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Abstract

In this paper, we derive the statistical properties of a two step approach to estimating
multivariate GARCH rotated BEKK (RBEKK) models. By the definition of rotated BEKK,
we estimate the unconditional covariance matrix in the first step in order to rotate observed
variables to have the identity matrix for its sample covariance matrix. In the second step,
we estimate the remaining parameters via maximizing the quasi-likelihood function. For this
two step quasi-maximum likelihood (2sQML) estimator, we show consistency and asymptotic
normality under weak conditions. While second-order moments are needed for consistency of
the estimated unconditional covariance matrix, the existence of finite sixth-order moments are
required for convergence of the second-order derivatives of the quasi-log-likelihood function.
We also show the relationship of the asymptotic distributions of the 2sQML estimator for the
RBEKK model and the variance targeting (VT) QML estimator for the VT-BEKK model.
Monte Carlo experiments show that the bias of the 2sQML estimator is negligible, and that
the appropriateness of the diagonal specification depends on the closeness to either of the
Diagonal BEKK and the Diagonal RBEKK models.

Keywords: BEKK, Rotated BEKK, Diagonal BEKK, Variance targeting, Multivariate GARCH,
Consistency, Asymptotic normality.
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1 Introduction

The BEKK model of Baba, Engle, Kraft and Kroner (1985) and Engle and Kroner (1995) is widely

used for estimating and forecasting time-varying conditional covariance dynamics, especially in

the empirical analysis of multiple asset returns of financial time series (see the surveys of Bauwens

et al. (2006), Laurent et al. (2012), McAleer (2005), and Silvennoinen and Teräsvirta (2009)),

among others). The BEKK model is a natural extension of the ARCH/GARCH models of En-

gle (1982) and Bollerslev (1986). One of the features of the BEKK model is that it guarantees

the positive definiteness of the covariance matrix. However, BEKK does not satisfy appropriate

regularity conditions, so that the corresponding estimators do not possess asymptotic proper-

ties, except under restrictive conditions (see Chang and McAleer (2018), Comte and Lieberman

(2003), and McAleer et al. (2008)). To cope with this problem, Hafner and Preminger (2009)

showed asymptotic properties for the quasi-maximum likelihood (QML) estimator under moderate

regularity conditions.

As for other multivariate GARCH models, a drawback of the BEKK model is that it contains a

large number of parameters, even for moderate dimensions. To reduce the number of parameters,

the so-called scalar BEKK and diagonal BEKK specifications are occasionally used in empirical

analyses (see also Chang and McAleer (2018)). Recently Noureldin et al. (2014) suggested the

rotated BEKK (RBEKK) model to handle the high-dimensional BEKK model. They suggest

estimating the unconditional covariance matrix of the observed variables in the first step, in order

to rotate the variables to have unit sample variance and zero sample correlation coefficients. In

the second step, Noureldin et al. (2014) consider simplified BEKK models for QML estimation.

We call this procedure two step QML (2sQML) estimation. One of the major advantages of the

RBEKK model is that it can save on the number of parameters in the optimization step, while
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another is that it is more natural to consider simplified specifications after the rotation than to

simplify the structure directly without the rotation.

The 2sQML is closely related to the concept of the variance targeting (VT) specification

analyzed by Francq et al. (2011) and Pedersen and Rahbek (2014), among others. The VT-QML

estimation also use the estimated unconditional covariance matrix in the first step, in order to

reduce the number of parameters in the QML maximization step. Pedersen and Rahbek (2014)

show the consistency and the asymptotic normality of the VT-QML estimator under the finite

sixth order moments. As Noureldin et al. (2014) discuss the general framework for the asymptotic

distribution of the 2sQML estimator for the RBEKK model, it is worth examining the detailed

moment condition, as in Pedersen and Rahbek (2014).

In this paper, we show the consistency and asymptotic normality of the 2sQML estimator

for the RBEKK models by extending the approach of Pedersen and Rahbek (2014). For asymp-

totic normality, we need to impose sixth-order moment restrictions, as in Hafner and Preminger

(2009) and Pedersen and Rahbek (2014). We also derive the asymptotic relationship between the

VT-QML estimator for the BEKK and the 2sQML estimator for RBEKK. We conduct Monte

Carlo experiments to check the finite sample properties of the 2sQML estimator, and to compare

the performance of the estimated diagonal BEKK and diagonal RBEKK models. All proofs of

propositions and corollaries are given in the Appendix.

We use the following notation throughout the paper. For a matrix, A, we define A⊗2 = (A⊗A).

With ξ1, . . . , ξn, the n eigenvalues of a matrix A, ρ(A) = maxi∈{1,...,n}|ξi| is the spectral radius of

A. The Frobenius norm of the matrix, or vector A, is defined as ||A|| =
√
tr(A′A). For a positive

matrix A, we define the square root, A1/2, by the spectral decomposition of A. By K and ϕ, we

denote strictly positive generic constants with ϕ < 1.
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2 Rotated BEKK-GARCH Model

As in Hafner and Preminger (2009) and Pedersen and Rahbek (2014), we focus on a simple

specification of the BEKK model that is defined by:

Xt = H
1/2
t Zt, (1)

Ht = C∗ +A∗Xt−1X
′
t−1A

∗′ +B∗Ht−1B
∗′, (2)

where t = 1, . . . , T , A∗ and B∗ are d-dimensional square matrices, C∗ is a d-dimensional positive

definite matrix, and Zt (d× 1) is an i.i.d.(0, Id) sequence of random variables.

We start from the following assumption.

Assumption 1.

(a) The distribution of Zt is absolutely continuous with respect to Lebesgue measure on ℜd, and

zero is an interior point of the support of the distribution.

(b) The matrices A∗ and B∗ satisfy ρ((A∗ ⊗A∗) + (B∗ ⊗B∗)) < 1.

By Theorem 2.4 of Boussama et al. (2011), Assumption 1 implies the existence of a unique

stationary and ergodic solution to the model in (1) and (2). Furthermore, the stationary solution

has finite second-order moments, E||Xt||2 < ∞, and variance V (Xt) = E(Ht) = Ω, with positive

definite Ω, which is the solution to:

Ω = C∗ +A∗ΩA′ +B∗ΩB′. (3)

Lemma 2.4 and Proposition 4.3 of Boussama et al. (2011) indicate that the necessary and sufficient

conditions for (3) to have a solution of a positive definite matrix is Assumption 1(b). As in

Pedersen and Rahbek (2014), we obtain the variance targeting specification by substituting C∗ in
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(3) to the model (2), giving:

Ht = Ω−A∗ΩA∗′ −B∗ΩB∗′ +A∗Xt−1X
′
t−1A

∗′ +B∗Ht−1B
∗′. (4)

Based on the specification, Noureldin et al. (2014) suggested the Rotated RBEKK (RBEKK)

model, which is obtained by setting A∗ = Ω1/2AΩ−1/2 and B∗ = Ω1/2BΩ−1/2 in (2), A and B are

d-dimensional square matrices. The transformation yields:

Ht = Ω1/2HtΩ
1/2, Ht = (Id −AA′ −BB′) +AX̃t−1X̃

′
t−1A

′ +BHt−1B
′, (5)

with the rotated vector X̃t = Ω−1/2Xt, which gives E(X̃tX̃
′
t) = Id. As discussed in Noureldin et al.

(2014), the specification gives an natural interpretation for considering diagonal matrices A and B

for reducing the number of parameters. Rather than the special case with the diagonal matrices,

we consider general A and B for the asymptotic theory. With respect to the initial values, we

consider estimation conditional on the initial values X0 and H0 = h, where h is a positive definite

matrix. By the structure, it is natural to replace Assumption 1(b) with the following:

Assumption 2. The matrices A and B satisfy ρ((A⊗A) + (B ⊗B)) < 1.

Lemma 2 in Appendix A.2 shows that Assumption 2 is equivalent to Assumption 1(b).

In the next section, we consider the two step QML (2sQML) estimation for the RBEKK model

(1) and (5), as in Noureldin et al. (2014) and Pedersen and Rahbek (2014).

3 Two Step QML Estimation

Let θ, θ ∈ ℜ3d2 , denote the parameter vector of the RBEKK model, which is defined by θ =

(ω′,λ′)′, where ω = vec(Ω) and λ = (α′,β′)′ with α = vec(A) and β = vec(B). We also define

the parameter space Θ = Θω×Θλ ⊂ ℜd2×ℜ2d2 . As in Hafner and Preminger (2009) and Pedersen
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and Rahbek (2014), we emphasize the dependence of Ht and Ht on the parameters ω and λ, by

writing Ht(ω,λ) and Ht(ω,λ), respectively. We also place emphasis on the initial value of the

covariance matrix, h, by denoting Ht,h(ω,λ) and Ht,h(ω,λ). Now we restate the RBEKK model

as:

Xt = H
1/2
t (ω,λ)Zt, Ht(ω,λ) = Ω1/2Ht(ω,λ)Ω1/2, (6)

Ht(ω,λ) = (Id −AA′ −BB′) +AΩ−1/2Xt−1X
′
t−1Ω

−1/2A′ +BHt−1(ω,λ)B′, (7)

with given initial values X0 and H0,h(ω,λ) = h.

As mentioned above, we consider 2sQML estimation which constitutes two steps. In the

first step, we estimate ω by the sample covariance matrix, while the second step conducts QML

estimation by optimizing the log-likelihood function for λ conditional on the estimates of ω. For

the RBEKK model, the Gaussian log-likelihood function is given by:

LT,h(ω,λ) = T−1
T∑
t=1

lt,h,(ω,λ), (8)

with the tth contribution to the log-likelihood given as:

lt,h(ω,λ) = −1

2
log (det (Ht,h(ω,λ)))− 1

2
tr
(
XtX

′
tH

−1
t,h (ω,λ)

)
, (9)

excluding the constant. In the first step, we estimate the unconditional covariance matrix by:

ω̂ = vec
(
Ω̂
)
= vec

(
T−1

T∑
t=1

XtX
′
t

)
, (10)

in order to rotate Xt and Ht,h(ω,λ) as:

X̃t = Ω̂1/2Xt, Ht,h(ω̂,λ).

By the definition, we have T−1
∑T

t=1 X̃tX̃
′
t = Id. The conditional log-likelihood function is given

by:

− 1

2T

T∑
t=1

[
log
(
det
(
Ht,h(ω,λ)

))
+ tr

(
X̃tX̃

′
tH

−1
t,h(ω,λ)

)]
,
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which is equivalent to LT,h(ω̂,λ) + 0.5T log(det(Ω̂)). Hence, the second step estimator is given

by:

λ̂ = arg max
λ∈Θλ

LT,h(ω̂,λ). (11)

We derive the asymptotic theory for the 2sQML estimator, which consists of (10) and (11).

Following Comte and Lieberman (2003), Hafner ad Preminger (2009), and Pedersen and Rah-

bek (2014), we make the following conventional assumptions.

Assumption 3.

(a) The process {Xt} is strictly stationary and ergodic.

(b) The true parameter θ0 ∈ Θ and Θ is compact.

(c) For λ ∈ Θλ, if λ ̸= λ0, then Ht(ω0,λ) ̸= Ht(ω0,λ0) almost surely, for all t ≥ 1.

For Assumption 3(a), Assumptions 1(a) and 2 imply the existence of a strictly stationary

ergodic solution {Xt} in the RBEKK model. Regarding Assumption 3(a), one of the conditions

is that the first element in the matrices A and B should be strictly positive, which is a sufficient

condition for parameter identification, as shown in Engle and Kroner (1995).

We now state the following result regarding consistency of the 2sQML estimator.

Proposition 1. Under Assumptions 1(a), 2, and 3, as T → ∞, θ̂
a.s.−−→ θ0.

Assumptions 2(a) and 2(b) imply the finite second-order moments of Xt, which are necessary

for estimating Ω with the sample covariance matrix. As shown by Hafner ad Preminger (2009),

the consistency of the QML estimator for the BEKK model (1) and (2) do not require the finite

second-order moment of Xt.

We make the following assumption for the asymptotic normality of the 2sQML estimator.
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Assumption 4.

(a) E[||Xt||6] < ∞.

(b) θ0 is in the interior of Θ.

As in Pedersen and Rahbek (2014), we need to assume finite six-order moments in order to

show that the second-order derivatives of the log-likelihood function converge uniformly on the

parameter space. This is different from the univariate case, which only requires finite fourth-order

moments (see Francq at al. (2011)).

Proposition 2. Under Assumptions 1(a), 2-4, as T → ∞:

√
T
(
θ̂ − θ0

)
d−→ N

(
0, Q0Γ0Q

′
0

)
,

where

Q0 =

(
Id2 Od2×2d2

−J−1
0 K0 −J−1

0

)
,

with the non-singular matrix J0 and the matrix K0 stated in (A.17), and the non-singular matrix

Γ0 stated in (A.21), and Q0.

Given the asymptotic distribution of θ̂, we can show the asymptotic distribution of the 2sQML

estimator of (Ω, A∗, B∗) in the VT representation of the BEKK. Define θ = (ω′,λ∗′)′, where

λ∗ = (α∗′,β∗′)′ with α∗ = vec(A∗) and β∗ = vec(B∗).

Corollary 1. Under the assumptions of Proposition 2, as T → ∞:

√
T (θ̂

∗ − θ∗
0)

d−→ N
(
0, Q∗

0Γ
∗
0Q

∗′
0

)
,

where

Q∗
0 =

(
Id2 Od2×2d2

−J∗−1
0 K∗

0 −J∗−1
0

)
,
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with the non-singular matrix J∗
0 and the matrix K∗

0 stated in (A.23), and the non-singular matrix

Γ∗
0 stated in (A.28).

As implied in the proof of Corollay 1, the asymptotic covariance matrix is equivalent to the one

derived by Theorem 4.2 of Pedersen and Rahbek (2014). Combining Corollary 4.1 of Pedersen and

Rahbek (2014) and Corollary 1, we provide the asymptotic distribution of the 2sQML estimator

for (C∗, A∗, B∗) in the original BEKK model. Define c∗ = vec(C∗).

Corollary 2. Under the assumptions of Proposition 2, as T → ∞,

√
T

 ĉ∗ − c∗

α̂∗ −α∗

β̂
∗ − β∗

 d−→ N
(
0, S′

0R0Q0Γ0Q
′
0R0S0

)
,

where

S0 =

 Id2 − (Ω
1/2
0 A0Ω

−1/2
0 )⊗2 − (Ω

1/2
0 B0Ω

−1/2
0 )⊗2 Od2×d2 Od2×d2

−(Id2 + Cdd)((Ω
1/2
0 A0Ω

1/2
0 )⊗ Id) Id2 Od2×d2

−(Id2 + Cdd)((Ω
1/2
0 B0Ω

1/2
0 )⊗ Id) Od2×d2 Id2

 ,

with R0 defined by (A.22).

We can estimate Γ0, K0, and J0 by the sample outer-product of the gradient and Hessian

matrices, as:

Γ̂ =
1

T

T∑
t=1

γ̂tγ̂
′
t, K̂ =

1

T

T∑
t=1

K̂t, Ĵ =
1

T

T∑
t=1

Ĵt,

where

γ̂t =

(
vec(XtX

′
t)− ω̂

∂lt,h(θ)

∂λ

∣∣∣
θ=

ˆθ

)
, K̂t =

∂2lt,h(θ)

∂λ∂ω′

∣∣∣∣
θ=

ˆθ
, Ĵt =

∂2lt,h(θ)

∂λ∂λ′

∣∣∣∣
θ=

ˆθ
.

By Proposition 1, we can estimate S0 and R0 via the 2sQML estimate, θ̂.

4 Monte Carlo Experiments

In this section, we illustrate the theoretical results in the previous section via Monte Carlo ex-

periments. We consider bivariate RBEKK models (d = 2) for the data generating processes
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(DGPs). As we assume finite sixth-order moments for asymptotic normality, we use the suffi-

cient condition for the BEKK-ARCH models, given in Theorem C.1 of Pedersen and Rahbek

(2014) (see Avarucci et al. (2013) for an extensive discussions on higher-order moment restric-

tions on BEKK-ARCH models). For the sufficient condition, we restrict the parameter to satisfy

ρ(A∗
0 ⊗ A∗

0) < (1/15)1/3 ≈ 0.4055. Note that ρ(A∗
0 ⊗ A∗

0) = ρ(A0 ⊗ A0) by Lemma 2. We use

H1 = I2 for the initial value, in order to generate T = 500 observations. We set the number of

replications as 2000.

In the first experiment, we consider the following structure in (5):

Ω0 =

(
s01 0
0 s02

)(
1 ρ0
ρ0 1

)(
s01 0
0 s02

)
, A0 =

(
A0,11 0
0 A0,22

)
,

with B0 = O2×2. We consider two kinds of parameter sets:

DGP1: (s01, s02) = (1, 0.9), ρ0 = 0.5, (A0,11, A0,22) = (0.6, 0.4),

DGP2: (s01, s02) = (0.8, 1.1), ρ0 = −0.3, (A0,11, A0,22) = (0.6,−0.3),

which are used to obtain (C∗
0 , A

∗
0) for the DGPs by (1) and (2). The values of (Ω0, A0) and the

corresponding values of (C∗
0 , A

∗
0) are given in Table 1 and Table 2, respectively. While DGP1

describes the positive unconditional correlation, DGP2 uses the negative correlation. By the

specification, we can verify that ρ(A∗
0 ⊗ A∗

0) = 0.3969. From this setting, we examine the finite

sample property of the 2sQML estimator for (Ω, A). Table 1 shows the sample mean, standard

error, and root mean squared error of the 2sQML estimator. Table 1 indicates that the bias of

the estimators is negligible, even for T = 500.

We also check the effects of the transformation from (Ω̂, Â, B̂) to (Ĉ∗, Â∗, B̂∗), as shown by

Corollary 2. Table 2 shows the sample mean, standard error, and root mean squared error of the

transformed estimator. As in Table 1, the bias of the estimators is negligible.
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We examine the effects of the diagonal specification for the BEKK and RBEKK models when

the true model is full BEKK. For this purpose, we consider several measures for checking the

distance from the diagonal BEKK and RBEKK models to the full BEKK model. Define the

non-diagonal indices as:

γ = ∥A∗ − diag(A∗)∥+ ∥B∗ − diag(B∗)∥ (Diagonal BEKK),

γr =
∥∥∥A∗ − Ω1/2diag(Ω−1/2A∗Ω1/2)Ω−1/2

∥∥∥+ ∥∥∥B∗ − Ω1/2diag(Ω−1/2B∗Ω1/2)Ω−1/2
∥∥∥

(Diagonal RBEKK),

(12)

where diag(Y ) creates a diagonal matrix from a square matrix Y . By the non-diagonal indices,

we can calculate the theoretical distance of the diagonal BEKK and RBEKK models. For the

remaining measures, we use the estimated values of the parameters of the diagonal BEKK and

RBEKK models. The maximized log-likelihood LT,h(θ̂) is used, as is the average of the Frobenius

norm of the difference of conditional covariance matrices:

1

T

T∑
t=1

∥∥∥Ht,h(θ̂)−Ht,h(θ0)
∥∥∥ .

Note that the last measure uses the true values used in the DGPs.

By using these measures, the following Monte Carlo simulations investigate the effects of the

diagonal specification for the BEKK and RBEKK models when the true model is full BEKK. For

this purpose, consider the specification for (4) with B∗
0 = O2×2:

A∗
0 = wD1 + (1− w)Ω

1/2
0 D2Ω

−1/2
0 , (13)

for 0 ≤ w ≤ 1, where D0 and D1 are diagonal matrices. When w = 1, the specification reduces to

the diagonal BEKK model, while it becomes the diagonal RBEKK model for w = 0. Except for

these endpoints, the full BEKK specification gives a non-diagonal structure for A∗
0 in (4) and A0
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in (5). For the specification in (4), the non-diagonal indices give linear functions of w:

γw = ξ(1− w), ξ =
∥∥∥Ω1/2

0 D2Ω
−1/2
0 − diag(Ω

1/2
0 D2Ω

−1/2
0 )

∥∥∥ ,
γrw = ξrw, ξr =

∥∥∥D1 − Ω
1/2
0 diag(Ω

−1/2
0 D1Ω

1/2
0 )Ω

−1/2
0

∥∥∥ ,
so as to calculate the theoretical distances. Consider the parameter settings for the DGPs as:

DGP3w : (Ω0, A0) in DGP1, with D1 = D2 = A0 in (13),

DGP4w : (Ω0, A0) in DGP2, with D1 = D2 = A0 in (13).

Set w = 0, 0.1, . . . , 1 to examine 11 cases, with T = 500, and the number of replications set to

2000. We estimate the diagonal RBEKK model by the 2sQML method, while VT-QML is used

for the diagonal BEKK model.

Figures 1 and 2 show the sample means of the average bias for the conditional covariance

matrices and the sample means of the maximized log-likelihood function for DGP3 and DGP4,

respectively. As expected from the structure, the superiority of the diagonal models depends on

the structure of the true BEKK model. If w is closer to zero, the diagonal RBEKK model is

preferred. The non-diagonality indices are

DGP3w : γw = 0.0106(1− w), γrw = 0.0155w, crossing at w† = 0.406,

DGP4w : γw = 0.0203(1− w), γrw = 0.0221w, crossing at w† = 0.479,

and these theoretical values of w† correspond to the intersections shown in Figures 1 and 2, re-

spectively. Note that the Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC) lead to the same conclusion, as the numbers of parameters in these two models are the

same.

5 Conclusion

For the RBEKK-GARCH model, we have shown consistency and asymptotic normality of the

2sQML estimator under weak conditions. The 2sQML estimation uses the unconditional covari-
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ance matrix for the first step, and rotates the observed vector to have the identity matrix for

its sample covariance matrix. The second step conducts QML estimation for the remaining pa-

rameters. While we require second-order moments for consistency due to the estimation of the

covariance matrix, we need finite sixth-order moments for asymptotic normality, as in Peder-

sen and Rahbek (2014). We also showed the asymptotic relation of the 2sQML estimator for

the RBEKK model and the VT-QML estimator for the VT-BEKK model. Monte Carlo results

showed that the finite sample properties of the 2sQML estimator are satisfactory, and that the

adequacy of the diagonal RBEKK depends on the structure of the true parameters.

As an extension of the dynamic conditional correlation (DCC) model of Engle (2002), Noureldin

et al. (2014) suggested the rotated DCC models (for a caveat about the regularity conditions un-

derlying DCC, see McAleer (2018)). We may apply the rotation for different kinds of correlation

models suggested by McAleer et al. (2008) and Tse and Tsui (2002). Together with such exten-

sions, the derivation of the asymptotic theory for the rotated models is an important direction for

future research.
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Appendix

A.1 Derivatives of Log-Likelihood Function

Although Pedersen and Rahbek (2014) demonstrate the derivatives with respect to Ω, A∗, and B∗,

they are not applicable as A∗ and B∗ in (2) depend on Ω1/2 and Ω−1/2 in the RBEKK model (6)

and (7), respectively. Related to this issue, we need the following lemma to show the derivatives

of the log-likelihood function.

Lemma 1.

∂vec
(
Ω1/2

)
∂ω′ =

[(
Ω1/2 ⊗ Id

)
+
(
Id ⊗ Ω1/2

)]−1
,

∂vec
(
Ω−1/2

)
∂ω′ = −

[(
Ω−1/2 ⊗ Id

)
+
(
Id ⊗ Ω−1/2

)]−1 (
Ω−1

)⊗2
.

Proof. By the product rule, it is straightforward to obtain:

∂ω

∂ω′ =
∂vec

(
Ω1/2Ω1/2

)
∂ω′ =

[(
Ω1/2 ⊗ Id

)
+
(
Id ⊗ Ω1/2

)] ∂vec (Ω1/2
)

∂ω′ .

Since Ω1/2 is positive definite, we obtain the result. A similar application produces:

∂vec
(
Ω−1

)
∂ω′ =

∂vec
(
Ω−1/2Ω−1/2

)
∂ω′ =

[(
Ω−1/2 ⊗ Id

)
+
(
Id ⊗ Ω−1/2

)] ∂vec (Ω−1/2
)

∂ω′ .

By the derivative of the inverse of the symmetric matrix shown by 10.6.1(1) of Lütkephol (1996),

we obtain the second result. □

The gradient and Hessian of the log likelihood function are given by:

∂LT

∂θ
=

1

T

T∑
t=1

∂lt
∂θ

,
∂2LT

∂θ∂θ′ =
1

T

T∑
t=1

∂2lt
∂θ∂θ′ .

Applying the chain rule and product rule, we obtain:

∂lt
∂θ

=
∂vec(Ht)

′

∂θ

∂lt
∂vec(Ht)

,

∂2lt
∂θi∂θj

=
∂2vec(Ht)

′

∂θi∂θj

∂lt
∂vec(Ht)

+
∂vec(Ht)

′

∂θi

∂2lt
∂vec(Ht)∂vec(Ht)

∂vec(Ht)

∂θj

(A.1)
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where θi (i = 1, . . . , 3d2) is the ith element of θ,

∂lt
∂Ht

= −1

2
H−1

t +
1

2
H−1

t XtX
′
tH

−1
t ,

∂2lt
∂vec(Ht)∂vec(Ht)

=
1

2

[
Id2 − {(H−1

t XtXt)⊗ Id} − {Id ⊗ (H−1
t XtXt)}

]
(H−1

t )⊗2.

(A.2)

The first equation of (A.2) uses 10.3.2(23) and 10.3.3(10) of Lütkephol (1996), while we applied

10.6.1(1) for the second equation.

By Lemma 1, the product rule, and the chain rule, we obtain the first derivatives:

∂vec(Ht)

∂ω′ =
[(

Ω1/2Ht ⊗ Id

)
+
(
Id ⊗ Ω1/2Ht

)] [(
Ω1/2 ⊗ Id

)
+
(
Id ⊗ Ω1/2

)]−1

+
(
Ω1/2

)⊗2 ∂vec(Ht)

∂ω′ ,

∂vec(Ht)

∂λ′ =
(
Ω1/2

)⊗2 ∂vec(Ht)

∂λ′ ,

(A.3)

and

∂vec(Ht)

∂ω′ = B⊗2∂vec(Ht−1)

∂ω′ −A⊗2
[
(Id ⊗ Ω−1/2Xt−1X

′
t−1) + (Ω−1/2Xt−1X

′
t−1 ⊗ Id)

]
×
[(

Ω−1/2 ⊗ Id

)
+
(
Id ⊗ Ω−1/2

)]−1 (
Ω−1

)⊗2
,

∂vec(Ht)

∂α′ = B⊗2∂vec(Ht−1)

∂α′ +
(
A
{
Ω−1/2Xt−1X

′
t−1Ω

−1/2 − Id

}
⊗ Id

)
+
(
Id ⊗A

{
Ω−1/2Xt−1X

′
t−1Ω

−1/2 − Id

})
Cdd,

∂vec(Ht)

∂β′ = B⊗2∂vec(Ht−1)

∂β′ +
(
B
{
Ht−1 − Id

}
⊗ Id

)
+
(
Id ⊗B

{
Ht−1 − Id

})
Cdd,

(A.4)

where Cdd is the commutation matrix, which consists of one and zero satisfying vec(A′) =

Cddvec(A).

Similarly, the second derivatives of Ht are given by:

∂2vec(Ht)

∂ωi∂ωj
=

[(
Ω1/2 Ht

∂ωi
⊗ Id

)
+

(
Id ⊗ Ω1/2 Ht

∂ωi

)] [(
Ω1/2 ⊗ Id

)
+
(
Id ⊗ Ω1/2

)]−1
e(j)

+
(
Ω1/2

)⊗2 ∂2vec(Ht)

∂ωi∂ωj
(i, j = 1, . . . , d2),

∂vec(Ht)

∂λi∂λj
=
(
Ω1/2

)⊗2 ∂vec(Ht)

∂λi∂λj
(i, j = 1, . . . , 2d2),
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∂2vec(Ht)

∂λi∂ωj
=

[(
Ω1/2 Ht

∂λi
⊗ Id

)
+

(
Id ⊗ Ω1/2 Ht

∂λi

)] [(
Ω1/2 ⊗ Id

)
+
(
Id ⊗ Ω1/2

)]−1
e(j),

+
(
Ω1/2

)⊗2 ∂2vec(Ht)

∂λi∂ωj
(i = 1, . . . , 2d2, j = 1, . . . , d2),

where e(j) is a d2×1 vector of zeros except for the jth element, which takes one. We have omitted

the derivatives of Ht.

A.2 Proof of Proposition 1

To prove the consistency of the 2sQML estimator, we need to accommodate the estimate of Ω in

A∗ = Ω1/2AΩ−1/2 and B∗ = Ω1/2BΩ−1/2 by modifying the proof of Theorem 4.1 of Pedersen and

Rahbek (2014).

Before we proceed, we show the equivalence of Assumptions 1(b) and 2.

Lemma 2. For the RBEKK model defined by (4) and (5), it can be shown that:

ρ((A∗ ⊗A∗) + (B∗ ⊗B∗)) = ρ((A⊗A) + (B ⊗B)).

Proof. Noting that

(A∗ ⊗A∗) + (B∗ ⊗B∗) = (Ω1/2 ⊗ Ω1/2) {(A⊗A) + (B ⊗B)} (Ω−1/2 ⊗ Ω−1/2),

5.2.1(8) of Lütkephol (1996) indicates that the eigenvalues of (A∗⊗A∗)+ (B∗⊗B∗) are the same

as those of (A⊗A) + (B ⊗B), which proves the lemma. □

By the ergodic theorem under Assumption 3(a) and E[||Xt||2] < ∞, as T → ∞, we obtain:

ω̂
a.s.−−→ ω0. (A.5)

For the consistency of λ̂, we apply the technique used in the proof of Theorem 4.1 of Pedersen

and Rahbek (2014). For this purpose we first give the following lemma.
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Lemma 3. Under Assumptions 1(a), 2, and 3, as T → ∞,

sup
λ∈Θλ

|LT (ω0,λ)− LT,h(ω̂,λ)| a.s.−−→ 0. (A.6)

Proof. We can apply the technique used in the proof of Lemma B.1 of Pedersen and Rahbek

(2014), by considering bounds regarding Ht. By recursion, we obtain:

vec (Ht(ω0,λ))− vec
(
Ht,h(ω̂,λ)

)
=

t−1∑
i=0

(B⊗2)iA⊗2
{
(Ω−1)⊗2 − (Ω̂−1)⊗2

}
vec
(
Xt−i−1X

′
t−i−1

)
+ (B⊗2)tvec (H0 − h) .

(A.7)

By Proposition 4.5 of Boussama et al. (2011), the assumption, ρ
(
A⊗2 +B⊗2

)
< 1 on Θ, indicates

ρ
(
B⊗2

)
< 1 on Θ. Hence, for any i and for some 0 < ϕ < 1:

sup
λ∈Θλ

∥∥(B⊗2)i
∥∥ ≤ Kϕi. (A.8)

For equation (A.7), by the compactness of Θ, (A.5), and (A.8), we obtain:

sup
λ∈Θλ

∥∥vec (Ht(ω0,λ))− vec
(
Ht,h(ω̂,λ)

)∥∥ ≤ Kϕt + o(1) a.s., (A.9)

as T → ∞, as in (B.16) of Pedersen and Rahbek (2014). We can also show:

sup
λ∈Θλ

∥∥∥H−1
t,h(ω̂,λ)

∥∥∥ ≤ sup
θ∈Θ

∥∥∥H−1
t,h(ω̂,λ)

∥∥∥ ≤ K,

sup
λ∈Θλ

∥∥∥H−1
t,h(ω0,λ)

∥∥∥ ≤ sup
θ∈Θ

∥∥∥H−1
t,h(ω0,λ)

∥∥∥ ≤ K,
(A.10)

by the approach used in (B.13) of Pedersen and Rahbek (2014).

Now, we turn to the difference of the likelihood function as in (A.6). By the technique of the

proof of Lemma B.1 of Pedersen and Rahbek (2014), we obtain:

sup
λ∈Θλ

|LT (ω0,λ)− LT,h(ω̂,λ)|

≤

∣∣∣∣∣log
(
det(Ω0)

det(Ω̂)

)∣∣∣∣∣+ 1

T

T∑
t=1

sup
λ∈Θλ

∣∣∣∣log( det(Ht(ω0,λ))

det(Ht,h(ω̂,λ))

)∣∣∣∣
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+
1

T

T∑
t=1

sup
λ∈Θλ

∣∣∣tr(XtX
′
t

(
H−1

t (ω0,λ)−H−1
t,h (ω̂,λ)

))∣∣∣
≤

∣∣∣∣∣log
(
det(Ω0)

det(Ω̂)

)∣∣∣∣∣+ dK
1

T

T∑
t=1

sup
λ∈Θλ

∥∥Ht(ω0,λ)−Ht,h(ω̂,λ)
∥∥

+K
1

T

T∑
t=1

sup
λ∈Θλ

∥Ht(ω0,λ)−Ht,h(ω̂,λ)∥ ||Xt||2.

Noting that:

vec (Ht(ω0,λ))− vec (Ht,h(ω̂,λ))

=
(
Ω⊗2
0 − Ω̂⊗2

0

)
vec (Ht(ω0,λ)) + Ω̂⊗2

(
vec (Ht(ω0,λ))− vec

(
Ht,h(ω̂,λ)

))
,

and (A.9), we obtain:

sup
λ∈Θλ

|LT (ω0,λ)− LT,h(ω̂,λ)| ≤ K
1

T

T∑
t=1

ϕt +K
1

T

T∑
t=1

ϕt||Xt||2 + o(1) a.s.

As in the proof of Lemma B.1 of Pedersen and Rahbek (2014), it is shown that (A.6) holds. □

By the structure of the RBEKK model as a special case of the BEKK model, Lemmas B.2-B.4

of Pedersen and Rahbek (2014) also hold under Assumptions 1(a), 2, and 3. Using Lemma B.2

with the above Lemma 3 and the definition of λ̂, we obtain:

E[lt(ω0,λ0)] < LT (ω0,λ0) +
ε

5
, LT (ω0, λ̂) < E[lt(ω0, λ̂)] +

ε

5
,

LT (ω0,λ0) < LT,h(ω̂,λ0) +
ε

5
, LT,h(ω̂, λ̂) < LT (ω0, λ̂) +

ε

5
,

LT,h(ω̂,λ0) < LT,h(ω̂, λ̂) +
ε

5
,

for any ε > 0 almost surely for large enough T . Hence, for any ε > 0,

E[lt(ω0,λ0)] < E[lt(ω0, λ̂)] + ε.

By applying the arguments of the proof of Theorem 2.1 in Newey and McFadden (1994), it follows

that as T → ∞, λ̂
a.s.−−→ λ0. Combined with (A.5), we obtain as T → ∞, θ̂

a.s.−−→ θ0.
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A.3 Proof of Proposition 2

For notational convenience, let H0t = Ht(ω0,λ0). We use the following lemma to show the

asymptotic normality of the 2sQML estimator.

Lemma 4. Under Assumptions 1(a), 2-4, as T → ∞,

√
T

(
ω̂ − ω0

∂LT (ω0,λ0)/∂λ

)
=

1√
T

T∑
t=1

Υt(ω0,λ0)vec
(
ZtZ

′
t − Id

)
+ op(1), (A.11)

where

Υt(ω0,λ0)

=

 Υωt(ω0,λ0)
Υαt(ω0,λ0)
Υβt(ω0,λ0)

 =


(
Ω
1/2
0

)⊗2 (
Id2 −A⊗2

0 −B⊗2
0

)−1 (
Id2 −B⊗2

0

) (
Ω
−1/2
0 H

1/2
0t

)⊗2

1
2

[∑∞
i=0(B

⊗2
0 )iNt−1−i(ω0,λ0)

]′ (
Ω
1/2
0 H

−1/2
0t

)⊗2

1
2

[∑∞
i=0(B

⊗2
0 )iÑt−1−i(ω0,λ0)

]′ (
Ω
1/2
0 H

−1/2
0t

)⊗2


(A.12)

with

Nt(ω0,λ0) =
[
A0(Ω

−1/2
0 XtX

′
tΩ

−1/2
0 − Id)⊗ Id

]
+
[
Id ⊗A0(Ω

−1/2
0 XtX

′
tΩ

−1/2
0 − Id)

]
Cdd,

Ñt(ω0,λ0) = [B0(H0t − Id)⊗ Id] + [Id ⊗B0(H0t − Id)]Cdd.

(A.13)

Proof. By (A.4), we obtain:

∂vec(H0t)

∂α′ =
∞∑
i=0

(B⊗2
0 )iNt−1−i(ω0,λ0),

∂vec(H0t)

∂β′ =
∞∑
i=0

(B⊗2
0 )iÑt−1−i(ω0,λ0).

Hence, by (A.1)-(A.3), we obtain the result for
√
T ∂LT (ω0,λ0)/∂λ stated in (A.11).

Now, we consider ω̂ in the vector form as:

ω̂ =
1

T

T∑
t=1

(
H

1/2
0t

)⊗2
vec
(
ZtZ

′
t − Id

)
+ vec

(
1

T

T∑
t=1

H0t

)
, (A.14)

with

vec

(
1

T

T∑
t=1

H0t

)
=
(
Ω
1/2
0

)⊗2
vec

(
1

T

T∑
t=1

H0t

)
.
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Furthermore,

vec

(
1

T

T∑
t=1

H0t

)
= vec(I −A0A

′
0 −B0B

′
0)

+
(
A0Ω

−1/2
0

)⊗2
vec

(
1

T

T∑
t=1

XtX
′
t +

1

T
(X0X

′
0 −XTX

′
t)

)

+B⊗2
0 vec

(
1

T

T∑
t=1

H0t +
1

T
(H00 −H0T )

)
,

yielding:

vec

(
1

T

T∑
t=1

H0t

)
=
(
Id2 −B⊗2

0

)−1
vec(I −A0A

′
0 −B0B

′
0)

+
(
Id2 −B⊗2

0

)−1
(
A0Ω

−1/2
0

)⊗2
(
ω̂ +

1

T
vec(X0X

′
0 −XTX

′
t)

)
+
(
Id2 −B⊗2

0

)−1
B⊗2

0

1

T
vec(H00 −H0T ).

(A.15)

As ρ(B⊗2
0 ) < 1, it follows that

(
Id2 −B⊗2

0

)
is invertible.

After inserting (A.14) in (A.15), we can transform the equation to obtain:

[I −A⊗2
0 −B⊗2

0 ]
(
Ω
−1/2
0

)⊗2
ω̂

= vec(I −A0A
′
0 −B0B

′
0)

+
(
Id2 −B⊗2

0

) (
Ω
−1/2
0

)⊗2 1

T

T∑
t=1

(
H

1/2
0t

)⊗2
vec
(
ZtZ

′
t − Id

)
+

[(
A0Ω

−1/2
0

)⊗2 1

T
vec(X0X

′
0 −XTX

′
t) +B⊗2

0

1

T
vec(H00 −H0T )

]
,

which gives

ω̂ − ω0 =
(
Ω
1/2
0

)⊗2
[I −A⊗2

0 −B⊗2
0 ]−1

(
Id2 −B⊗2

0

) (
Ω
−1/2
0

)⊗2

× 1

T

T∑
t=1

(
H

1/2
0t

)⊗2
vec
(
ZtZ

′
t − Id

)
+
(
Ω
1/2
0

)⊗2
[I −A⊗2

0 −B⊗2
0 ]−1

×
[(

A0Ω
−1/2
0

)⊗2 1

T
vec(X0X

′
0 −XTX

′
t) +B⊗2

0

1

T
vec(H00 −H0T )

]
.
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For any ε > 0, by the Markov’s inequality:

P

(∥∥∥∥(A0Ω
−1/2
0

)⊗2 1√
T
vec(X0X

′
0 −XTX

′
t) +B⊗2

0

1√
T
vec(H00 −H0T )

∥∥∥∥ > ε

)
≤ KE||Xt||2√

Tε
→ 0,

as T → ∞, which yields:

ω̂ − ω0 =
(
Ω
1/2
0

)⊗2
[I −A⊗2

0 −B⊗2
0 ]−1

(
Id2 −B⊗2

0

) (
Ω
−1/2
0

)⊗2

× 1

T

T∑
t=1

(
H

1/2
0t

)⊗2
vec
(
ZtZ

′
t − Id

)
+ op(T

−1/2).

Therefore, (A.11) holds. □

We use the approach in the proof of Proposition 4.2 of Pedersen and Rahbek (2014). By

Assumption 4(b) and the definition of λ̂ in (11), we apply the mean value theorem in order to

obtain:

0 =
∂LT,h(ω0,λ0)

∂λ
+KT,h(θ

†)(ω̂ − ω0) + JT,h(θ
†)(λ̂− λ0), (A.16)

where

∂LT,h(ω0,λ0)

∂λ
=

∂LT,h(ω,λ)

∂λ

∣∣∣∣
θ=θ0

,

KT,h(θ
†) =

∂2LT,h(ω,λ)

∂λ∂ω′

∣∣∣∣
θ=θ†

, JT,h(θ
†) =

∂2LT,h(ω,λ)

∂λ∂λ′

∣∣∣∣
θ=θ†

,

with θ† between θ0 and θ̂. Instead of LT,h(ω,λ), we also use LT (ω,λ) to denote ∂LT (ω0,λ0)/∂λ,

KT (θ
†), and JT (θ

†). Moreover, define:

K0 = E

(
∂2lt(ω,λ)

∂λ∂ω′

)
, J0 = E

(
∂2lt(ω,λ)

∂λ∂λ′

)
. (A.17)

By the techniques used in the proofs of Lemmas B.5-B.7 of Pedersen and Rahbek (2014), under

Assumptions 1(a), 2-4, we show that:

E

[
sup
θ∈Θ

∣∣∣∣∂2lt(ω,λ)

∂θi∂θj

∣∣∣∣] < ∞, (A.18)

sup
λ∈Θλ

∣∣∣∣∂2LT (ω,λ)

∂θi∂θj
− E

[
∂2lt(ω,λ)

∂θi∂θj

]∣∣∣∣ a.s.−−→ 0, (A.19)
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for all i, j = 1, . . . , 3d2, and that J0 is non-singular. With the consistency of θ̂, the above results

imply that JT (θ
†) is invertible with probability approaching one.

As a straightforward extension of Lemma B.11 of Pedersen and Rahbek (2014), we can show

that: ∣∣∣∣√T

(
∂LT,h(ω0,λ0)

∂λi
− ∂LT (ω0,λ0)

∂λi

)∣∣∣∣ p−→ 0,

for i = 1, . . . , 2d2, and

sup
λ∈Θλ

∣∣∣∣∂2LT (ω,λ)

∂θi∂θj
−

∂2lt,h(ω,λ)

∂θi∂θj

∣∣∣∣ a.s.−−→ 0,

for i, j = 1, . . . , 3d2. Applying the above result to (A.16) that JT (θ
†) is invertible with probability

approaching to one, we obtain:

√
T
(
θ̂ − θ0

)
=

(
Id2 Od2×2d2

−J−1
T (θ†)KT (θ

†) −J−1
T (θ†)

)√
T

(
(ω̂ − ω0)

∂L(ω,λ)/∂λ

)
+ op(1).

By (A.19) and Proposition 1:

(
Id2 Od2×2d2

−J−1
T (θ†)KT (θ

†) −J−1
T (θ†)

)
p−→
(

Id2 Od2×2d2

−J−1
0 K0 −J−1

0

)
.

By the same argument used in the proof of Lemma B.10 of Pedersen and Rahbek (2014), as

T → ∞:

1√
T

T∑
t=1

Υt(ω0,λ0)vec
(
ZtZ

′
t − Id

) d−→ N(0,Γ0), (A.20)

where

Γ0 = E
[
Υt(ω0,λ0)vec

(
ZtZ

′
t − Id

) (
vec
(
ZtZ

′
t − Id

))′
Υ′

t(ω0,λ0)
]
, (A.21)

with Υt(ω0,λ0) defined by (A.12). By Lemma 4, (A.20), and the Slutzky theorem, we can obtain

the asymptotic normality of the 2sQML estimator.
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A.4 Proof of Corollary 1

By the definition of A∗ and B∗ and the rule of vectorization, α∗ = (Ω−1/2 ⊗ Ω1/2)α and β∗ =

(Ω−1/2 ⊗ Ω1/2)β. Hence, θ∗ = Rθ, where:

R =

(
Id2 Od2×2d2

O2d2×d2 P

)
, P =

(
(Ω−1/2 ⊗ Ω1/2) Od2×d2

Od2×d2 (Ω−1/2 ⊗ Ω1/2)

)
. (A.22)

Note that P ′ = P and R′ = R. We also define P0 and R0 which correspond to the true value Ω0.

By Proposition 2 and the delta method,
√
T (θ̂

∗ − θ∗
0)

d−→ N (0, R0Q0Γ0Q
′
0R).

In the following, we will show the equivalence of the asymptotic covariance matrix. First,

consider the second derivatives of the tth contribution to the likelihood function in order to

obtain:

∂2lt
∂λ∗∂ω′ = P−1 ∂2lt

∂λ∂ω′ ,
∂2lt

∂λ∗∂λ∗′ = P−1 ∂2lt
∂λ∂λ′P

−1.

Define

K∗
0 = E

(
∂2lt

∂λ∗∂ω′

)
, J∗

0 = E

(
∂2lt

∂λ∗∂λ∗′

)
. (A.23)

Then, we obtain K∗
0 = P−1

0 K0 and J∗
0 = P−1

0 J0P
−1
0 . For Q∗

0 defined by Corollary 1:

Q∗
0 =

(
Id2 Od2×2d2

O2d2×d2 P

)(
Id2 Od2×2d2

−J−1
0 K0 −J−1

0

)(
Id2 Od2×2d2

O2d2×d2 P

)
= R0Q0R0.

(A.24)

Next we define some quantities, as in Lemma B.8 of Pedersen and Rahbek (2014), as:

Υ∗
t (ω0,λ

∗
0)

=

 Υ∗
ωt(ω0,λ

∗
0)

Υ∗
αt(ω0,λ

∗
0)

Υ∗
βt(ω0,λ

∗
0)

 =


(
Id2 − (A∗

0)
⊗2 − (B∗

0)
⊗2
)−1 (

Id2 − (B∗
0)

⊗2
) (

H
1/2
0t

)⊗2

1
2

[∑∞
i=0((B

∗
0)

⊗2)iMt−1−i(ω0,λ
∗
0)
]′ (

H
−1/2
0t

)⊗2

1
2

[∑∞
i=0((B

∗
0)

⊗2)iM̃t−1−i(ω0,λ
∗
0)
]′ (

H
−1/2
0t

)⊗2

 ,
(A.25)

with

Mt(ω0,λ
∗
0) =

[
A∗

0(XtX
′
t − Ω0)⊗ Id

]
+
[
Id ⊗A∗

0(XtX
′
t − Ω0)

]
Cdd,

M̃t(ω0,λ
∗
0) = [B∗

0(H0t − Ω0)⊗ Id] + [Id ⊗B∗
0(H0t − Ω0)]Cdd.

(A.26)
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We show that:

Υ∗
t (ω0,λ

∗
0) = R−1

0 Υt(ω0,λ0), (A.27)

Noting that:

Id2 − (A∗
0)

⊗2 − (B∗
0)

⊗2 = (Ω
1/2
0 )⊗2

[
Id2 −A⊗2

0 −B⊗2
0

]
(Ω

−1/2
0 )⊗2,

Id2 − (B∗
0)

⊗2 = (Ω
1/2
0 )⊗2[Id2 −B⊗2

0 ](Ω
−1/2
0 )⊗2,

we can verify that Υ∗
ωt(ω0,λ

∗
0) = Υωt(ω0,λ0).

For Υ∗
αt(ω0,λ

∗
0) and Υ∗

βt(ω0,λ
∗
0), we obtain:

[
(B∗

0)
⊗2
]i

=
[
(Ω

1/2
0 B0Ω

−1/2
0 )⊗2

]i
=
[
(Ω

1/2
0 )⊗2

(
B⊗2

0

)
(Ω

−1/2
0 )⊗2

]i
= (Ω

1/2
0 )⊗2

(
B⊗2

0

)i
(Ω

−1/2
0 )⊗2.

By 9.3.2(5)(a) of Lütkephol (1996), (Ω
−1/2
0 ⊗ Ω

1/2
0 )Cdd = Cdd(Ω

1/2
0 ⊗ Ω

−1/2
0 ). Hence

Mt(ω0,λ
∗
0) = (Ω

1/2
0 )⊗2Nt(ω0,λ0)(Ω

1/2
0 ⊗ Ω

−1/2
0 ),

M̃t(ω0,λ
∗
0) = (Ω

1/2
0 )⊗2Ñt(ω0,λ0)(Ω

1/2
0 ⊗ Ω

−1/2
0 ).

Combining these two results, we show that Υ∗
αt(ω0,λ

∗
0) = (Ω

1/2
0 ⊗Ω

−1/2
0 )Υαt(ω0,λ0) and Υ∗

αt(ω0,λ
∗
0) =

(Ω
1/2
0 ⊗ Ω

−1/2
0 )Υβt(ω0,λ0). Hence, (A.27) holds.

Define:

Γ∗
0 = E

[
Υ∗

t (ω0,λ
∗
0)vec

(
ZtZ

′
t − Id

) (
vec
(
ZtZ

′
t − Id

))′
Υ∗′

t (ω0,λ
∗
0)
]
, (A.28)

from which we obtain Γ∗
0 = R−1

0 Γ0R
−1
0 . Combined with (A.24), it follows that R0Q0Γ0Q

′
0R0 =

Q∗
0Γ

∗
0Q

∗′
0 . □
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Table 1: Finite Sample Properties of 2sQML Estimator for the RBEKK-ARCH Model

DGP1 DGP2
Parameters True Mean Std. Dev. RMSE True Mean Std. Dev. RMSE

Ω11 1.00 0.9998 0.1085 0.1085 0.640 0.6413 0.0725 0.0725
Ω21 0.54 0.5391 0.0671 0.0671 −0.264 −0.2650 0.0383 0.0383
Ω22 0.81 0.8090 0.0662 0.0662 1.210 1.2093 0.0843 0.0843
A11 0.60 0.5882 0.0642 0.0652 0.600 0.5892 0.0675 0.0683
A21 0.00 0.0018 0.0614 0.0614 0.000 −0.0004 0.0623 0.0623
A12 0.00 0.0007 0.0622 0.0622 0.000 −0.0003 0.0617 0.0617
A22 0.40 0.3925 0.0702 0.0706 −0.300 −0.2988 0.0741 0.0741

Table 2: Finite Sample Properties of 2sQML Estimator for the BEKK-ARCH Model

DGP1 DGP2
Parameters True Mean Std. Dev. RMSE True Mean Std. Dev. RMSE

C∗
11 0.6579 0.6561 0.0577 0.0577 0.4149 0.4143 0.0383 0.0383

C∗
21 0.3964 0.3934 0.0471 0.0472 −0.2104 −0.2091 0.0438 0.0438

C∗
22 0.6625 0.6568 0.0527 0.0530 1.0958 1.0836 0.0812 0.0821

A∗
11 0.6249 0.6129 0.0784 0.0793 0.6212 0.6108 0.0709 0.0716

A∗
21 0.0706 0.0703 0.0724 0.0724 −0.1644 −0.1634 0.0970 0.0970

A∗
12 −0.0794 −0.0777 0.0845 0.0845 0.1187 0.1175 0.0484 0.0484

A∗
22 0.3751 0.3678 0.0859 0.0862 −0.3212 −0.3204 0.0771 0.0771
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Figure 1: Comparison of Diagonal Specifications for the BEKK and RBEKK Models: DGP3

Figure 2: Comparison of Diagonal Specifications for the BEKK and RBEKK Models: DGP4
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