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ABSTRACT  

We have studied the electrodeposition of Bi thin films on two GaAs orientations with different 

atomic arrangement and chemical composition, (110) and (111)B. The electrochemical 

properties of each substrate have been analyzed by means of cyclic voltammetries and current 

transients. Then, x-ray diffraction has been used to determine the crystal structure and quality of 

the Bi films, and atomic force microscopy images have provided information about the surface 

morphology. Finally, the Bi/GaAs interface has been electrically characterized by means of 

capacitance-voltage and current-voltage curves. In this study, we have been able to discriminate 

between the effect of surface chemistry and the arrangement of surface atoms. The former has a 

direct effect on the reduction process of Bi(III) ions and on the electrical properties of the 

Bi/GaAs interface, whereas the atoms arrangement at the substrate surface determines the texture 

and morphology of the Bi films. 
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Introduction 

Bismuth (Bi) has received in-depth attention in the last years due to its interesting electronic 

properties 1-4. On one hand, the strong spin-orbit coupling present in this material is responsible 

for its peculiar band structure, characterized by a highly anisotropic Fermi surface 5-7. As a result, 

carriers mass reaches extremely low values in certain crystal directions, m* = (1-6)·10-3 me 6-8, 

which in turn leads to high mobilities. In addition, the Bi rhombohedral structure (R-3m) induces 

a semimetallic behaviour that results in a low carrier density, n = 2.75 · 1017 cm-3 7-9. These two 

characteristics makes Bi a suitable scenario for the study of classical and quantum size effects 

(SE and QSE) on the electronic properties, since carriers mean free path 10-11 and Fermi 

wavelength 5, 12 are larger than those obtained in other materials. In addition, Bi surface states are 

strongly spin-polarized via Rashba effect 13, which could make Bi to have a strong impact in 

spintronics 14. Very recently, a large spin to charge conversion induced by spin-orbit coupling in 

a Bi/Ag Rashba interface has been measured 15. The study of these effects and their dependence 

on crystal direction can be carried out on different nanostructured systems. Although there are 

some works on nanowires 16-17, thin films represent a better starting point as only one dimension 

is reduced. In addition, thin films are more compatible with standard processing techniques, 

which would eventually allow the integration of Bi films in devices.  

To prevent current leakage during transport measurements in Bi thin films, low-doped 

semiconducting substrates should be used because they guarantee the existence of a wide 

Schottky barrier between the Bi layer and the substrate. However, highly-doped semiconductors 

are also interesting to study since thermionic field emission through Schottky barriers is 

promising for spin injection/detection 18. For these purposes, electrodeposition has proved to be a 

suitable technique since high-quality Bi thin films, and other metallic layers, can be grown onto 
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semiconducting substrates. In fact, high-quality Bi films have been electrodeposited on n-GaAs 

single-crystal substrates, leading to Bi/GaAs Schottky diodes 19-22. The use of single-crystal 

semiconductors as substrates makes necessary the knowledge of its crystal structure and 

chemical composition because both of them lead to the specific energy band structure and, 

therefore, the specific electronic properties of the semiconductor. However, the breaking of the 

3D translation symmetry at the substrate surface supposes the appearance of dangling bonds that 

act as states in the middle of the gap. The density, geometry and charging character of the 

dangling bonds (donor or acceptor states depending on the atom) depends on the substrate 

orientation, leading to different surface state band structures 23-25. Therefore, the surface 

orientation strongly affects the electrochemical properties of the substrate surface and the 

electrical properties of the metal-semiconductor interface 24, 26-28. Although other authors have 

studied the electrodeposition of Bi on GaAs substrates with different surface orientations 19, 29-31, 

the discrimination between the effect of surface atomic arrangement and surface chemistry has 

not been done yet. 

In this work, we have investigated the influence of substrate orientation on the 

electrodeposition of Bi thin films on n-GaAs substrates. Two orientations with different atomic 

arrangement and chemical composition have been compared: (110) and (111)B. Our results show 

that surface composition has a direct effect on the reduction process of Bi(III) ions and on the 

electrical properties of the Bi/GaAs interface, whereas surface atoms arrangement determines the 

texture and morphology of the Bi films.   

Experimental Methods 

Electrochemical experiments have been carried out using a stable water-based electrolyte 

containing 1 mM Bi2O3 (bismuth oxide) as Bi(III) cations source and 1 M HClO4 (perchloric 
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acid) as supporting electrolyte. Solutions were prepared with analytical grade chemicals and 

deionized water in order to avoid free ions. Bismuth oxide was firstly added to perchloric acid in 

a volumetric flask and then, the solution was made to the mark with deionized water. The pH of 

the solution (approximately 0.1) was not necessary to be further adjusted. 

Working electrodes were Si doped n-type GaAs(110) and GaAs(111)B wafers, supplied by 

Geo Semiconductors, with a carrier concentration of  (0.9 – 1) × 1018 cm-3 and (0.85 – 0.95) × 

1018 cm-3, respectively. A similar carrier concentration in both orientations is mandatory since 

this parameter affects the electrochemical properties of semiconducting substrates. Ohmic 

contacts were made on the back of the wafers by thermal evaporation of 80 nm of AuGe (2% Ge) 

and 250 nm of Au, followed by an annealing at 380 oC in forming gas for 90 s. The total surface 

area exposed to the electrolyte was 0.15 cm2 in all cases. Prior to each experiment, substrates 

were degreased and then etched to remove GaAs native oxide under darkness conditions. Firstly, 

substrates are dipped in a solution of HCl (10% vol.) for 2 minutes to remove arsenic and 

gallium oxides 32. Then, substrates are rinsed in deionized water for 2 minutes to remove Ga-Clx 

species since they are soluble in water 33. Finally, substrates are immersed in 1 M HClO4 

(supporting electrolyte) for 2 minutes to remove possible Cl- ions remaining in the solution or 

adsorbed at the substrate surface. Then, the substrate surface is protected from air with a drop of 

1M HClO4 (supporting electrolyte) when transferred to the Bi(III) solution, where substrates 

remained 2 minutes to reach a stable Open Circuit Potential (OCP). In this condition, the 

substrate surface is oxide-free with about one monolayer coverage of elementary As, which 

interacts with the protons in the solution (As-H) 34-35. 

The electrochemical properties of each orientation have been studied by means of cyclic 

voltammetries (CV) and current transients. These experiments were performed in a three-
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electrode cell with a platinum mesh as counter electrode and a Ag/AgCl (3 M NaCl) reference 

electrode supplied by BASi (Eeq =  0.196 V vs. SHE). In this study, all potentials are referred to 

this electrode. Electrochemical experiments were controlled by a Metrohm Autolab 

PGSTAT302N potentiostat. After deposition, films were rinsed in deionized water and dried 

with N2. The nominal thickness of the films was controlled by Faraday’s law: 
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⋅
⋅⋅

=
κ

ρ               (1) 

where ρ is Bi density (9.8 g ·cm-3), z is the number of electrons involved in the reduction 

reaction of Bi(III) ions (3), F is Faraday’s constant (96485 C·mol-1), M is Bi molecular weight 

(208.98 g· mol-1), κ is the process efficiency, S is the area of the working electrode in cm2 and d 

is the film thickness in nm. In order to obtain a Bi thickness of 40 nm, it is necessary to consider 

a κ of nearly 40 %. Thus, a charge of 20.88 mC was transferred in each growth. 

The influence of the substrate surface orientation on the crystal structure and morphology of 

the Bi films has been determined by X Ray Diffraction (XRD) and Atomic Force Microscopy 

(AFM). Structural characterization was done by XRD using a Philips X’Pert PRO system 

equipped with a Cu target (λΚα = 1.54 nm) and a four-circle goniometer. All films were 

measured in both asymmetric and symmetric configurations. Grazing incidence mode (GIXRD), 

also called grazing incidence asymmetric-Bragg diffraction (GIABD), was used to analyze the 

crystal structure of the Bi films. The incidence angle (ω) was set in the range of 0.5o – 1o. Then, 

Bragg-Brentano configuration (θ −2θ scan) was used to determine the preferred orientation of 

the films. To avoid substrate reflections, an offset of 0.5o was introduced between the incidence 

and the diffracted direction (ω = θ − θ offset). In order to study the out-of-plane and in-plane 

crystal quality, ω-rocking curves and ϕ-scans have been performed, respectively. The average tilt 
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and twist of Bi grains with respect the GaAs substrate is defined as one half of full width at half 

maximum (FWHM/2) of ω-rocking curves and ϕ-scans, respectively. Surface characterization 

was done by means of a Nanoscope AFM with a Si tip, working in tapping mode and operating 

in air. Images were analyzed with WSxM 5.0 software and Nanoscope 5.31r1 software. 

Finally, the Bi/GaAs interface was characterized electrically by means of capacitance - voltage 

(C-V) and current-voltage (I-V) curves. Several diodes with 200 µm of diameter were fabricated 

in the Bi films by standard optical lithography followed by photochemical etching. Afterwards, 

an electrical contact made by 20 nm Cr/300 nm Au was evaporated on the top of the Bi diodes to 

protect them. C-V and I-V measurements were carried out at 290 K in a Janis probe station 

(model CCR10-1) with a Hewlett Packard 4145 Semiconductor Parameter Analyzer and a 4284A 

LCR meter, respectively. 

In order to distinguish between the role of the substrate orientation and the hydrogen blockade on 

the electrodeposition of the Bi layers 35, we have carried out two different growth procedures. In 

the first procedure, films are grown by applying a DC potential of -0.2 V. The second procedure 

consists on the scan route described in ref. 38: a CV of two scans is performed and afterwards 

the film is grown applying a DC potential of -0.2 V. 

 

Results and Discussion 

The two substrates studied in this work, GaAs(110) and (111)B, have different chemical 

composition and atomic arrangement in the surface. Since they are immersed in an electrolyte, 

their surface atoms are positioned at bulk-like positions (“truncated” bulk) because dangling 

bonds are saturated with adsorbed species, inhibiting surface reconstructions 23, 34, 39. Therefore, 

the ideal (110) orientation exhibits both Ga and As atoms in a rectangular lattice, with an atom 
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density of 8.85 · 1014 cm-2 and one dangling bond per atom (Figure 1.a). On the contrary, the 

(111)B orientation has only As atoms in an hexagonal lattice, with an atom density of 7.22 · 1014 

cm-2 and again one dangling bond per atom (Figure 1.c). 

 

Figure 1. Crystal planes (a) GaAs(110), (b) Bi(018), (c) GaAs(111)B  and (d) Bi(012), obtained 

from the Diamond program and the data in references 36 and 37. 

1. Electrochemical behaviour of n-GaAs substrates in the Bi(III) solution 

In order to study the effect of the substrate orientation on the electrodeposition of Bi ultra-thin 

films on n-GaAs electrodes, it is necessary to previously analyze the kinetics of Bi(III) ions on 

each substrate. CV of two scans were carried out on GaAs(110) and GaAs(111)B with a scan 

rate of 10 mV/s. CV scans start at the OCP (≈ 70 mV for both substrates) and go towards 

negative potentials till -0.7 V. Then, the potential is swept to the anodic region being the second 

reverse potential 0.6 V and eventually, returning back to the OCP. The second scan is performed 
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just after the first one and it is identical to it. To give further insight into the electrochemical 

behaviour of each surface, CV scans are represented in a Tafel plot 40 (Figure 2). 

 

Figure 2. Tafel plot of CV scans performed on n-GaAs(110) and (111)B substrates in the Bi(III) 

solution. Scan rate of 10 mV/s. The inset is an enlargement of the anodic stage of scan 1 

performed on GaAs(110) to show the two slopes of the curve. 

The cathodic stage of the CVs (regions I, II and III in Figure 2) are quite similar for both 

orientations, which indicates that the kinetics of Bi(III) ions is comparable in the two studied 

surfaces. We can also observe in both orientations some features related to the surface blockade 

caused by the adsorbed hydrogen (Hads) layer 35. Firstly, the OCP (minimum delimited by regions 

I and V) in scan 1 (70 mV) is smaller than the OCP in scan 2 (100 mV) due to the effect of Hads 

in the potential distribution of the SEI. In the first scan, surface states are passivated by the Hads 

so surface dipole is changed 34, 41, whereas in the second scan the substrate surface is in intimate 

contact with the electrolyte 38. Secondly, the charge transfer resistance obtained from the 

intersection of the Tafel curve with the vertical line crossing the OCP 42 is higher in scan 1 than 

in scan 2. Finally, both orientations present a shift between the reduction peak of the first and the 
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second scan and the onset potential of the first one (defined as the intersection between the rising 

current and the baseline of the CV) is the same in both surfaces because it corresponds to the 

onset potential of hydrogen reduction (-196 mV). Hydrogen adsorption seems to be comparable 

in both orientations, since CV efficiencies are similar in both cases (70 % for scan 1 and 74 % 

for scan 2). Considering that the Hads is removed after the first scan 38, the onset potential of the 

reduction peak in the second scan gives information about the electrical activity of each n-GaAs 

orientation. GaAs(110) exhibits a smaller onset potential (-139 mV) than GaAs(111)B (-155 

mV) due to the presence of Ga atoms in the former orientation. These atoms are responsible for 

lower flat band potentials 43 probably because of the acceptor character of the Ga-derived states 

23-24.   

The anodic stage (regions IV and V in Figure 2) shows more remarkable differences between 

the two surfaces. Although the anodic peaks have the same area, i.e. the same amount of Bi is 

dissolved, the dissolution rate is higher at GaAs(111)B, leading to narrower peaks. Two slopes 

are observed for each surface orientation (inset of Figure 2) which indicates two different 

mechanisms involved in the Bi dissolution and related to the electrons transport from the Bi film 

to the GaAs substrate. At low potentials, electrons cross the Schottky barrier mainly by tunnel 

effect whereas at higher overpotentials thermionic emission becomes the predominant 

contribution 29. Tunnel transport seems similar in both orientations, which means that the 

depletion region of the Schottky barriers has a similar width. However, the slope at higher 

potentials, which is linked to thermionic emission, is higher for the (111)B orientation, due to a 

lower barrier height or to a higher density of surface states at the Bi/GaAs(111)B interface 26.  

In order to differentiate between the effect of Hads and the effect of substrate orientation in the 

electrodeposition of Bi, films with a thickness of 40 nm have been grown in GaAs(110) and 
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(111)B substrates following the two different procedures already described in the Experimental 

Methods section. The first procedure (Proc. 1) consists on growing the Bi film by applying a DC 

potential of -0.2 V so the Bi layer will show effects from both the Hads and the surface 

orientation. The second procedure (Proc. 2) consists on the scan route described in reference 38 

in which a first CV, as shown in Figure 2, is performed in order to unblock the n-GaAs surface 

and then, a DC potential of -0.2 V is applied to grow the Bi film. By this latter procedure, a Bi 

layer will be deposited showing only the influence of the substrate orientation. The 

electrodeposition time for both substrates and both procedures is around 630 seconds. 

Figure 3.a shows current-time transients associated to the nucleation process of Bi films 

deposited on both surface orientations following Proc.1 and Proc. 2. At a very early stage of the 

growth (t < 1 s), the current decreases due to the charging of the double-layer. Afterwards, the 

current increases as a result of the formation and growth of Bi nuclei on the GaAs. The current 

reaches a maximum value (jmax, tmax) and then decreases due to the overlap of the diffusion fields 

of the growing nuclei and the decrease of the electrode area associated with it.  

The transient curves are very similar, and they only reflect differences related to the growth 

procedure (Figure 3.a). Therefore, the substrate orientation seems to have a lower influence than 

the Hads on the nucleation. When Proc. 1 is performed, both the induction time (the time to 

charge the double-layer) and tmax increase, whereas jmax decreases due to the presence of Hads on 

the GaAs surface that hinders the Bi growth. When procedure 2 is followed, the current-time 

transients are similar for both surface orientations except for the higher value of j in the (110) 

orientation. This could be attributed to a higher density of surface atoms of this surface. 
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Figure 3. (a) Current-time transients for Bi films grown on n-GaAs substrates (110) and (111)B 

following the two procedures. (b) Non-dimensional plot of the experimental curves shown in a) 

and theoretical curves for instantaneous and progressive nucleation. 

In order to obtain kinetic information about the nucleation process, the current transients have 

been analyzed by means of the nucleation model derived by Scharifker and Hills 44. The 

experimental transients have been plotted in a non-dimensional form and compared with the 

theoretical curves for instantaneous (eq. 2) and progressive nucleation (eq. 3) (Figure 3.b).  
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The time scale has been corrected (taken t = t - t0) to avoid the delay effect of the induction 

time (t0) 45. The experimental data can be described by progressive 3D nucleation controlled by 

diffusion for both substrate orientations, which is the typical nucleation observed when 

electrodepositing metals onto semiconductors 40. The adimensional plot of Figure 3.b shows a 

progressive nucleation for GaAs(111)B and both procedures. However, GaAs(110) shows an 

intermediate behaviour that can be attributed to the presence of Ga atoms on the surface of that 

substrate. This behaviour is related to the competition between protons and Bi(III) ions to get 

adsorbed onto As surface atoms 34, 38, which leads to a progressive nucleation. However, there is 

no such competition in the case of Ga atoms because protons do not adsorb on them 34. 

Therefore, the reduction of Bi(III) ions on GaAs(110) substrates seems to be instantaneous at Ga 

surface atoms but progressive at As surface atoms. The same explanation has been given by 

Depestel and Strube to explain the different nucleation mechanism of gold on GaAs(111)A and 

GaAs(111)B surfaces 24. From the values of jmax and tmax, the apparent nucleation rate (AN0), 

which is the product of the nucleation rate per active site (A) and the density of active sites (N0), 

and the diffusion coefficient of Bi(III) ions (D) have been estimated by means of equations (22) 

and (23) in reference 44. Table 1 summarizes the values obtained for each procedure and 

substrate orientation. Proc. 1 provides smaller values of D and AN0 than Proc. 2 in both surfaces 

probably because of the distortion that the Hads layer produces in the current transients. Proc. 2 

gives nearly the same value of diffusion coefficient in both orientations which is slightly higher 
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that the values found in the literature 46,47. The AN0 values obtained with this procedure are 45 % 

higher in the (110) orientation than in the (111)B. This difference cannot only be related with the 

higher surface atom density in the (110) surface (18 % higher) but also to the presence of Ga 

atoms in this surface. 

 

Orientation (110) (111)B 

Procedure Proc. 
1 

Proc. 
2 

Proc. 
1 

Proc. 
2 

AN0 (103 cm-2 s-1) 11 128 9 70 

D (10-5 cm2 s-1) 1.3 2.3 1.3 2.2 

 

Table 1. Apparent nucleation rate (AN0) and diffusion coefficient of Bi(III) ions (D) obtained for 

the two growth procedures and the two substrate orientations. 

2. Structural and morphological characterization of Bi ultra-thin films 

XRD analysis has been carried out to check the effect of the growth procedure and substrate 

orientation on the Bi crystallinity. Due to the small thickness of the films, out-of-plane GIXRD 

patterns have been carried out (Figure 4). All patterns only show a few reflections assigned to the 

rhombohedral structure of metallic Bi (R-3m, 166), which indicates that all films have a 

preferred orientation parallel to the substrate surface 48. The samples grown via procedure 2 

present fewer Bragg peaks than those grown via procedure 1, which indicates an enhancement of 

the crystallinity in the former case.  
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Figure 4. GIXRD patterns of 40nm-Bi thin films grown on GaAs(110) and GaAs(111)B 

substrates at -0.2V and 300K. The dashed lines indicate the position of Bi reflections (ICDD card 

00-044-1246) that matches with an observed peak. 

In order to determine the preferred orientation of the Bi layers, symmetric Bragg-Brentano XRD 

measurements have been carried out (Figure 5). Bi films grown on GaAs(111)B show a (012) 

texture whereas the films deposited on GaAs(110) present a (018) texture. Other authors have 

obtained electrodeposited Bi films with the same texture on these GaAs orientations 19, 30-31. In 

the case of Bi films grown on GaAs(110) substrates there is also a small contribution of Bi(012) 

planes when Proc. 1 is followed, which indicates a higher crystal disorder.  
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Figure 5. Bragg-Brentano XRD patterns of 40nm-Bi thin films grown on GaAs(110) and 

GaAs(111)B substrates at -0.2V and 300K. The dashed lines indicate the position of Bi 

reflections (ICDD card 00-044-1246) that matches with an observed peak. Peaks marked with * 

correspond to GaAs(110) and GaAs(333) reflections. 

We have studied the out-of-plane crystallographic uniformity of the Bi films by means of ω-

rocking scans performed around the strongest reflections observed in the symmetric XRD 

patterns, i.e. Bi(018) and Bi(024) Bragg reflections for Bi on GaAs(110) and (111)B, 

respectively (Figure 6). It should be pointed out that the Bi(024) reflection has been used instead 

of the Bi(012) because the GaAs(111) reflection interferes with it. The Bi films grown via Proc. 

2 show narrower ω-rocking curves with higher intensity than those grown via Proc. 1. The 

average tilt (FWHM/2) of Bi(018) and Bi(012) crystallites decreases from 0.3o to 0.25o and from 

0.23o to 0.14o, respectively, when Proc. 2 is followed instead of Proc. 1 (Table 2). This indicates 

a lower crystal quality in the films grown via Proc. 1 because the Hads layer hinders a good 

nucleation of the Bi layer.     
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Orientation (110) (111)B 

Surface Proc. 
1 

Proc. 
2 

Proc. 
1 Proc. 2 

Tilt (o) 0.30 0.25 0.23 0.14 

Twist (o) 0.15 0.15 5.80 5.00 

 
Table 2. Tilt and twist average values for Bi films grown on GaAs(110) and (111)B substrates 

with both growth procedures. 
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Figure 6. Rocking curves performed on 40 nm-Bi thin films grown on (a) GaAs(110) and (b) 

GaAs(111)B substrates following the two growth procedures detailed in the text.  

The in-plane crystallographic uniformity of the Bi films can be studied by means of ϕ-scans 

(azimuthal scans). These measurements are performed around the strongest asymmetric-Bragg 

reflections, i.e. reflections that are not related to the layer texture. In the case of Bi(018) films 

grown on GaAs(110), we have chosen Bi(012) and GaAs(200) reflections (Figure 7.a). Both, the 

substrate and the Bi layer present a two-fold symmetry in agreement with the reflection 

symmetry, indicative of a single in-plane orientation. An average twist (FWHM/2) of 0.3o has 

been obtained for both the substrate and the Bi layers grown by the two growth procedures, 

which indicates a strong in-plane texture with no twist between Bi grains (Table 2), i.e. the 

Bi(018) plane can form an epitaxial (1x1) layer on GaAs(110). Taking into account the 90o 

rotation between Bi and GaAs reflections and the rectangular lattice of both Bi(018) and 

GaAs(110) planes, we inferred an orientation relationship [4 8  ̅1]Bi || [0 0 1]GaAs and [1 0 0]Bi 

|| [1  ̅1 0] GaAs (Figure 1.b). Since each Bi atom in the Bi(018) plane has three dangling bonds 

and each Ga and As surface atoms in the GaAs(110) plane has one dangling bond, Bi atoms 

probable make bonds with both As and Ga atoms. Using the values of the bulk material, the 

vertical directions in Figure 1.a and Figure 1.b have a mismatch of 3%, whereas the horizontal 

directions present a mismatch of 13%. This result is in agreement with other studies 19, 30-31.  
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Figure 7. Semilogarithmic polar diagrams of azimuthal scans performed on 40nm-Bi thin films 

grown on (a) GaAs(110) and (b) GaAs(111)B substrates following the two growth procedures 

detailed in the text. The curves corresponding to Bi(110) reflection has been rescaled (x4).   
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In Bi(012) films grown on GaAs(111)B, Bi(110) and GaAs(220) asymmetric-Bragg reflections 

were selected for ϕ−scans (Figure 7.b). GaAs(220) shows three reflections in agreement with its 

three-fold symmetry. Although Bi(110) has also a three-fold symmetry, the azimuthal scan 

shows 12 reflections. This indicates a complex in-plane arrangement, where Bi grains are 

distributed in four possible orientations with respect to GaAs(111)B planes and are rotated 30o 

between them. Taking into account these angles, we infer that the Bi[2 ̅2 1] can be parallel to 

both GaAs[1 ̅1 0] and GaAs[0 ̅1 1] directions whereas the Bi[ ̅4 ̅2 1] direction can be parallel to 

both GaAs[1 ̅2 1] and GaAs [ ̅1  ̅1 2] directions (Figure 1.c and d). Using the values of the bulk 

material, the former directions have a mismatch of 12% or 23% depending on the distance 

between Bi atoms in the [2 ̅2 1] direction that can be 3.1 or 3.5 Å, whereas the latter directions 

present a mismatch of only 5%. These Bi layers have also a considerable mosaicity, since the 

average twist (FWHM/2) is around 5o (Table 2). This is a consequence of the 86o angle between 

the directions Bi[2 ̅2 1] and Bi[ ̅4 ̅2 1], which have to fit with the directions GaAs[1 ̅1 0] and 

GaAs[ ̅1 ̅1 2], respectively, which form an angle of 90o. This misfit enables the Bi(012) grains to 

twist ±4o around the above mentioned GaAs directions, leading to the mosaicity observed. In 

addition, when the Hads layer is present at the beginning of the Bi film growth (Proc. 1) the 

mosaicity is higher (5.8o) than when it is not (Proc. 2, 5o). Therefore, we can conclude that a 

better crystallinity is obtained when Bi films are grown via procedure 2, as a result of the better 

nucleation for the lower misfit. 
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Figure 8. AFM images of 40 nm Bi thin films grown on GaAs(110) and GaAs(111)B substrates 

at -0.2V and 300K. (a) and (c) show films grown following procedure 1. (b) and (d) show films 

grown following procedure 2. 



 22 

All Bi films exhibit a surface morphology in agreement with a 3D nucleation as expected by 

current-time transients (Figure 8). AFM images show that, in general terms, the morphology of 

the Bi layers is dependent on the substrate orientation regardless of the growth procedure. Bi 

layers grown on GaAs(111)B substrates present elongated islands and a small roughness, in 

agreement with the higher out-of-plane crystal uniformity. The flatter Bi surface when using 

GaAs(111)B as a substrate is also in agreement with the progressive nucleation obtained for that 

orientation However, Bi layers grown on GaAs(110) substrates exhibit rounded islands with a 

higher roughness, as a result of the higher average tilt of the Bi(018) crystallites. The higher rms 

in this case is also in agreement with the mixed character of the nucleation, progressive plus 

instantaneous. For both substrate orientations, depth profiles show that the Bi films grown via 

Proc. 2 are more compact than those grown via Proc. 1. Depth profiles show the existence of 

some areas of the substrate that are not well covered as a result of the Hads in the Bi layers grown 

via Proc.1 38. In addition to the higher compactness, Proc. 2 provides flatter Bi films decreasing 

the rms between 12-20% (Table 3).  

Orientation (110) (111)B 

Surface Proc. 1 Proc. 2 Proc. 1 Proc. 2 

rms (nm) 7.3 5.8 4.1 3.6 

Average island size (nm) 50 85 50 55 

 
Table 3. rms and average island size values inferred from AFM images for 40 nm Bi films 

grown on GaAs(110) and GaAs(111)B substrates.  

 

3. Electrical properties of Bi/n-GaAs interfaces 
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To conclude this study, Bi/GaAs diodes have been fabricated to electrically characterize the 

Bi/GaAs interface. C-V as well as I-V curves have been measured at 290 K as a function of 

substrate orientation and growth procedure. Firstly, C-V curves have been measured on 

Au/Cr/GaAs Schottky diodes to estimate the electron concentration of the GaAs substrates. The 

resulting values were 9.5·1017cm-3 for (110) and 8.5·1017cm-3 for (111)B in perfect agreement 

with the wafers specifications. Since n > Nc, where n is the electron concentration and Nc (= 

4.7·1017 cm-3) is the effective density of states for electrons in the conduction band 37, our 

substrates are degenerate.  

Afterwards, C-V curves have been carried out on Bi/GaAs diodes for both substrate 

orientations and growth procedures. In Figure 9.a it is shown the C-2-V curves studied for all the 

samples.  
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Figure 9. (a) C-2-V curves and (b) ln j -V curves of Bi/GaAs diodes as a function of substrate 

orientation and growth procedure. 

To infer the flat band potential (φFB) from the intercept (V0) of the C-2 curve with the voltage 

axis, an important correction should be made according to the Goodman and Perkins model 49 

derived for the differential capacitance of a metal contact to a degenerate semiconductor.   

q
kTKVoFB +=φ

                                         (4) 
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where  
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where η is the reduced Fermi level with respect to the bottom of the conduction band, εD is the 

reduced donor energy level respect to the bottom of the conduction band, Fj(η) are the Fermi 

integrals 50, k is the Boltzmann constant, T is the temperature and q is the electron charge. The 

calculation of η and εD  energy levels is derived from the experimental value of n previously 

obtained and it is detailed in the appendix. From the flat band potential and the position of the 

Fermi level, the barrier height (φB) can be derived as: 

( )CFFBFBB EEqkTqq −−=⋅−= φηφφ                                        (6) 

Table 4 summarizes the values of the (EF - EC), φFB and φB for the Bi/GaAs interfaces for both 

substrate orientations and growth procedures. Bi films grown via Proc. 1 have barrier heights 

higher (2-3%) than those grown via Proc. 2 regardless of the substrate orientation (table 4). Since 

these layers have been grown onto hydrogenated GaAs surfaces, this increase in the barrier 

height is due to the presence of Hads trapped in the Bi/GaAs interface. The hydrogen atoms 

passivate the surface states at the interface, enhancing the surface dipole of the Bi and, therefore, 

leading to a higher effective barrier height 51-52. Furthermore, the Bi layers grown on GaAs (110) 

present a higher barrier height (~ 60 meV) than those obtained in GaAs(111)B, probably due to 

the enhanced in-plane crystal uniformity. On the contrary, the high mosaicity of the Bi films 

grown on GaAs(111)B leads to a large density of grain boundaries and, therefore, to surface 

states that decrease the barrier height. This result is in agreement with the faster Bi dissolution 

observed for GaAs(111)B substrates at the electrochemical characterization (Figure 2).    
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Figure 9.b shows the semilogarithmic I-V characteristics of a metal-semiconductor junction 

with excess current at the reverse bias which indicates tunnel transport through the Schottky 

barrier. It is known that GaAs substrates with a doping level ND > 1·1017 cm-3 exhibit sufficiently 

thin barriers at 300 K to allow electrons tunneling from the conduction band to the metal 53. 

Therefore, I-V characteristics should be analyzed on the basis of Thermionic Field Emission 

(TFE) 54. The forward current (jn) can be described by the following relation: 









⋅=

0

exp
E
Ejj Sn

                                   (7) 
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Here js is the saturation current, E is the potential energy associated with the applied bias (V) 

between the metal and the semiconductor, x is the Fermi energy measured with respect to the 

bottom of the conduction band and A* is the Richardson constant. The energy E0 is given by: 


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Here h is Planck constant, N is the ionized donor concentration (equal to the electron 

concentration, n), mt is the tunneling mass for the electrons measured in the unit of the free 

electron mass and ε is the semiconductor permittivity. 
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The experimental characteristics shown in Figure 9.b have been analyzed by a non-linear 

fitting of equation 7 to the experimental data using the Marquardt–Levenberg algorithm. The mt 

has been set as a free parameter as well as φB, because it can be affected by the crystal disorder at 

the interface 18. Therefore, equation 7 can be written as the following equation (the detailed 

calculation is given in the appendix): 

BAjn += lnln                                              (11) 
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The best-fit parameters from at least 10 different diodes were averaged to give the values listed 

in Table 4. Just as in the C-V curves, the barrier heights obtained by the I-V curves are a little 

higher in the (110) orientation. In addition, Bi/GaAs diodes obtained by Proc. 1 present barrier 

heights slightly lower than those obtained by Proc. 2. This might be related to a higher oxidation 

of the diode due to the higher rms of the Bi films grown by Proc. 1 55. In all cases, the mt 

obtained is smaller than the electrons mass in GaAs which indicates crystal defects at the 

interface. The (111)B orientation shows the lowest values of mt due to the high mosaicity of the 

Bi layers grown on this orientation. On the contrary, the Bi layers grown on GaAs(110) have a 

negligible mosaicity but a higher out-of-plane disorder, which leads also to a small value of mt.  
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Orientation (110) (111)B 

Procedure Proc. 1 Proc. 
2 

Proc. 
1 Proc. 2 

EF - EC 
(meV) 40.7 40.7 36.0 36.0 

q·φFB (eV) 0.913 0.885 0.835 0.816 

q·φB
CV (eV) 0.863 0.833 0.796 0.780 

q·φB
IV

 (eV) 0.842 0.854 0.835 0.837 

mt 0.0267 0.023
7 

0.020
3 0.0198 

 

Table 4. Fermi level position with respect to the conduction band edge (EF - EC), flat band 

potential (q·φFB) and barrier height inferred from C-V curves (q·φB
CV). Barrier height (q·φB

IV) and 

tunneling mass (mt) derived from I-V curves. 

 

The barrier heights obtained by both C-V and I-V measurements for the Bi films grown on 

GaAs(110) are comparable to literature values 19. However, Bi films grown on GaAs(111)B 

present higher barrier heights than those obtained by other authors 19, 30. C-V and I-V curves 

provide different values for the barrier height mainly due to two effects. On one hand, I-V curves 

measure the electrons transport through the Schottky barrier which is affected by image forces 

and contact resistances, whereas C-V curves measure capacitive effects. On the other hand, when 

an interface is not completely abrupt there is a barrier height fluctuation at the interface that 

distorts I-V curves from the theoretical models which suppose uniform and abrupt barriers with a 

fixed value for the barrier height. However, C-V curves performed on non uniform interfaces 

only give an average value of the barrier height. Therefore, C-V measurements usually give more 

reliable values of the Schottky barrier height than I-V measurements.   
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Conclusions 

The effect of n-GaAs surface orientation on the electrodeposition of 40 nm Bi layers has been 

studied by means of different techniques. Firstly, cyclic voltammetries and transient curves have 

been used to  observe the electrochemical properties of (110) and (111)B GaAs surface 

orientations. Afterwards, the crystal structure and morphology of Bi films grown by different 

procedures have been determined by XRD analysis and AFM images. Finally, the Bi/GaAs 

interface has been characterized by C-V and I-V curves. In this study, we have been able to 

differentiate between the effect of surface atomic arrangement and the surface chemical 

composition of GaAs substrates. The former determines the crystal structure of the Bi layers, as 

well as their surface morphology. The latter influences on the electrochemical properties of the 

GaAs electrodes and on the electrical properties of the Bi/GaAs interface. Finally, we have 

observed the effect of the Hads layer on the electrochemical properties of the GaAs electrodes, 

and on the structural, and morphological properties of Bi layers as well as the electrical 

properties of Bi/GaAs interfaces. The Hads layer passivates the GaAs surface distorting its 

electrochemical behaviour. In addition, the Hads hinders Bi(III) ions reduction which is observed 

as a delay and a decrease of current density in current transients. Regardless of substrate 

orientation, Bi layers grown without removing the Hads layer show a higher roughness and a 

lower crystal quality than those obtained after removing the Hads. Finally, the effect of the Hads in 

the two orientations is to enhance the Schottky barrier height because the hydrogen trapped at the 

Bi/GaAs interface passivates surface states, increasing Bi surface dipole. 

 
 
 

 



 30 

 

APPENDIX 

Calculation of the Fermi level 

In the bulk of the n-type semiconductor charge neutrality must exist: 

pNn D += +
 

Since n > NC (with NC = 4.12·1017 cm-3 being the effective density of states for electrons in the 

conduction band of GaAs at 290 K 37) the substrates are degenerate. Therefore, electrons 

concentration has to be described by Fermi-Dirac distribution and holes population can be 

neglected.  
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Calculation of donors energy level 

The reduced energy level of donor impurities is defined as: 

kT
EE CD

D
−

=ε
 

where ED is the ionization energy for the donor impurity. The simplest calculation of impurity 

energy levels is based on the hydrogen-atom model 37. ED can be obtained by replacing m0 and ε0 
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by the conductivity effective mass of electrons (m*) and the semiconductor permittivity (εs) in 

the ionization energy for a hydrogen atom.  
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This result is in good agreement with the activation energy of donor-type Si impurities located 

in substitutional Ga sites in the GaAs lattice (6 meV) 56.  

Derivation of equations 11 and 12 

Neperian logarithm of equation 6 is given by equation 10: 

BAjn += lnln  
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Substituting the known values, 
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