSOC
ky ,± = E0 ± �vαky

ky, (14a)

and the eigenstates in ky space,

�ky,± = 1√
2

⎛
⎝±√

1 ± v
vαky√

1 ∓ v
vαky

⎞
⎠, (14b)

where ± corresponds to two different edge states with the
renormalized velocity vαky

=
√

v2 + (αky
/�)2 . For R0 = 0, the

states are simply ψky↑ and ψky↓, whereas for R0 �= 0, they

FIG. 3. Dispersion relation for InAs/GaSb QWs using the BHZ
Hamiltonian with the parameters given by Table I without taking
the BIA terms into account. Analytical results for an isolated edge
and numerical results for W = 1000 nm for the edge states almost
coincide.

become a superposition of both spins. Moreover, they are
GHESs due to their ky-dependent spin orientation. The case
described by the model Hamiltonian in Eq. (6) is included
here: if αky

is independent of ky , then so are �ky,± and no
GHESs appear. Due to time-reversal symmetry, the eigenstates
constitute a Kramers pair with opposite spin orientations (i.e.,
orthogonal spinors). This is seen by applying the time-reversal
operator � to �ky,± and using α−ky

=αky
, i.e., ��ky,± =

∓�−ky ,∓ (see Appendix A). Finally, we observe that the RSOC
does not open a gap in the spectrum in accordance with
time-reversal symmetry, but merely renormalizes the velocity
close to ky = 0 and creates a slight nonlinearity for larger ky .

The GHES dispersions (14a) for a HgTe QW with R0 = A

are shown in the top panel of Fig. 2 along with a comparison
to our numerical results using the tight-binding regularization
for W = 1000 nm. We find that the effect of the RSOC on the
dispersions is rather weak for a HgTe sample. We also present
similar calculations for an InAs/GaSb double QW in Fig. 3.
Our analytical method only works if both HESs without RSOC
exist simultaneously, hence the dispersions do not cover the
entire bulk gap as seen in Figs. 2 and 3. Although the bulk
bands are quite different for the InAs/GaSb and HgTe QWs,
we find that the behavior of the GHESs is very similar for
similar values of R0—both in the single-edge case and for the
ribbon discussed in the next section. Therefore we do not show
more figures for InAS/GaSb with the understanding that the
results for the latter are similar to our results for HgTe in the
presence of an electric field such that R0 ≈ 0.2A.

Next, we consider the ky dependence of the spin orientation
of the GHESs in the case of an HgTe TI. In Fig. 4, we show
the amount of spin ↓ in the state �ky,+, which is a spin ↑
state for R0 = 0, i.e., the projection P = |〈ky,↓|ky,+〉|2 =
|〈ψky↓|�ky,+〉|2. We find a reasonably good comparison be-
tween the analytical results for the isolated edge and the
numerical results for a large width of W = 1000 nm. The small
discrepancy between the analytical and numerical projections
could be due to the truncation of the Hilbert space in the
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FIG. 4. The projection P = |〈ψky↓|�ky,+〉|2 of the GHES �ky,+
with R0 = 0.5A into the R0 = 0 spin-↓ state as a function of ky

using the parameters of a HgTe QW in Table I. The figure shows
a comparison of the analytical results with the numerics with W =
1000 nm. The analytical projection is seen in both the bulk energy
band gap (full black curve) and in the regime of coexistence of bulk
and edge states (dotted black curve). Moreover, we have manually
removed the numerical results close k = 0 where a very narrow peak
appears due to finite size effect, see Fig. 6 and the discussion in
Sec. IV B.

analytical calculation. As seen in the figure, the spin rotation
is rather small in a realistic HgTe QW even for relatively large
values of R0, i.e., the spin orientation of the edge states is
rather robust against large external electric field. The analytical
projection is found from the GHESs in Eq. (14b) using the
exact RSOC αky

in Eq. (C1) in Appendix C 1. The analytical
theory requires simultaneous existence of both HESs without
RSOC. The analytical projection in Fig. 4 is shown in both
the bulk band gap region (full curve) and in the region of
coexistence between edge and bulk states (dotted curve). In
the coexistence regime, the HESs gradually widen and finally
the penetration length divergences well within the bulk states
as seen in Fig. 10 in Appendix B 2. By using the projection, we
obtain the total spin rotation Ts , Eq. (5). From the numerical
results for the entire k space, we find that Ts is proportional to
R2

0 to a good approximation.
Now, we find the analytical form of the spin structure

parameter [21] k0 in Eq. (4) for the BHZ model including
the RSOC. We do this by introducing two unitary trans-
formations, which together diagonalize H in Eq. (12). The
first transformation is ky-independent and rotate the spin
basis such that it removes the ky-independent part of αky

.
This part does not lead to GHESs as discussed above. This
rotation is convenient such that we use the same choice of
spin-quantization axis as in Ref. [21], i.e., the spins point
along the new rotated spin-quantization axis at k = 0. The
second unitary transformation is ky-dependent and transforms
between the eigenstates and the new rotated spin basis. In other
words, it is the matrix Bk in Eq. (3). Now we perform the steps
explicitly. First, we define δαky

≡ αky
− α0, where α0 = αky=0

is ky-independent. Thereby, we can diagonalize the α0 part of

H, i.e.,

H =
∑
ky

C
†
ky

(
E0 + �vky ky

(
α0 + δαky

)
ky

(
α0 + δαky

)
E0 − �vky

)
Cky

=
∑
ky

C
†
ky

U

(
E0 + �vα0ky 0

0 E0 − �vα0ky

)
U †Cky

+
∑
ky

C
†
ky

Ukyδαky

(
sin(θ ) cos(θ )
cos(θ ) − sin(θ )

)
U †Cky

. (15)

Here, C
†
ky

= (c†↑ky
,c

†
↓ky

), �vα0 =
√

(�v)2 + α2
0 and the first ky-

independent unitary transformation U is

U =
(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (16)

where cos(θ ) ≡ v/vα0 and sin(θ ) ≡ α0/(�vα0 ). This transfor-
mation is simply a ky-independent rotation to a new spin basis,(

c↑′ky

c↓′ky

)
= U †

(
c↑ky

c↓ky

)
, (17)

where ↑′ and ↓′ are the eigenstates of H at ky = 0. Finally, we
diagonalize the Hamiltonian completely by a second unitary
transformation and obtain

H =
∑
ky

C
′†
ky
Vky

(
E0+ky�vαky

0
0 E0−ky�vαky

)
V†

ky
C ′

ky
,

where C
′†
ky

= (c†↑′ky
,c

†
↓′ky

) and �vαky
=

√
(�v)2 + α2

ky
. As ex-

pected, we find the same dispersions as in Eq. (14a). More
importantly, we acquire an analytical form of the unitary
transformation Vky

, which by construction is exactly Bky
from

Eq. (3), i.e.,

Bky
= Vky

=
(

cos(φ/2) − sin(φ/2)
sin(φ/2) cos(φ/2)

)
, (18)

where cos(φ) ≡ [(�v)2 + αky
α0]/(�2vα0vαky

) and sin(φ) ≡
δαky

v/(vα0�vαky
). Therefore we have now found the ky-

dependent matrix Bky
relating the GHESs to the HESs with

a fixed spin axis for a specific model, namely the BHZ model
including the RSOC. We remark that δαky

= 0 at ky = 0 by
definition, so Vky=0 is the unity matrix and therefore ↑′ and ↓′

become eigenstates at ky = 0.
We can now find the spin structure parameter k0 in Eq. (4)

controlling the amount of spin rotation for small ky . By
expanding Bky

= Vky
around ky = 0, we obtain

1

k2
0

= D2|R0A(B−D)||A2B + 2M0(B2 − D2)|
2
√

B2−D2M2
0

∣∣4A2B2(B+D)+(B−D)3R2
0

∣∣ . (19)

Thereby we have an explicit expression for k0—a parameter
originally introduced based on symmetry arguments [21]. Such
an expression in terms of the BHZ parameters is valuable
beyond the case of HgTe QWs due to the generic Dirac-like
nature of the BHZ model. Interestingly, we observe that
the particle-hole asymmetry parameter D plays an essential
role for k0, i.e., for D = 0, no spin rotation appears and
therefore no GHESs come out in the case studied here.
This is valid beyond the expansion of Bky

in ky , since the
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effective RSOC in Eq. (13) is ky-independent to all orders,
α

(D=0)
ky

= R0/2, for D = 0 such that Bky
is the unity matrix

[see Eq. (C5) in Appendix C 1]. Curiously, the parameter D is
often removed in many theoretical discussions of topology [47]
and thereby the interesting physics of GHESs might be missed.
Furthermore, Eq. (19) also reveals that k0 depends on the Dirac
mass M0 and the RSOC strength R0 in rather nontrivial ways.

Before proceeding, we briefly discuss the effect of the
lowest-order BIA terms given by [3,38]

HBIA =

⎛
⎜⎝

0 0 0 −�

0 0 � 0
0 � 0 0

−� 0 0 0

⎞
⎟⎠, (20)

where � is a constant. Including the HBIA in the basis of
the HESs for an isolated edge, Eq. (10), as we did for HR

in Eq. (11), we find 〈ψkyσ |HBIA|ψk′
yσ

′ 〉 = 0 for all kyσ and
k′
yσ

′. Hence within our analytic approach, the lowest-order
BIA terms do not affect the HESs nor their spin orientation for
an isolated edge. The second-order RSOC terms have the same
structure in the antidiagonal as HBIA and therefore also have
zero matrix elements, see Appendix E. Including the small
overlaps between the bulk and edge states, a modest effect
on the energy dispersions is found due to HBIA close to the
bulk gap edge, where these overlaps matter the most [48]. For
a ribbon, the HBIA was found to couple opposite edges [49].
Very recently, Rod et al. [42] found GHESs for both ribbon
and disk geometries due to HBIA in the BHZ model. For both
geometries, a finite k−2

0 was extracted numerically in the limit
of a particle-hole symmetric BHZ model (i.e., D = 0), where
both edge and bulk states were included in their calculations.

B. The case of a ribbon with two parallel edges

In this section, we consider the GHESs for a ribbon with
two parallel edges using the BHZ model including the RSOC.
Thereby, four edge states come into play, since a pair of
GHESs exist on each edge for well-separated edges. We pay
special attention to how the finite size effects can enhance spin
orientation variation of the GHESs as the width of the ribbon
W gets smaller and the edge states on opposite sides begin to
overlap.

Before including the RSOC, we briefly summarize the
HESs and their dispersions without RSOC for a ribbon [43].
We refer to Appendix B 3 for details. An important difference
between the ribbon and the single-edge case is that we do not
have the energy dispersions in closed analytical forms for the
ribbon, but instead as the solutions to a cumbersome equation
[see Eq. (B12)]. Nevertheless, the physical consequence of the
finite width is clear: a gap opens at the crossing point of
the dispersions found for the isolated edge, see Fig. 9 [43].
The dispersions for a ribbon have a limiting cusp form for a
wide ribbon, i.e.,

Ee=±
kx

→ E0 ± �v|kx | for W → ∞, (21)

where E+
kx

(E−
kx

) is the energy dispersion above (below) the gap
for W � ∞. Therefore the label e = ± should not be confused
with the single-edge case, where ± often refers to the sign of
the velocity. The velocity v and energy shift E0 are identical
to the single-edge case. Noticeably, Ee=±

kx
are independent of

the spin σ , since equal spins travel in opposite directions on
the two edges.

A ribbon with edges at y = ±W/2 has four HESs without
RSOC [43] ψe

kxσ
(x,y), where e = ± labels the energy Ee

kx
to

which the state belongs. As for an isolated edge, the states have
a plane-wave part running along the edges, i.e., ψe

kxσ
∝ eikxx .

Only the first (last) two components of the states ψe
kx↑ (ψe

kx↓)
are nonzero, corresponding to the spin-up (spin-down) block
of H0. However, in contrast to the single-edge case, the spinors
are not constant, but the relative weight of the two components
vary with both kx and y. A particular state ψe

kxσ
is not always

localized on the same edge. Instead, the localization changes
gradually from one edge to the other when crossing kx = 0.
For kx > 0, the states

ψ+
kx↑, ψ−

kx↓ are localized close to y = W/2 and (22a)

ψ−
kx↑, ψ+

kx↓ are localized close to y = −W/2, (22b)

and vice versa for kx < 0.
As for the isolated edge, we build an analytical model using

only the HESs without RSOC. Since this approach leaves out
the overlaps between bulk and edge states, it becomes less
good for a narrow ribbon, where bulk and edge states become
comparable in spatial extend. Therefore our analytical results
are most reliable for small momenta well within the bulk gap
as we shall see.

By including the RSOC in the subspace of the HESs without
RSOC, ψe

kxσ
, the Hamiltonian becomes

H = H0 + HR =
∑
σ,kx ,e

Ee
kx

(
ce
kxσ

)†
ce
kxσ

+
∑
kx ,k′

x

∑
σ,σ ′

∑
e,e′

〈
ψe

kxσ

∣∣HR

∣∣ψe′
k′
xσ

′
〉(
ce
kxσ

)†
ce′
k′
xσ

′ , (23)

where (ce
kxσ

)† [ce
kxσ

] creates [annihilates] a particle in the
HES ψe

kxσ
of energy Ee

kx
. The RSOC Eq. (8) only cou-

ples opposite spins and the Hamiltonian is diagonal in
kx , since 〈ψe

kxσ
|HR|ψe′

k′
xσ

′ 〉 ∝ δkx,k
′
x
. We order the basis as

{|ψ+
kx↑〉, |ψ−

kx↓〉, |ψ−
kx↑〉, |ψ+

kx↓〉} such that the first two entries
are localized on the opposite edge of the last two as seen in
Eq. (22), i.e.,

H = H0 + HR

=
∑
kx

C†
kx

⎛
⎜⎜⎝

E+
kx

ib 0 id+
−ib E−

kx
id− 0

0 −id− E−
kx

−ib

−id+ 0 ib E+
kx

⎞
⎟⎟⎠Ckx

, (24)

where C†
kx

= [(c+
kx↑)†,(c−

kx↓)†,(c−
kx↑)†,(c+

kx↓)†] and we intro-
duced the interedge matrix elements

id+ = 〈
ψ+

kx↓
∣∣HR

∣∣ψ+
kx↑

〉
, (25a)

id− = 〈
ψ−

kx↑
∣∣HR

∣∣ψ−
kx↓

〉
, (25b)

and the intraedge matrix element

ib = 〈
ψ−

kx↓
∣∣HR

∣∣ψ+
kx↑

〉
, (26)
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which all depend on kx . In Eq. (24), we used that the
intraedge matrix elements on opposite edges are related
as ib = 〈ψ−

kx↓|HR|ψ+
kx↑〉 = −〈ψ+

kx↓|HR|ψ−
kx↑〉, as discussed in

Appendix C 2. Thereby, we are left with three matrix elements
only, which depend on the implicitly known dispersions
relations E±

kx
. The detailed formulas are given in Appendix C 2.

Due to the ordering of the basis, the Hamiltonian (24) has
two 2 × 2 blocks in the diagonal, one for each edge. Each 2 × 2
block resembles the Hamiltonian (12) found for an isolated
edge and an effective intraedge RSOC could be introduced
as b/kx as in Sec. IV A. However, due to the limiting cusp
form of the energy dispersions (21), one should instead define
the effective intraedge RSOC as αintra

kx
= −b/|kx |. With this

definition, αintra
kx

corresponds to the effective RSOC for the
isolated edge in Eq. (13) in the wide ribbon limit. However, as
the width gets smaller, we find an increased kx dependence of
αintra

kx
for small kx . This indicates an increased spin-orientation

change for small kx as W decreases, which we also find below
by direct calculation.

The opposite edges of the ribbon are coupled by the
interedge elements d± in the antidiagonal of H, which vanish
for W → ∞. Finally, we mention that performing unitary
transformations of H to find k0 as in Sec. IV A is difficult,
since we do not have closed formulas for Ee

kx
.

By diagonalization of the Hamiltonian (24), the dispersion
relations including the RSOC become

ERSOC
kx ,sτ

=τ 1
2

√[
s(d− − d+) + E−

kx
− E+

kx

]2 + 4b2

+ 1
2

[
s(d+ + d−) + E+

kx
+ E−

kx

]
, (27)

where s = ±1 and τ = ±1. In the wide-ribbon limit, where
the interedge matrix elements d± are insignificant, these
dispersions resemble the isolated-edge dispersions, Eq. (14a)
(disregarding the cusp limit of E±

kx
). For a finite width W ,

however, the interedge matrix elements d± come into play
and create four different dispersions. As shown in the bottom
panel of Fig. 2 and in Fig. 7, two gaps arise symmetrically
with respect to kx = 0. Therefore we have found that the spin
degeneration present for R0 = 0 between ψe

kx↑ and ψe
kx↓ is

broken by the interplay of RSOC and a finite width, where both
ingredients are necessary. A similar effect of SIA combined
with finite size have also been found in one dimension higher,
namely for the 2D Dirac surface states on a 3D TI [50].

In Fig. 5, we show the position kgap and value �edge of
the gaps as a function of W for different R0. We compare
numerical and analytical calculations on a logarithmic scale.
As the width is increased, the position of the gap goes rapidly
towards kx = 0 and the value of the gap goes to zero, such
that we recover the result for an isolated edge. Interestingly
enough, there are several values of the width, depending on
the value of R0, where the gap is particularly reduced. The
reason is essentially that the actual transverse wave function
including RSOC for an isolated edge has a form similar to
an exponential times a sine. This means that the solution for
an isolated edge state (including the gapless dispersions) also
becomes the solution for a finite ribbon, when the zeros of the
transverse wave function match the width. This destructive
interference has been studied before both with [51] and
without [52] RSOC. Similar physics has also been discussed

FIG. 5. Comparison of analytical and numerical results for the
value of the gap �edge (meV) vs width of the ribbon (top) and position
of the gap in momentum kgap (nm−1) vs width of the ribbon (bottom).
We use the HgTe parameters in Table I.

for thin films of 3D TIs [53–55]. In Ref. [51], Takagaki
showed that the gap vanishes periodically with a period almost
inversely proportional to the strength of the RSOC. In these
particular values of the width, the coupling between the edges
is canceled without reaching the large width limit. As shown
in Fig. 5, this effect is not captured by the analytical theory,
although it correctly gives the essential decaying trends of both
the gap size �edge and position kgap.

The eigenvectors in kx space in the basis presented above,
i.e., {|ψ+

kx↑〉,|ψ−
kx↓〉,|ψ−

kx↑〉,|ψ+
kx↓〉} are

�kx,sτ = 1√
8b2 + 2ζ 2

sτ

⎛
⎜⎝

is2b

−sζsτ

iζsτ

2b

⎞
⎟⎠, (28)

where s = ± and τ = ± and we defined

ζsτ = s(d+ − d−) + E+
kx

− E−
kx

− τ

√[
s(d− − d+) + E−

kx
− E+

kx

]2 + 4b2. (29)

Here the two first and the two last components of �kx,sτ

represent spinors localized on opposite edges. The four states
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FIG. 6. The analytical projection of a ribbon edge state with
primarily spin up character (on the lower edge y = −W/2 and
kx > 0) into the spin down subspace, i.e., P = |〈ψ+

kx↓|�kx,+−〉|2. In
other words, the last component squared of �kx,+− in Eq. (28). The
parameters for HgTe in Table I and R0 = A are used.

�kx,sτ are clearly present on both edges, but in a very particular
way: the spinor localized on one edge, ϕa ∝ (is2b,−sζsτ )T ,
is always orthogonal to the spinor ϕb ∝ (iζsτ ,2b)T localized
on the opposite edge, since ϕ

†
aϕb = 0. In other words, the

squared projections on the basis states on opposite edges
are pairwise identical, i.e., |〈ψ+

kx↑|�kx,sτ 〉|2 = |〈ψ+
kx↓|�kx,sτ 〉|2

and |〈ψ−
kx↓|�kx,sτ 〉|2 = |〈ψ−

kx↑|�kx,sτ 〉|2. Thus the states always
have half of the weight on each edge, i.e., |〈ψ+

kx↑|�kx,sτ 〉|2 +
|〈ψ−

kx↓|�kx,sτ 〉|2 = 1/2 independently of kx . Moreover, the
Kramers partner of �kx,±± is �−kx ,∓±, which can be seen
by using that E±

kx
and b are even in kx and d± is odd such

that ζsτ (−kx) = ζ−sτ (kx), see Appendix C 2. Furthermore, the
dispersions ERSOC

kx ,sτ
(27) and eigenstates (28) depend on both

E+
kx

and E−
kx

, and therefore only well-defined for momenta kx ,
where both E−

kx
and E+

kx
are well-defined, see Figs. 2 and 9.

Now, we will argue that the eigenstates �kx,sτ are GHESs,
since their spin orientation on a single edge depends on
kx . Due to the structure of �kx,sτ discussed above, we
observe that the two edges of the ribbon suffer the same—
but opposite—spin rotation. Due to the coupling between
the two edges and the RSOC, the dispersions have two
avoided crossings. These avoided crossings induce some
particular characteristics of the spin rotation. Figure 6 shows
the analytical results for the projection onto the spin-down
subspace, P = |〈ψ+

kx↓|�kx,s=1τ=−1〉|2, as a function of kx for
one of the edge states, which asymptotically is more than 99%
spin up for different values of W on lower edge (y = −W/2)
and kx > 0. We can see that the projection reaches a relatively
high value, higher for larger widths, but in a very narrow range
of kx , smaller for larger widths. The peaks of the projections
are located close to the position of the gap kgap. For clarity, we
only show a range of W from 140 to 300 nm, but the trend
goes on indefinitely.

The avoided crossings of the ribbon dispersions and the
associated spin structure of the GHESs are illustrated in Fig. 7.
As discussed above, the GHESs �kx,sτ , Eq. (28), are always
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FIG. 7. The ribbon energy dispersions ERSOC
kx ,sτ , Eq. (27), and the

spin structure of the GHESs close to the lower edge at y = −W/2.
The combination of finite width and RSOC produce splitting in kx

space and energy gaps at kgap �= 0. The spin structure associated to the
two avoided crossings is illustrated by the colors: the states are more
than 99% pure spin ↑ (↓) on the lower edge in the blue (yellow) part
of the dispersions, whereas the spin orientation rotates when all states
come close together (green regions). The upper edge at y = W/2 has
the opposite spin structure (see the main text). Therefore the states
become true GHESs in the green regions, which coincide with the
peaks in the projection seen in Fig. 6. The parameters for HgTe in
Table I are used together with R0 = A and W = 200 nm.

equally present on the lower (y = −W/2) and the upper (y =
W/2) edge. Figure 7 only shows the spin structure of the lower
edge. We illustrate how to understand this by using the state
�kx,+− as an example. Away from the avoided crossing (the
green region), we find

�kx,+− = 1√
2

(−ψ−
kx↓ + iψ−

kx↑
)

(30)

with more than 99% accuracy. For kx > 0, ψ−
kx↑ (ψ−

kx↓) is
localized near the lower (upper) edge and vice versa for
kx < 0, see Eq. (22). Thus, in this sense, �kx,+− is spin ↑
for kx > 0 (blue region) and spin ↓ for kx < 0 (yellow region)
on the lower edge, while the upper edge has the opposite spin
structure. In between these regions of almost pure spin ↑ or
↓, the states become genuine GHESs with sizable amounts of
both spin ↑ and ↓ present on each edge (the green region).
These regions are quantified by the peaks in the projections
shown in Fig. 6. Noticeably, the weight of each spin component
in the almost pure spin regions (blue/yellow) of the GHESs is
only 1/2, see, e.g., Eq. (30). Thus the entire weight of one spin
component on one edge is carried by two different dispersion
curves. This is vastly different from the two simple linear
dispersions found for an isolated edge. Therefore it is now clear
that our states �kx,sτ indeed are GHESs with kx-dependent spin
orientation. A remarkable difference to the isolated edge case
is that the spin-orientation change is enhanced a great deal by
the finite size.

In Fig. 8, we show that the total spin rotation Ts of �kx,+−
scales with R2

0 for not too large values of R0. The total spin
rotation is essentially the integral of the projections in Fig. 6
due to our choice of k1 in Eq. (5). We only show the numerical
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FIG. 8. Numerical value of the total spin rotation Ts of the GHES
�kx,+− rescaled with R2

0 as a function of the ribbon width for different
values of R0.

results as the analytical states (28) are only available in the
small kx range, where both E+

kx
and E−

kx
are well-defined.

Nevertheless, using the analytical states to find Ts very similar
results are obtained for analytically feasible values of R0 and
W . Although the maximum of the spin projection in Fig. 6
increases, the total value of the integral is reduced, when the
ribbon widens to the single-edge limit. The scaling with R2

0
works perfectly well for R0 � 0.5A except for very small
values of the width. (Note that we only show W > 100 nm
in Fig. 8.) For larger values of R0, the scaled total spin
rotation Ts/R

2
0 increases compared to the values of R0 � 0.5A.

However, for very large spin-orbit couplings (like R0 = 2A in
Fig. 8) and large widths, we obtain smaller Ts/R

2
0 probably

due to the reduced bulk gap of the system.

V. SUMMARY

We have analyzed the spin structure of the generic helical
edge states appearing at the boundary of 2D TIs without
axial spin symmetry. For the usual helical edge states in
a 2D TI, the spin and propagation direction are locked in
such a way that the spin orientation is energy independent.
However, for the GHESs, the spin orientation varies with
energy or equivalently momentum k. This is possible in
systems without axial spin symmetry, broken for instance
by spin-orbit coupling. Importantly, time reversal symmetry
still ensures counterpropagating states to be Kramers partners
with orthogonal spins, but the spin orientations of neighboring
states with different energies are not identical. This opens the
possibility of inelastic scattering and thereby deviations from
quantized conductance [21].

Our study is focused on the GHESs produced by Rashba
spin-orbit coupling within the BHZ model. We use HgTe
QWs and InAs/GaSb double QWs as concrete examples. We
analyze two situations: (i) a pair of GHESs at an isolated
edge and (ii) the two pairs of GHESs in a ribbon with two
parallel boundaries. In both cases, we employ an analytical
approach, where the GHESs with RSOC are found within a

reduced basis consisting of the HESs without RSOC. This
is a good approximation, since the bulk and edge states are
usually well separated spatially—especially for small k within
the bulk energy gap. We also use a numerical tight-binding
regularization of the BHZ model including RSOC to verify
the analytical approach and, moreover, obtain independent
valuable information.

For an isolated boundary, our analytical approach gives rise
to a 2 × 2 Hamiltonian (12), which is formally equivalent to a
simple 1D model of a pair of HESs with a phenomenological
spin-orbit coupling. From this analogy, we discover that
GHESs are produced, when the effective spin-orbit coupling
term is nonlinear in the momentum. In contrast, no GHESs
appear for a linear effective spin-orbit coupling term within
our framework. Moreover, we find the effective RSOC αky

in terms of the BHZ parameters. We also obtain the pair of
GHESs in Eq. (14b), where the velocity has been renormalized.
Using our insights into linear versus nonlinear effective RSOC
terms, we are able to provide an explicit expression for the
so-called spin-structure parameter k0, which measures the
amount of spin-orientation variation for small k. The spin-
structure parameter k0 was originally deduced by symmetry
arguments [21] and it is interesting to have an expression in
a concrete case. For instance, it shows that k0 depends on the
RSOC strength R0 and the Dirac mass M0 in nontrivial ways.
Moreover, 1/k2

0 vanishes when the particle-hole symmetry
parameter D of the BHZ model is zero. This statement is in fact
more general: the effective RSOC term becomes exactly linear
for D = 0 such that only ordinary HESs appear in this case.
For realistic HgTe and InAs/GaSb TIs, we observe that the spin
orientation of the edge states are quite robust against even large
RSOC strengths R0 for the single-edge case. Nevertheless, the
spin orientation does change slightly with energy. Moreover,
we find good agreement between the numerical and analytical
approaches.

Now we turn to the case of a ribbon, where the change in
the spin orientation of the GHESs is enhanced substantially
for realistic HgTe TIs. The new physical element of the
ribbon, compared to the isolated edge, is the coupling of
the GHESs on opposite edges. This finite size effect—even
without RSOC—produces a gap in the HES spectrum [43].
Now combining the finite width and the RSOC, two gaps
and two associated avoided crossings arise in the GHESs
spectrum symmetrically around k = 0 as shown in Fig. 7.
Our analytical approach shows that the interedge RSOC is
responsible for the avoided crossings to take place at finite
momenta, which is evident from the dispersions in Eq. (27).
Moreover, we find the position in momentum of these gaps
and their size �edge versus the ribbon width. The analytical
and numerical results for these quantities compare well,
except at certain widths where the full numerical calculation
reveals an interesting destructive interference effect. From our
analytical approach, we find the GHESs including the RSOC in
Eq. (28). Remarkably, they consist of two orthogonal spinors,
one on each side of the ribbon. Thus, the states are equally
distributed on the two parallel edges. The states become true
GHESs with a sizable variation in the spin orientation close
to the two avoided crossings in the GHES spectrum, where
all the states are close in energy. We show in Fig. 6 that
the region in k space of sizable spin-orientation variation
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becomes wider, if the ribbon becomes narrower. On the other
hand, widening the ribbon increases the maximal value of the
projection, which measures the change in spin orientation.
To quantify this further, we find the total spin rotation Ts ,
Eq. (5), which is related to the integral of the spin-orientation
variation over the entire region of k space. The numerical
calculations show that the total spin rotation decreases with
the ribbon width and, moreover, that Ts ∝ R2

0 for values
of R0 � 0.5A.

Our analytical GHESs for both the isolated edge and the
ribbon open the possibility to study other effects in the presence
of RSOC. For instance, scattering of magnetic impurities or
the nuclear spins in the crystal could be studied. Furthermore,
it would be interesting to explore the transport properties
of a ribbon, since we found a significant spin-orientation
change.
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APPENDIX A: THE TIME-REVERSAL OPERATOR
WITHIN THE BHZ FRAMEWORK

This Appendix provides the time-reversal operator � for a
wave function expanded in terms of the BHZ basis states, |E±〉
and |H±〉. The time-reversal operator is only defined up to a
phase factor and works differently in different bases, so it is
important to keep the basis fixed throughout a calculation [56].
Here we use � = −iσyK , where σy is a Pauli matrix in spin
space and K is the operator for complex conjugation. With
this definition of � and by writing the BHZ basis states within

the envelope function approximation, one obtains

�|E±〉 = ∓|E∓〉, (A1a)

�|H±〉 = ∓|H∓〉, (A1b)

see Appendix A of Ref. [34] for a derivation. Therefore the
Kramers partner of some wave function ϕ(x,y) written in the
BHZ basis {|E+〉,|H+〉,|E−〉,|H−〉} is

�ϕ(x,y) = �

⎛
⎜⎜⎜⎝

ϕE+(x,y)

ϕH+(x,y)

ϕE−(x,y)

ϕH−(x,y)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ϕ∗
E−(x,y)

ϕ∗
H−(x,y)

−ϕ∗
E+(x,y)

−ϕ∗
H+(x,y)

⎞
⎟⎟⎟⎠ (A2)

and we get �2ϕ(x,y) = −ϕ(x,y) as expected.

APPENDIX B: THE HELICAL EDGE STATES WITHOUT
RASHBA SPIN-ORBIT INTERACTION

In this Appendix, we provide (i) details on the method
used to obtain the HESs without the RSOC within the BHZ
model and (ii) the HESs obtained for an isolated edge and a
finite-width ribbon.

1. On the derivation of the helical edge states

Various methods have been used to study the HESs at the
boundary of a TI [43,57,58]. Here we follow Zhou et al. [43]
and simply set the wave function to zero at the boundary of
the TI, which is possible despite the Dirac-like nature of the
BHZ model due to the second-order derivatives [59].

Now we provide the overall steps of the derivation in
Ref. [43]. The block diagonal form of the BHZ hamiltonian (7)
allows one to solve the two blocks separately. Mathematically,
each block leads to a homogeneous system of two coupled lin-
ear ordinary differential equations with spatially independent
coefficients. The upper block gives the following system of
differential equations:

(
M0 − B+

(−∂2
x + k2

y

)
A(−i∂x + iky)

A(−i∂x − iky) −[
M0 − B−

(−∂2
x + k2

y

)]
)(

ϕE+,E(x,ky)

ϕH+,E(x,ky)

)
= E

(
ϕE+,E(x,ky)

ϕH+,E(x,ky)

)
, (B1)

where B± = B ± D. For simplicity, we assume translational
symmetry along the y axis such that ky is a good quantum
number. In contrast, we use broken translational symmetry
along the x axis, so kx = −i∂x by the Peierls substitution. In
other words, Eq. (B1) is for one or more edges parallel to the
y axis. This can be varied at will to study the HESs of any
geometric structure [60]. Here, the real-space wave function is

ϕE(x,y) = eikyyϕE(x,ky) = eikyy

(
ϕE+,E(x,ky)
ϕH+,E(x,ky)

)
,

where the zeros in the two last components of the entire four-
vector are implicit, i.e., ψ↑,E = [ϕE,0,0]T . The coupling of
the two blocks of H0 is in fact the difficulty that appears by

trying to include the RSOC exactly, since four coupled linear
differential equations appear.

The mathematical method to solve this kind of system of
differential equations (B1) is to substitute ϕE(x,ky) by the
ansatz eλxφλ and find all possible values of λ. Importantly, the
vector φλ is independent of x. Since the system of differential
equations (B1) is linear, the general solution is a linear
combination of all possible ansatz solutions, eλixφλi

, weighted
by ci , i.e.,

ϕE(x,ky) =
∑

i

cie
λixφλi

. (B2)

To find all possible λi , the weights ci and the dispersion
relations E, we use the boundary condition(s) and the
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normalization of the wave functions. The wave function is set
to zero at the boundaries [43]. Thus the boundary condition
for the isolated edge of the half-plane x > 0 is

ϕE(x = 0,ky) =
(

0
0

)
, (B3a)

and boundary conditions for the ribbon of width W are

ϕE(x = ±W/2,ky) =
(

0
0

)
. (B3b)

Moreover, the HESs are by definition not extended into the
bulk, so we require them to be bounded and normalized in the
direction perpendicular to the edge(s), i.e.,∫

dx|ϕE(x,ky)|2 = 1, (B4)

where the integral goes from 0 to ∞ in the case of an isolated
edge and from −W/2 to W/2 for a ribbon. Therefore we now
have the necessary equations to find all possible λi and ci

and the corresponding energy dispersions for the HESs at an
isolated boundary and for a ribbon.

2. HESs at an isolated boundary

Applying the method presented above, one can find the
pair of HESs without RSOC located at the boundary of the
half-plane x > 0 to be

ψky↑(x,y) = 1√
L

eikyygky
(x)φ̂↑, (B5a)

ψky↓(x,y) = 1√
L

eikyyg−ky
(x)φ̂↓, (B5b)

as presented in Eq. (10) of the main text, however, without
the complete specification given below. The energy dispersion
relations for the HESs (B5) are

E↑ky
= E0 + �vky and E↓ky

= E0 − �vky, (B6)

as seen in Fig. 9. Both the velocity v = −√
B2 − D2 |A|

�B
and

the energy shift E0 = −M0D

B
are positive for the parameters in

Table I. Interestingly, the dispersions are exactly linear for an
isolated edge [46]. The ky-independent spinors φ̂σ are

φ̂↑ = n

⎛
⎜⎜⎜⎝

−i A
|A|√

B+B−
B−
0
0

⎞
⎟⎟⎟⎠, φ̂↓ = n

⎛
⎜⎜⎜⎝

0
0

+i A
|A|√

B+B−
B−

⎞
⎟⎟⎟⎠, (B7)

where B± = B ± D and n = √
B−/(2B). The real and nor-

malized transverse wave function gky
(x) is

gky
(x) =

√
2λ1λ2(λ1 + λ2)

(λ1 − λ2)2
(e−λ1x − e−λ2x), (B8)

where the length scale 1/λ2 is the penetration length of the
HES into the bulk of the TI. Moreover, the ky dependence of

FIG. 9. The HES dispersions (red/blue) and bulk bands (green)
without the RSOC for an isolated edge (top panel) and for a 200-nm
wide ribbon (bottom panel). The ribbon dispersions E+

kx
(red) and

E−
kx

(blue) are spin-degenerate, since they include the HESs on both
sides of the ribbon. The BHZ parameters for HgTe in Table I have
been used.

gky
is in λ1 and λ2 as

λ1 = 1√
B−B+

( |A|
2

+
√

Zky

)
, (B9a)

λ2 = 1√
B−B+

( |A|
2

−
√

Zky

)
, (B9b)

where we defined

Zky
=

(
A2

4
− M0

B
B+B−

)
+ D|A|√B+B−

B
ky + B+B−k2

y.

(B10)

The BHZ model only hosts HESs in the TI regime where
M0/B > 0. Moreover, the explicit forms of the HESs with
real λ1,2 presented here are found under the assumption that
0 � M0/B � A2/(4B2), which is fulfilled for the parameters
in Table I. Furthermore, the HESs are well-localized at the
boundary within the bulk energy gap with a fairly small
penetration length 1/λ2 on the order of tens of nm. However,
above the upper bulk band gap edge, there is a region of
coexistence of edge and bulk states before the penetration
length diverges as seen in Fig. 10. Coexistence of bulk and
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FIG. 10. The penetration length 1/λ2, Eq. (B9b), of the HES
ψky↑ into the bulk of the TI. (The penetration length for the other
HES ψky↓ is found by the replacement ky → −ky .) The upper figure
shows the large region of finite penetration length and the points
where it diverges, λ2 = 0, indicated by vertical dashed black lines.
The lower figure focuses on the region close to the upper edge of
the bulk band gap shown by the vertical orange dotted line. A region
of coexistence of edge and bulk bands is clearly seen (between the
vertical orange dotted and black dashed lines), even though the HES
widens and gradually looses the localization characteristic of an edge
state. Nevertheless, this facilitates the use of our analytical theory
in Sec. IV A beyond the boundaries of the bulk band gap, since it
requires the presence of both HESs without RSOC. The parameters
for HgTe in Table I are used.

edge states has recently been studied [61]. Finally, we remark
that ψky↑ and ψ−ky↓ are Kramers partners, since �ψky↑(x,y) =
−ψ−ky↓(x,y) by using Eq. (A2).

In passing, we remark that the HESs along the perpendicular
direction are different in a nontrivial way from the ones
presented in Eq. (B5). If we consider the HESs running along
the x axis instead of the y axis at the boundary of the half-
plane y > 0, then we find ψkxσ (x,y) = 1√

L
eikxxg−skx

(y)φ̃σ

and Eσkx
= E0 − s�vkx , where s = +(−) for σ = ↑(↓). The

exchange of ky by −kx is natural in order for the states to
be connected correctly in, e.g., the corner of the TI [34]. A
more interesting fact is that the imaginary unit i disappears

from the spinors, i.e.,

φ̃↑ = n

⎛
⎜⎜⎜⎝

A
|A|√
B+B−
B−
0
0

⎞
⎟⎟⎟⎠, φ̃↓ = n

⎛
⎜⎜⎜⎝

0
0
A
|A|√
B+B−
B−

⎞
⎟⎟⎟⎠, (B11)

where n = √
B−/(2B) as in Eq. (B7).

3. HESs for a finite width ribbon

Now we turn to the HESs for a ribbon with edges at y =
±W/2 [i.e., parallel to the x axis in contrast to the case in
Eq. (B5)] as considered by Zhou et al. [43]. By use of the
ansatz function eλyφλ and the boundary conditions, the energy
dispersions Ee=±

kx
discussed in Sec. IV B become the solutions

to the following implicit equation:

tanh
(

λ1W
2

)
tanh

(
λ2W

2

)+ tanh
(

λ2W
2

)
tanh

(
λ1W

2

) = α2
1λ

2
2 + α2

2λ
2
1 − k2

x(α1−α2)2

α1α2λ1λ2
,

(B12)
where we have introduced

λ2
1 = k2

x + F +
√

F 2 − M2
0 − E2

B2 − D2
, (B13a)

λ2
2 = k2

x + F −
√

F 2 − M2
0 − E2

B2 − D2
, (B13b)

αj = E − M0 + B+
(
k2
x − λ2

j

)
for j = 1,2, (B13c)

and F = [A2 − 2(M0B + ED)]/(2B+B−). As in the previous
section, we assume that λ1,2 are real and in particular define
λ1,2 to be the positive root in Eq. (B13), i.e., λ1,2 > 0. Here λ1,2

are not identical to the ones for an isolated edge in Eq. (B9),
since the energy dispersions differ in the two cases. Moreover,
the dispersions for an isolated edge Eq. (B6) come out correctly
in the limit W → ∞, where the left-hand side of Eq. (B12) is
equal to 2. The dispersions E±

kx
for a ribbon are seen in Fig. 9,

where E+
kx

is the upper dispersion (E+
kx

> E−
kx

).
The four HESs ψe

kxσ
for the ribbon are all proportional to

a plane-wave running along the edges, i.e., ψe
kxσ

(x,y) ∝ eikxx .
Moreover, the spinor and the transverse wave function do not
factorize in contrast to the case of an isolated edge in Eq. (B5).
For a ribbon, the HESs are

ψ+
kx↑(x,y) = c̃+

eikxx

√
L

⎛
⎜⎜⎝

f+ − γ +
kx

f−
γ +

kx
η+

2 f+ − η+
1 f−

0
0

⎞
⎟⎟⎠, (B14a)

ψ−
kx↑(x,y) = c̃−

eikxx

√
L

⎛
⎜⎜⎝

−γ −
kx

f+ + f−
−η−

2 f+ + γ −
kx

η−
1 f−

0
0

⎞
⎟⎟⎠, (B14b)

ψ+
kx↓(x,y) = −c̃+

eikxx

√
L

⎛
⎜⎜⎝

0
0

f+ + γ +
kx

f−
−γ +

kx
η+

2 f+ − η+
1 f−

⎞
⎟⎟⎠, (B14c)
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ψ−
kx↓(x,y) = −c̃−

eikxx

√
L

⎛
⎜⎜⎝

0
0

γ −
kx

f+ + f−
−η−

2 f+ − γ −
kx

η−
1 f−

⎞
⎟⎟⎠. (B14d)

All the spatial dependence of ψe
kxσ

(x,y) are in the functions
f± ≡ f±(y,kx,E), where the subscript denotes the parity, i.e.,
f±(−y,kx,E) = ±f±(y,kx,E). These are

f+(y,kx,E) =
(

cosh(λ1y)

cosh
(

λ1W
2

) − cosh(λ2y)

cosh
(

λ2W
2

)
)

, (B15a)

f−(y,kx,E) =
(

sinh(λ1y)

sinh
(

λ1W
2

) − sinh(λ2y)

sinh
(

λ2W
2

)
)

, (B15b)

which vanish on the boundaries y = ±W/2. Here both kx and
E are explicitly written as variables in f± in order to keep
track of which dispersion is used, E+

kx
or E−

kx
. The HESs (B14)

also include the following space-independent quantities:

η±
1 = α2 − α1

A
[
λ1 coth

(
λ1W

2

) − λ2 coth
(

λ2W
2

)] ∣∣∣∣
E=E±

kx

,

η±
2 = α2 − α1

A
[
λ1 tanh

(
λ1W

2

) − λ2 tanh
(

λ2W
2

)] ∣∣∣∣
E=E±

kx

,

γ +
kx

= (α2 − α1)kx

α2λ1 tanh
(

λ1W
2

) − α1λ2 tanh
(

λ2W
2

) η+
1

η+
2

∣∣∣∣
E=E+

kx

,

γ −
kx

= (α2 − α1)kx

α2λ1 coth
(

λ1W
2

) − α1λ2 coth
(

λ2W
2

) η−
2

η−
1

∣∣∣∣
E=E−

kx

,

which all depend on kx and the energy dispersions E = E±
kx

.
We remark that some of the signs in the HESs presented in
Eq. (B14) are not identical to the ones found in Ref. [43]. The
reason is that Zhou et al. [43] have the opposite sign in front
of ky in the BHZ Hamiltonian (7) compared to the one used
here and in, e.g., Ref. [35]. (In fact, the sign of ky in the BHZ
Hamiltonian varies throughout the literature.)

Finally, we find the normalization constants to be

c̃+ = 1√
�+

++
[
1 + (

γ +
kx

)2
(η+

2 )2
] + �−

++
[(

γ +
kx

)2 + (η+
1 )2

] ,

c̃− = 1√
�+

−−
[(

γ −
kx

)2 + (η−
2 )2

] + �−
−−

[
1 + (

γ −
kx

)2
(η−

1 )2
] ,

where we introduced

�τ
ee′ =

∫ W/2

−W/2
dy fτ

(
y,kx,E

e
kx

)
fτ

(
y,kx,E

e′
kx

)
. (B16)

The expressions for �+
±± and �−

±± are given in Eqs. (C10)
and (C11), respectively. The integral over two functions of
opposite parity is zero,

∫
dyf+f− = 0, so there is no need to

include this possibility in the definition of �τ
ee′ .

For the HESs of a ribbon, the Kramers partner of ψ±
kx↑

is ψ±
−kx↓, since �ψ±

kx↑(x,y) = ψ±
−kx↓(x,y) by the help of

Eq. (A2). To find this result, we use that the energy dispersion
is even in kx , E±

−kx
= E±

kx
, as seen from Eq. (B12). This in

terms leads to λ1,2 in Eq. (B13) and η±
1,2 being even in kx and

finally that γ ±
−kx

= −γ ±
kx

.

APPENDIX C: DETAILS OF THE CALCULATION
WITH RSOC

In this paper, we find the analytical forms of the
GHESs in the presence of RSOC by assuming that the
GHESs can be written as combinations of the HESs with-
out RSOC. Therefore we diagonalized the RSOC HR in
two bases, namely {|ψkx↑〉,|ψkx↓〉} for an isolated edge and
{|ψ+

kx↑〉, |ψ−
kx↓〉, |ψ−

kx↑〉, |ψ+
kx↓〉} for a ribbon. Here we provide

various technical details for these calculations left out in the
main text.

1. Details for the case of an isolated edge

In Eq. (13) in Sec. IV A, we only give the effective RSOC
αky

up to second order in ky . However, the exact result can
easily be found to be

αky
=

〈
ψky↑

∣∣HR

∣∣ψky↓
〉

ky

= R0
B − D

2Bky

∫ ∞

0
dxgky

(x)[∂x + ky]g−ky
(x)

= R0
B − D

2Bky

(
νky

+ kyξky

)
, (C1)

where we use the transverse wave functions g±ky
(x) for an

isolated edge Eq. (B8) and introduce

ξky
≡

∫ ∞

0
dxgky

(x)g−ky
(x), (C2a)

νky
≡

∫ ∞

0
dxgky

(x)∂xg−ky
(x). (C2b)

Here it is evident that α−ky
= αky

, since ξ−ky
= ξky

and ν−ky
=

−νky
by using partial integration. Moreover, we find that

ξky=0 = 1 due to the normalization of gky
. The full expressions

for ξky
and νky

are

ξky
= h(ky)ω(ky) and νky

= h(ky)β(ky), (C3)

where

h(ky) = 2

√
λ−

1 λ−
2 (λ−

1 + λ−
2 )

(λ−
1 − λ−

2 )2

√
λ+

1 λ+
2 (λ+

1 + λ+
2 )

(λ+
1 − λ+

2 )2
,

ω(ky) = 1

λ−
1 + λ+

1

− 1

λ−
2 + λ+

1

− 1

λ−
1 + λ+

2

+ 1

λ−
2 + λ+

2

,

β(ky) = λ−
1

(
1

λ−
1 + λ+

2

− 1

λ−
1 + λ+

1

)

+ λ−
2

(
1

λ+
1 + λ−

2

− 1

λ−
2 + λ+

2

)
. (C4)

Here we used the shorthand notation λ±
i = λi(±ky), where

λ1,2 are given in Eq. (B9). Note that λ1,2 are not even functions
of ky for an isolated edge in contrast to λ1,2 for a ribbon. The
reason is that the dispersions are not even in ky for an isolated
edge as they are for a ribbon. For the parameters in Table I,
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the exact result for αky
, Eq. (C1), is very well approximated by

the second-order expansion given in Eq. (13) in the main text.
In the limit of a particle-hole symmetric BHZ Hamilto-

nian, i.e., D = 0, we have gky
(x) = g−ky

(x), since Z
(D=0)
ky

,

Eq. (B10), and thereby also λ
(D=0)
1,2 , Eq. (B9), become even.

This means that ξD=0
ky

= 1 for all ky by normalization of gky
.

Moreover, gky
(x) = g−ky

(x) forces ν
(D=0)
ky

to be even, but we
already found νky

to be generally odd, so we have to conclude

that ν
(D=0)
ky

= 0. Therefore we are left with the exact result

α
(D=0)
ky

= R0/2. (C5)

As discussed in the main text [below Eq. (19)], such an ky-
independent αky

means that the spin orientation remains fixed
for R0 �= 0, so no GHESs appear for D = 0.

2. Details for the ribbon calculation

In this section, we provide the matrix elements of the RSOC
HR between the HESs ψe

kxσ
for a ribbon, which were used—

but not given explicitly—in Sec. IV B. Using the HESs ψe
kxσ

,
Eq. (B14), we find the matrix elements to be diagonal in kx

due to the plane waves running along the edges, ψe
kxσ

∝ eikxx .
Moreover, HR , Eq. (8), only couples opposite spins, i.e.,

〈
ψe

kxσ

∣∣HR

∣∣ψe′
k′
xσ

′
〉 =

∫ W/2

−W/2
dy

∫ L/2

−L/2
dx

[
ψe

kxσ
(x,y)

]†
HRψe′

k′
xσ

′(x,y) ∝ δkx,k
′
x
δσσ ′,

where σ̄ denote the opposite spin of σ . Therefore out of the ten possible matrix elements of HR in Eq. (24) (accounting
for the hermiticity of HR), we are now left with only four different nonzero matrix elements. Moreover, we find below that
〈ψ−

kx↓|HR|ψ+
kx↑〉 = −〈ψ+

kx↓|HR|ψ−
kx↑〉 such that only three different nonzero matrix elements of HR remain in Eq. (24).

The interedge matrix elements in Eq. (25) involving HESs localized on opposite edges are

id+ = 〈
ψ+

kx↓
∣∣HR

∣∣ψ+
kx↑

〉 = −iR0(c̃+)2
[
kx

[
�+

++ − (
γ +

kx

)2
�−

++
] − 2γ +

kx
�+−

++
]
, (C6a)

id− = 〈
ψ−

kx↑
∣∣HR

∣∣ψ−
kx↓

〉 = +iR0(c̃−)2
[
kx

[
�−

−− − (
γ −

kx

)2
�+

−−
] + 2γ −

kx
�+−

−−
]
, (C6b)

while the intraedge matrix element (26) between HESs on the same edge is

ib = 〈
ψ−

kx↓
∣∣HR

∣∣ψ+
kx↑

〉 = iR0c̃+c̃−
[
kx

(
γ +

kx
�−

−+ − γ −
kx

�+
−+

) − �−+
−+ + γ −

kx
γ +

kx
�+−

−+
]
. (C7)

These elements are written in terms of the quantities appearing in the ribbon HESs given in Sec. B 3 and integrals involving f±
in Eq. (B15), namely, �τ

ee′ in Eq. (B16) and

�ττ ′
ee′ =

∫ W/2

−W/2
dy fτ

(
y,kx,E

e
kx

)
∂yfτ ′

(
y,kx,E

e′
kx

)
. (C8)

The parity of f± leads to �++
ee′ = �−−

ee′ = 0 and a partial integration (with zero boundary term) gives �ττ ′
ee′ = −�τ ′τ

e′e .
Now we turn to the intraedge matrix element between the HESs localized on the opposite edge compared to the HESs in

ib = 〈ψ−
kx↓|HR|ψ+

kx↑〉 and show that we find the same result. As discussed before, see Eq. (22), the HESs {ψ+
kx↓,ψ−

kx↑} are localized
on the opposite edge of the HESs {ψ−

kx↓,ψ+
kx↑}, which are used in ib. Direct calculation gives〈

ψ+
kx↓

∣∣HR

∣∣ψ−
kx↑

〉 = iR0c̃+c̃−
[
kx

(
γ −

kx
�+

+− − γ +
kx

�−
+−

) − �+−
+− + γ −

kx
γ +

kx
�−+

+−
]
.

Therefore, by comparing to ib in Eq. (C7) and using that �ττ ′
ee′ = −�τ ′τ

e′e and �τ
ee′ = �τ

e′e, we find〈
ψ+

kx↓
∣∣HR

∣∣ψ−
kx↑

〉 = −〈
ψ−

kx↓
∣∣HR

∣∣ψ+
kx↑

〉 = −ib. (C9)

This is a physically sound result, since the two edges are physically equivalent.
Finally, we give the integrals �τ

ee′ in Eq. (B16) and �ττ ′
ee′ in Eq. (C8). There are six nonzero �τ

ee′ . These are

�+
±± = W

2

[
1

cosh2
(Wλ±

1
2

) + 1

cosh2
(Wλ±

2
2

)
]

+ λ±
1 [3(λ±

2 )2 + (λ±
1 )2] tanh

(Wλ±
2

2

) − λ±
2 [3(λ±

1 )2 + (λ±
2 )2] tanh

(Wλ±
1

2

)
λ±

1 λ±
2 [(λ±

1 )2 − (λ±
2 )2]

, (C10)

where λ±
1,2 = λ1,2(E±

kx
) in Eq. (B13). Note that the notation λ±

1,2 is not identical to the one used in Sec. C 1 for an isolated edge.
Moreover, we obtain

�−
±± = −W

2

[
1

sinh2
(Wλ±

1
2

) + 1

sinh2
(Wλ±

2
2

)
]

+ λ±
1 [3(λ±

2 )2 + (λ±
1 )2] coth

(Wλ±
2

2

) − λ±
2 [3(λ±

1 )2 + (λ±
2 )2] coth

(Wλ±
1

2

)
λ±

1 λ±
2 [(λ±

1 )2 − (λ±
2 )2]

, (C11)
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which is related to �+
±± by exchanging cosh2(Wλτ

i /2) → − sinh2(Wλτ
i /2) and tanh(Wλτ

i /2) → coth(Wλτ
i /2) =

1/ tanh(Wλτ
i /2). We remark that �τ

±± are invariant under interchange of λ±
1 and λ±

2 . The �τ
ee′ with e �= e′ are

�+
−+ = �+

+− = 2λ−
1 tanh

(Wλ−
1

2

) − 2λ+
1 tanh

(Wλ+
1

2

)
(λ−

1 )2 − (λ+
1 )2

+ 2λ−
2 tanh

(Wλ−
2

2

) − 2λ+
2 tanh

(Wλ+
2

2

)
(λ−

2 )2 − (λ+
2 )2

− 2λ+
1 tanh

(Wλ+
1

2

) − 2λ−
2 tanh

(Wλ−
2

2

)
(λ+

1 )2 − (λ−
2 )2

− 2λ−
1 tanh

(Wλ−
1

2

) − 2λ+
2 tanh

(Wλ+
2

2

)
(λ−

1 )2 − (λ+
2 )2

(C12)

and

�−
−+ = �−

+− = 2λ−
1 coth

(Wλ−
1

2

) − 2λ+
1 coth

(Wλ+
1

2

)
(λ−

1 )2 − (λ+
1 )2

+ 2λ−
2 coth

(Wλ−
2

2

) − 2λ+
2 coth

(Wλ+
2

2

)
(λ−

2 )2 − (λ+
2 )2

− 2λ+
1 coth

(Wλ+
1

2

) − 2λ−
2 coth

(Wλ−
2

2

)
(λ+

1 )2 − (λ−
2 )2

− 2λ−
1 coth

(Wλ−
1

2

) − 2λ+
2 coth

(Wλ+
2

2

)
(λ−

1 )2 − (λ+
2 )2

, (C13)

where �τ
ee′ = �τ

e′e follows from the definition of �τ
ee′ in Eq. (B16). Here we observe that �−

∓± is related to �+
∓± by interchanging

tanh(Wλτ
i /2) and coth(Wλτ

i /2).
Furthermore, there are four different nonzero �ττ ′

ee′ (remembering that �ττ ′
ee′ = −�τ ′τ

e′e and �±±
ee′ = 0). These are

�+−
±± = W

[
λ±

1

sinh(Wλ±
1 )

+ λ±
2

sinh(Wλ±
2 )

]
+ 2λ±

1 λ±
2

(λ±
1 )2 − (λ±

2 )2

[
tanh

(Wλ±
2

2

)
tanh

(Wλ±
1

2

) − tanh
(Wλ±

1
2

)
tanh

(Wλ±
2

2

)
]
, (C14)

�−+
−+ = − 2

[
− (λ+

1 )2

(λ+
1 )2 − (λ−

1 )2
+ (λ+

1 )2

(λ+
1 )2 − (λ−

2 )2
− (λ−

1 )2

(λ−
1 )2 − (λ+

2 )2
+ (λ−

2 )2

(λ−
2 )2 − (λ+

2 )2

− λ−
1 λ+

1

(λ−
1 )2 − (λ+

1 )2

tanh
( λ+

1 W

2

)
tanh

( λ−
1 W

2

) + λ−
1 λ+

2

(λ−
1 )2 − (λ+

2 )2

tanh
( λ+

2 W

2

)
tanh

( λ−
1 W

2

)
+ λ+

1 λ−
2

(λ−
2 )2 − (λ+

1 )2

tanh
( λ+

1 W

2

)
tanh

( λ−
2 W

2

) − λ−
2 λ+

2

(λ−
2 )2 − (λ+

2 )2

tanh
( λ+

2 W

2

)
tanh

( λ−
2 W

2

)
]
, (C15)

and

�+−
−+ = + 2

[
− (λ−

1 )2

(λ−
1 )2 − (λ+

1 )2
+ (λ−

1 )2

(λ−
1 )2 − (λ+

2 )2
− (λ+

1 )2

(λ+
1 )2 − (λ−

2 )2
+ (λ+

2 )2

(λ+
2 )2 − (λ−

2 )2

− λ+
1 λ−

1

(λ+
1 )2 − (λ−

1 )2

tanh
( λ−

1 W

2

)
tanh

( λ+
1 W

2

) + λ+
1 λ−

2

(λ+
1 )2 − (λ−

2 )2

tanh
( λ−

2 W

2

)
tanh

( λ+
1 W

2

)
+ λ−

1 λ+
2

(λ+
2 )2 − (λ−

1 )2

tanh
( λ−

1 W

2

)
tanh

( λ+
2 W

2

) − λ+
2 λ−

2

(λ+
2 )2 − (λ−

2 )2

tanh
( λ−

2 W

2

)
tanh

( λ+
2 W

2

)
]
. (C16)

We note that �+−
−+ = −�−+

+− and that �−+
+− can be found

by interchanging E+
kx

and E−
kx

in �−+
−+ in Eq. (C15) (i.e.,

interchanging λ+
i and λ−

i for i = 1,2). We also remark that all
the integrals �τ

ee′ and �ττ ′
ee′ are even in kx , since λ±

1,2 = λ1,2(E±
kx

)
is even in kx . We now have all the integrals �τ

ee′ and �ττ ′
ee′

appearing in the matrix elements id± Eq. (C6) and ib Eq. (C7).

APPENDIX D: ON THE NUMERICAL TIGHT-BINDING
FORMULATION

In this Appendix, we briefly discuss the lattice regu-
larization of the BHZ model and its formulation for the
ribbon geometry. In order to map a continuous model to
a tight-binding model, we use the standard tight-binding

regularization procedure. For a 2D square lattice, this consists
in making the replacements

ki → 1

a
sin kia, (D1)

k2
i → 2

a2
(1 − cos kia), (D2)

with a being the lattice constant and i = x,y. The two
quantities are equal only in the long wavelength limit,
kia → 0. This tight-binding regularization has been exten-
sively used in the literature to study the BHZ Hamilto-
nian [45,62]. The fermion doubling problem that usually
occurs when discretizing massless Dirac particles does not
directly affect our calculations as the RSOC term breaks
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chiral symmetry, which is one of the conditions for the
fullfillment of the no-go theorem by Nielsen and Ni-
nomiya [63,64]. Moreover, we have checked that the topo-
logical properties of the Hamiltonian are unchanged in the
tight-binding version for the parametric regimes that we have
explored.

To transfer the Hamiltonian from momentum space onto a
real-space lattice, we perform a Fourier transformation. The

chosen form of the tight-binding regularization implies that
the hopping terms in the lattice model exist only between
nearest-neighbor sites. For the calculations presented in the
paper, we have a ribbon of finite width in one direction (y)
and periodic boundary conditions in the orthogonal direction
(x). Thus we perform a Fourier transformation only in
the direction of finite width (y) and obtain a kx-dependent
Hamiltonian:

H(kx) =
∑

j

Hjj c
†
j cj + (Hjj+1c

†
j cj+1 + H.c.), (D3)

Hjj =

⎛
⎜⎜⎜⎝

M − 2B+(2 − cos kx) A sin kx −iR0 sin kx 0

A sin kx −M + 2B−(2 − cos kx) 0 0

iR0 sin kx 0 M − 2B+(2 − cos kx) −A sin kx

0 0 −A sin kx −M + 2B−(2 − cos kx)

⎞
⎟⎟⎟⎠, (D4)

Hjj+1 = 1

2

⎛
⎜⎜⎜⎝

2B+ +A +iR0 0

−A −2B− 0 0

+iR0 0 2B+ +A

0 0 −A −2B−

⎞
⎟⎟⎟⎠. (D5)

The number of sites in the simulation varied between 200
and 2000. We set the value of the lattice spacing a such that we
obtain the required width for the particular case under study.
Changing the number of sites and a help us to make sure that
the results for the relevant values of k did not depend on the
details of the tight-binding regularization.

APPENDIX E: HIGHER-ORDER RASHBA
SPIN-ORBIT COUPLINGS

Rothe et al. [35] derived the RSOC in the BHZ basis up
to third order in the momentum. The calculations in the main
text only include the first-order term as seen in Eq. (8). Here
we discuss the effects of the second and third-order terms on
a pair of HESs at an isolated boundary.

The RSOC Hamiltonian in the BHZ basis to third order
is [35]

HR = H
(1)
R + H

(2)
R + H

(3)
R

=

⎛
⎜⎜⎜⎜⎝

0 0 −iR0k− −S0k
2
−

0 0 S0k
2
− iT0k

3
−

iR0k+ S0k
2
+ 0 0

−S0k
2
+ −iT0k

3
+ 0 0

⎞
⎟⎟⎟⎟⎠, (E1)

where k± = kx ± iky and the superscript n on H
(n)
R indicate

the order of the momentum that it represents, i.e., the main text
only use HR = H

(1)
R in Eq. (8). Here each order in momentum

has its own constant prefactor, namely R0, S0, and T0.
To incorporate the higher-order RSOC terms H

(2)
R and H

(3)
R

into the 2 × 2 Hamiltonian (12) for a pair of HESs at an isolated
edge, we need to include the matrix elements 〈ψky↑|H (2)

R |ψky↓〉
and 〈ψky↑|H (3)

R |ψky↓〉 into the effective RSOC αky
. Here ψkyσ

for σ = ↓,↑ are the HESs in Eq. (B5).

We begin by noticing that〈
ψky↑

∣∣H (2)
R

∣∣ψky↓
〉 = 0, (E2)

i.e., the second-order RSOC term H
(2)
R does not contribute

to the RSOC for a pair of HESs at an isolated edge within
our analytical approach. The same kind of cancellation
was found by considering the BIA term in Eq. (20). In
fact, both cancellations stem from the alternating signs in
the antidiagonal of HBIA and H

(2)
R , respectively. Hence the

cancellation is independent of the details of the transversal
wave function of the HESs.

Now we turn to the third-order RSOC H
(3)
R , where we

will see how our analytical approach actually fails to give
the correct answer. A straightforward calculation gives〈

ψky↑
∣∣H (3)

R

∣∣ψky↓
〉

= iT0
B+
2B

∫ ∞

0
dxgky

(x)(k−)3g−ky
(x)

= −T0
B+
2B

[
a

(3)
ky

+ 3kya
(2)
ky

+ 3k2
ya

(1)
ky

+ k3
ya

(0)
ky

]
, (E3)

where k− = −i(∂x + ky) and we introduced

a
(n)
ky

=
∫ ∞

0
dx gky

(x)∂n
x g−ky

(x)

= h(ky)

[
(−1)n(λ−

1 )n
(

1

λ+
1 + λ−

1

− 1

λ−
1 + λ+

2

)

+ (−1)n(λ−
2 )n

(
1

λ+
2 + λ−

2

− 1

λ+
1 + λ−

2

)]
. (E4)

Here we use h(ky) from Eq. (C4) and the shorthand notation
λ±

i = λi(±ky) for the two inverse length scales in Eq. (B9)
that appear in the transversal wave functions of the HESs
g±ky

(x) in Eq. (B8). We emphasize that even though the
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FIG. 11. The edge-state dispersions including both the first- and
third-order RSOC terms, H

(1)
R and H

(3)
R , found by a numerical tight-

binding calculation. The parameters are the same as in Fig. 2 (top).
Thus we observe that the third-order term only introduces minor
changes in the edge-state spectrum. The prefactor T0 of the third-order
RSOC term is chosen such that T0 = 0.57R0 according to the values
given by Rothe et al. [35].

calculus leading to this result is correct, the result itself is
not correct. For instance, it leads to a nonzero matrix element
at ky = 0, which in turn introduces a gap in the edge-state
spectrum of the Hamiltonian (12). This is obviously not correct
since the RSOC is invariant under time reversal symmetry and
therefore no gap should be opened by H

(3)
R . To emphasize this

point, we have performed a numerical tight-binding calculation
including both H

(1)
R and H

(3)
R , which indeed shows that no

gap appears in the edge-state spectrum, see Fig. 11. Now, to
pinpoint the origin of the problem further, we consider the

matrix element (E3) at ky = 0, which erroneously was found
to be nonzero. By using integration by parts repeatedly, we
obtain

〈
ψky=0↑

∣∣H (3)
R

∣∣ψky=0↓
〉 = −B+

2B
T0

∫ ∞

0
dxg0(x)∂3

xg0(x)

= −B+
4B

T0[∂xg0(x = 0)]2. (E5)

Hence, the matrix element is proportional to the square of
the derivative of the transversal wave function of the HES,
[∂xg0(x)]2, at the boundary x = 0. We found the transverse
wave function gky

(x) analytically using the simple hard-wall
boundary condition that gky

(x = 0) = 0 (see Appendix B 2
and Refs. [43,46]). This produces an artificial discontinuity
in the derivative of gky

(x) at the boundary x = 0—just as
for the textbook example of an infinitely deep square well. It
is this discontinuity that gives the incorrect nonzero matrix
element at ky = 0. For any smooth boundary potential (or a
finite step potential), ∂xg0(x) would be zero at the boundary
of the integral (not necessarily at x = 0) and thereby give the
correct result. Unfortunately, it is hard to obtain analytical
wave functions for these potentials. In other words, we seem
to get a nonzero result due to our crude approximation for the
transversal wave function. However, for integrals involving
only the first-order derivatives of gky

as in the main text, we
can still use the HESs in Eq. (B5) in our analytical approach.

A similar situation is found in the use of k · p theory to
describe confined structures by the envelope function approx-
imation. Here, hard-wall boundaries are often used to describe
structures in accordance with experimental observations, even
though the envelope function approximation, in principle,
requires smooth potentials. This has been justified in some
cases, but remains a problematic issue for other cases (see
Sec. 4.1 in Ref. [65] for a discussion).
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