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Resumen

La comprensión de la estructura de entrelazamiento de los sistemas
cuánticos de muchos cuerpos es fuerza motriz de crecientes esfuerzos
teóricos en las últimas décadas. Esto ha conducido, en particular,
al estudio de las redes tensoriales, un paradigma revolucionario que
surgió de la colaboración entre la teoŕıa de la información cuántica
y la teoŕıa de la materia condensada. Estos modelos, fácilmente de-
scritos en términos de tensores locales contráıdos a lo largo de una
estructura gráfica subyacente, resultan sorprendentemente poderosos
para describir sistemas cuánticos de muchos cuerpos en términos de
sus grados de libertad de entrelazamiento, dilucidar las propiedades
esenciales de las fases de la materia cuántica y caracterizar cómo las
diferentes simetŕıas son codificadas, mediante el análisis de sus tensores
constituyentes.

Esta tesis, titulada “Álgebras de Hopf débiles, operadores producto
de matrices y la clasificación de las fases cuánticas de la materia”, está
dedicada al estudio matemático de las redes tensoriales unidimension-
ales que surgen a partir de una amplia variedad de estructuras alge-
braicas. Originalmente, dos modelos centrales de estados y operadores
de redes tensoriales unidimensionales, conocidos como estados producto
de matrices y operadores producto de matrices (abreviadamente, MPS
y MPO por sus siglas en inglés), respectivamente, modelan una amplia
gama de sistemas. Entre ellas se encuentran los estados fundamentales
de los Hamiltonianos locales unidimensionales con gap (la diferencia de
enerǵıa entre su estado fundamental y su primer estado excitado), los
estados mixtos en sistemas cuánticos unidimensionales, los autómatas
celulares cuánticos, etc. Aqúı establecemos rigurosamente cómo las
representaciones de estructuras algebraicas bien conocidas, como las
coálgebras, las bialgébras débiles o las álgebras de Hopf débiles, dan
lugar a redes tensoriales que exhiben propiedades exóticas, y propor-
cionamos un diccionario entre las propiedades puramente algebraicas
y las de los tensores locales. Esto permite transferir resultados muy
interesantes entre dichas dos configuraciones.

Las redes tensoriales pueden utilizarse para representar una gran
clase de estados topológicos y proporcionan herramientas muy prom-
etedoras para el estudio anaĺıtico y numérico de las fases topológicas.
Por ejemplo, un escenario en el que los MPOs son particularmente
útiles es en el caso representar álgebras de simetŕıas no triviales: las
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fronteras de las fases de los sistemas cuánticos bidimensionales prote-
gidas por simetŕıas u ordenadas topológicamente exhiben simetŕıas en
forma de MPOs. En esta tesis definimos las álgebras pulling-through,
que áıslan las hipótesis mı́nimas necesarias para definir las redes tenso-
riales bidimensionales con orden topológico a partir de las álgebras de
MPOs, y demostramos que las álgebras de Hopf débiles co-semisimples
y co-pivotales son álgebras pulling-through. Además, demostramos su
potencia mostrando que pueden utilizarse para construir los modelos
dobles cuánticos de Kitaev para álgebras de Hopf, del mismo modo que
las simetŕıas de MPOs obtenidas de las categoŕıas de fusión pueden uti-
lizarse para construir modelos de redes de cuerdas de Levin-Wen, y para
describir todas sus caracteŕısticas topológicas.

Finalmente, el puente entre las dos materias nos ha proporcionado
las herramientas para estudiar las fases en una amplia gama de sistemas
cuánticos abiertos unidimensionales. Motivados por la exitosa clasifi-
cación de las fases de los estados fundamentales de los Hamiltonianos
locales unidimensionales con gap, aqúı consideraremos que dos esta-
dos mixtos están en la misma fase si ambos pueden transformarse en
el otro mediante un circuito de longitud finita de canales cuánticos lo-
cales. Para empezar a entender el diagrama de fases emergente, en esta
tesis nos restringimos al estudio de los MPOs que son operadores de
densidad y en ausencia de escalas de longitud, es decir, en aquellos que
son puntos fijos de renormalización. Estos estados surgen, por ejem-
plo, como fronteras de estados bidimensionales con orden topológico.
Para ello, construimos primero familias de tales estados basadas en
álgebras de Hopf débiles, proporcionando canales cuánticos expĺıcitos
de reescalado que definen el proceso de renormalización. Finalmente,
demostramos que un subconjunto de tales estados, más concretamente
aquellos construidos a partir de álgebras de Hopf, se encuentran de
hecho en la fase trivial.

Dada la generalidad de las técnicas y resultados de esta tesis, es-
peramos que resulten útiles en el futuro próximo para el estudio de las
fases topológicas de la materia, tanto en una como en dos dimensiones.

10



Abstract

Understanding the entanglement structure of quantum many-body
systems is a driving force behind increasing theoretical efforts in recent
decades. This has led, in particular, to the study of tensor networks, a
revolutionary paradigm that emerged from the interplay between quan-
tum information theory and condensed matter theory. These models,
easily described in terms of local tensors contracted along an underly-
ing graph structure, are surprisingly powerful for describing interacting
quantum many-body systems in terms of their entanglement degrees
of freedom, elucidating the essential properties of phases of quantum
matter and characterizing how different symmetries are encoded by the
analysis of their constituent tensors.

This thesis, entitled “Weak Hopf algebras, Matrix Product Opera-
tors and the classification of quantum phases of matter”, is devoted to
the mathematical study of aspects pertaining to one-dimensional tensor
networks arising from a wide variety of algebraic structures. Originally,
two central models of one-dimensional tensor network states and oper-
ators, known as matrix product states (MPS) and matrix product opera-
tors (MPO), respectively, modeled a wide range of situations. They can
describe gapped ground states of one-dimensional local Hamiltonians,
mixed states in one-dimensional quantum systems, quantum cellular
automata, etc. Here, we rigorously establish how representations of
well-known algebraic structures, such as coalgebras, weak bialgebras
and weak Hopf algebras, give rise to tensor networks exhibiting ex-
otic properties, and provide a dictionary between different properties
of the algebra and that of the corresponding tensors. This allows very
interesting results to be transferred between these two configurations.

Tensor networks can be used to represent a large class of topological
states and they provide promising tools for the analytical and numerical
study of topological phases. For instance, one scenario in which MPOs
are particularly useful is to represent algebras of non-trivial symme-
tries: The boundary of both symmetry protected and topologically or-
dered phases in two-dimensional quantum systems exhibit symmetries
described by MPOs. In this dissertation we define pulling-through alge-
bras, which isolate the minimal assumptions needed to define topologi-
cally ordered two-dimensional tensor networks from algebras of MPOs,
and prove that co-semisimple co-pivotal weak Hopf algebras provide ex-
amples for pulling-trough algebras. In addition, we demonstrate their

11



power by showing that they can be used to construct Kitaev’s quantum
double models for Hopf algebras, in the same way as MPO symmetries
obtained from fusion categories can be used to construct Levin-Wen
string-net models, and to describe all their topological features.

Finally, the bridge between the two subjects has provided us with
the tools to study phases in a wide range of one-dimensional open
quantum systems. Encouraged by the successful classification of phases
of gapped ground states of one-dimensional local Hamiltonians, two
mixed states are regarded here to be in the same phase if both states
can be transformed into the other by means of a shallow circuit of
local quantum channels. In order to start understanding the emergent
phase diagram, in this dissertation we restrict ourselves to the study
of matrix product density operators in the absence of length scales,
i.e., which are renormalization fixed points. These states arise, for
example, as boundaries of two-dimensional topologically ordered states.
To this end, we first construct families of such states based on weak
Hopf algebras by providing explicit local rescaling quantum channels
for the renormalization procedure of these states. Finally, we show
that a subset of such states, more specifically those built using Hopf
algebras, are in fact in the trivial phase.

Due to the generality of the techniques and results obtained in this
thesis, we expect them to be useful in the near future for the study of
toplogical phases of matter, both in one and two dimensions.
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CHAPTER 1

Introduction

Since the birth of quantum physics, in the course of the first quarter
of the twentieth century, predicting the properties of quantum systems
composed of several particles from the foundational principles of quan-
tum mechanics has been one of the driving forces of theoretical physics.
This includes a wide diversity of problems of fundamental importance
in quantum chemistry, condensed matter physics, materials science,
etc., known under the name of the quantum many-body problem. How-
ever, the lack of techniques to solve this range of problems in a closed
analytic form has led the theorists to the use of approximate methods
such as mean field theory, perturbative expansions in a small parameter
or effective descriptions obtained from symmetries or renormalization
arguments.

1. Tensor networks

A particularly fruitful approach to the quantum many-body prob-
lem is based on the analysis of simple models that are easy to under-
stand, either toy models or trial wave functions. Tensor networks, the
main objects of this dissertation, constitute a class of such ansatzes that
has emerged in past decades from the interplay of quantum informa-
tion theory and condensed matter theory. They allow one to express
certain high-dimensional tensors with a large number of indices effi-
ciently as the contraction of simple tensors. To construct such states,
elementary tensors are arranged on a graph and their auxiliary indices,
known as virtual indices, are contracted with those of the adjacent ten-
sors, as prescribed by the edges of the graph. The resulting object
describes hence a multi-dimensional tensor whose indices are given by
the remaining uncontracted indices of the original network, known as
physical indices. This construction allows one to express certain vectors
with a few number of parameters, typically scaling linearly in the num-
ber of particles, while retaining highly non-trivial properties between
the different indices.

These ansatzes have been discovered in different fields indepen-
dently and have found applications in a multitude of areas throughout
data science [116, 97, 28, 29, 79, 88, 64, 51, 5, 22, 53] and physics
[110, 115, 89, 35, 101, 128, 100, 123, 111, 8, 102, 65, 117, 99].
Notably, their suitability for approximating low-energy states of local
Hamiltonians can be rigorously proven in a broad range of settings
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[63, 62, 33], providing a formal justification of their success in the
study of such systems. Moreover, the fact that one-dimensional tensor
networks allow to represent physical symmetries locally [104] (i.e. as
certain operators acting on the auxiliary degrees of freedom) has en-
abled a comprehensive classification of unconventional phases protected
by symmetries [26, 113, 33].

1.1. Matrix product states. An exceptionally successful instan-
ce of this paradigm is starred by one-dimensional tensor networks
known as matrix product states (MPS) [124]. Their origins date back
to the 40s with the study of the 2D classical Ising model by H. A.
Kramers and G. H. Wannier [75] and later, in the late 60s, in early
works of R. Baxter [12]. In the late 80s, MPS were discovered as pow-
erful analytical tools to study the properties of quantum states. First,
they appeared as expressions of the seminal one-dimensional model by
I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki, the AKLT model
[1]. This gave rise to a broader class of states known as finitely cor-
related states [44, 45, 46, 47, 48, 49], which can now be thought
of as injective MPS. Also, shortly after S. R. White developed the al-
gorithm known as the density matrix renormalization group (DMRG)
[124] in the context of quantum spin chain simulations, it was found
out that DMRG can be reformulated as a variational algorithm over
the set of MPS. Its success was well understood when M. B. Hastings
established the existence of accurate MPS approximations to ground
states of gapped 1D systems [62]. Additionally, MPS originated within
the framework of quantum repeaters from the point of view of en-
tanglement theory [119, 121]. A fundamental theorem clarified their
structure [103] and this led to the classification of all symmetry pro-
tected topological phases for one-dimensional quantum spin systems
[26, 113].

In this thesis we first present an alternative view on the construction
of MPS: In Chapter 3 we show that they naturally appear as “represen-
tations” of coalgebras. More concretely, coalgebra elements are encoded
in the boundary condition of some MPS. Reciprocally, we show that
any family of translationally invariant MPS induces a coalgebra and
thus MPS and representations of coalgebras are equivalent.

1.2. Matrix product operators. The first step forward in the
generalization of one-dimensional tensor networks is naturally led by
matrix product operators (MPOs). These operators act on multi-di-
mensional tensors such that themselves can be expressed as one-di-
mensional tensor networks preserving the underlying one-dimensional
locality structure [95]. For example, MPOs that are density operators
constitute the mixed state analogue of pure MPS and are usually known
as matrix product density operators (MPDOs). In particular, they arise
in simulations of quantum many-body systems at finite temperature
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or in the presence of dissipation [120] and provide powerful numerical
methods [58, 95]. Another class of MPOs that appear in the dynamics
of quantum many-body systems are matrix product unitaries (MPUs),
as they generate unitary operators [32, 107, 54]. MPUs can describe
evolutions with a local structure (but not necessarily locally generated)
such as in driven quantum systems, i.e. Floquet physics.

1.3. Projected entangled pair states. Higher-dimensional gen-
eralizations of the one-dimensional MPS are commonly known under
the name of projected-entangled pair states (PEPS). They provide a
natural generalization in the sense that they parametrize states ex-
hibiting an area law. Just as in MPS, increasing the bond dimension,
i.e. the number of variational parameters in the ansatz, grows the
family of states described by them [118]. As expected, PEPS form a
much richer family of states than MPS. For example, they are able to
represent critical systems and systems with topological quantum order
[122, 114, 108]. However, there is still a wide variety of open problems
and important fundamental limitations in understanding the proper-
ties of the states PEPS can efficiently describe. It is conjectured that
all ground states of gapped local Hamiltonians in higher dimensions
can be represented faithfully as PEPS, and although there are strong
indications for this fact [90, 61], this has not been proven. In addition,
a full proof of the area law for 2D local gapped Hamiltonians does not
exist yet but it has been supported by a large amount of numerical
and analytical evidence [39, 2, 3, 87]. The most general form of the
fundamental theorem of MPS on which much of the previous results
above are built upon does not have an immediate generalization to 2D.
Furthermore, it was shown in [109] that determining whether a PEPS
has a certain symmetry is undecidable, i.e. there is no algorithm which
can decide whether the family of states generated by that tensor will
be symmetric, given a PEPS tensor, and hence it is actually impossible
to fully characterize all the ways in which symmetries can be realized
in PEPS. Hence, one concentrates on the cases for which the symme-
tries on the virtual level can be described in terms of tensor products
of local operators or MPOs [105, 125, 91, 92]

1.4. Algebras of matrix product operators. The use of MPOs
in many-body physics extends deeply into the study of PEPS: Bound-
aries of such systems and, in particular, the correlations across those
boundaries, i.e., the entangement spectrum, play a key role in under-
standing the physics of strongly correlated quantum matter [81, 76].
The boundary of such a system has a natural 1D structure, and it can
be made explicit by cutting a PEPS description of the bulk system at
the boundary [30]. The density operator which carries the entangle-
ment spectrum can then be described by an MPDO at the boundary.
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On the other hand, just as physical symmetries in MPS can be repre-
sented as acting at the auxiliary indices, symmetries in PEPS can be
understood as MPOs acting at the 1D boundary [27, 125, 92]. These
MPOs naturally form a representation of the symmetry group; indeed,
the classification of MPO representations of groups enabled the classi-
fication of symmetry protected phases in 2D. MPO symmetries of the
boundary MPDO, however, do not necessarily originate from physical
symmetries of the corresponding PEPS. They can also appear as sym-
metries purely of the entanglement degrees of freedom. These entan-
glement symmetries are precisely the ones underlying topological order
in 2D, as we explain below in Section 2. The study of these symme-
tries allows one to comprehensively understand topologically ordered
systems, encompassing their ground space structure as well as anyons
and their braiding [112, 20, 33].

In many of these cases, MPOs naturally form algebraic structures,
such as group representations in the case of symmetries or evolutions.
A particularly strong structure arises in the case where the MPO de-
scribes the entanglement symmetries which appear in topologically or-
dered systems. As both products and linear combinations of symme-
tries are again symmetries, the MPOs which appear in topologically
ordered systems naturally form MPO algebras. Given the widespread
use of MPS and MPOs, the importance of understanding topologi-
cally ordered systems, and the key role played by MPO algebras in
this context, it is thus highly desirable to formalize the representation
theory of MPO algebras and their underlying algebraic structure, and
to understand the way in which additional conditions imposed on the
corresponding algebraic structures are reflected in properties of their
MPO representation, and vice versa [20].

In Chapter 4 of this dissertation we show that MPOs with boundary
conditions which form a closed family under composition are, in fact,
representations of pre-bialgebras, i.e. coalgebras which are also algebras
and satisfy certain (minimal) compatibility conditions between their al-
gebra and coalgebra structure. In this context, when the pre-bialgebras
are cosemisimple, the irreducible blocks of the MPO tensor give rise to
a notion of sectors and their fusion, which links to topological order,
as we will explain below. We then study in Chapter 5 the effect of in-
troducing the additional conditions which make a pre-bialgebra to be
a weak bialgebra, a weak Hopf algebra or a Hopf algebra. We show how
those conditions give rise to additional properties of the sectors of the
MPO and their fusion, giving them the structure of a monoidal cate-
gory in the case of a weak bialgebra and multi-fusion category in the
case of a weak Hopf algebra. In particular, we show how to construct
a vacuum sector, as well as a special element whose representation is
a projector used later to construct the topological models. Finally, we
restrict our attention to more specific structures, such as pivotal and
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spherical weak Hopf algebras, C*-weak Hopf algebras and C*-Hopf al-
gebras.

2. Connections to topological order

For a long time, it was believed that all phases of matter were
described by Landau’s symmetry-breaking theory, and the transitions
between those phases were realized by the change of symmetry-breaking
orders. However, since the discovery of the fractional quantum Hall
effect, the existence of a new type of order beyond Landau’s theory,
now known as topological order, was realized.

2.1. The arena of topologically ordered phases. Topologi-
cally ordered phases are phases which exhibit order that cannot be
detected by any local order parameter. Instead, they are characterized
by a global order in their quantum correlations or entanglement. Char-
acteristic to these systems are their degenerate ground states, which
are locally indistinguishable and whose number depends on the topol-
ogy of the surface on which the system is defined (both incompatible
with local order parameters) as well as the presence of excitations with
non-trivial statistics in the system, termed anyons.

In a seminal work, A. Kitaev [72] proposed a Hamiltonian model for
a spin system with the aforementioned properties, the toric code model,
as well as its generalization to finite groups, the quantum double models.
This highly entangled topological state supports emergent excitations
that turn out to be Abelian anyons. Also, there is a direct relation
between this type of model and quantum error correction: The toric
code is an example of a stabilizer code [55, 21].

An alternative construction of toy models exhibiting topological or-
der was provided by the string-net models of M. A. Levin and X.-G.
Wen [80], which are conjectured to provide a complete characterization
of non-chiral topological theories in two dimensions. While string-net
models can be understood as generalizations of the toric code model,
they are in fact motivated by topological quantum field theories. Hence,
they use a category theoretical language (the construction utilizes uni-
tary fusion categories with some additional restrictions, the tetrahedral
symmetry of the F -symbols), as opposed to the algebraic approach used
for the quantum double models.

Over the years, generalizations of both classes of models have been
devised. A. Kitaev already noted in his original work [72] that the
same construction also works for C*-Hopf algebras. This has later
been worked out in detail [7, 19], and further generalized to C*-weak
Hopf algebras [23]. For string-net models, it has been shown that the
requirement of tetrahedral symmetry can be dropped [59], and thus
string-net models can be built from arbitrary unitary fusion categories;
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further, the construction has been generalized to build on bimodule
categories instead of fusion categories [85].

2.2. Topological order and tensor networks. Both Kitaev mo-
dels and string-net models admit tensor network descriptions. Such a
description has been developed first for Kitaev’s toric code model [122]
and later generalized to Kitaev models based on finite groups [112] and
Hopf algebras [19], and separately for string-net models [18, 57]. A
characteristic feature of the PEPS description both of Kitaev mod-
els based on finite groups and of string-net models is that the tensors
which define the state possess symmetries which act solely on the aux-
iliary degrees of freedom of the tensor. This symmetry is intimately
tied to the topological features of the system, as it allows to explain
both its ground space degeneracy and the presence of anyonic excita-
tions [112, 108, 20]. Breaking the symmetry, even slightly, leads to
an immediate breakdown of topological order in 2D [25] (but not in
3D [126, 36]). A crucial property of these symmetries is their size-
independence: They are given either by tensor powers of a local sym-
metry generator (for the double models) or, more generally, by homoge-
nous MPOs (for string-net models), such that every region in the PEPS
possesses the same MPO symmetries. The key ingredient relating the
PEPS and the MPOs is known as a pulling-through condition, intro-
duced in [108]. The specific properties of the underlying topological
phase can then be inferred by studying the algebraic properties of the
corresponding MPO algebra. Remarkably, it is even possible to build
topological models in this very phase from nothing but the MPO sym-
metry itself: the PEPS tensor is then constructed from the MPO by
placing it on a fixed-size ring with suitable boundaries [112, 20, 33].

Despite the success of MPO symmetries in understanding, charac-
terizing, and simulating topological order in the phases of the Kitaev
double models of finite groups and of the string-net models [112, 6, 84,
38], the picture is unfortunately not complete. First off, for the Kitaev
model based on Hopf algebras the known tensor network constructions
[19] do not evidently display any such symmetries; and moving to an
even broader setting, for the Kitaev models constructed from weak
Hopf algebras not even a tensor network description is known – which,
in turn, should be possible to construct once the underlying MPO sym-
metries have been identified. This lack of knowledge is even more
surprising given that multi-fusion categories are precisely the represen-
tation categories of weak Hopf algebras [41], and thus, they exhibit the
same type of topological order as the corresponding string-net models.
A key reason why, despite this connection, an understanding of the
MPO symmetries underlying Kitaev models for (weak) Hopf algebras
is missing is the fact that the MPO symmetries for string-net models
are constructed in a category theoretical language. To understand the
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MPO symmetries relevant for describing Kitaev models, however, an
algebraic language is clearly more natural.

2.3. String-net models and MPO algebras. On a more ab-
stract level, the relation between the MPO symmetries of the string-net
models and the MPO representations of semisimple weak Hopf algebra
is as follows. The MPOs constructed in this work are representations
of semisimple weak Hopf algebras and representations of semisimple
weak Hopf algebras are known to be exactly multi-fusion categories
[41]. Vice versa, every multi-fusion category arises as the category of
representations of some weak Hopf algebra [41]. The MPO symmetries
of the string-net model based on any given fusion category will thus
form a representation of the corresponding weak Hopf algebra. In fact,
that weak Hopf algebra can be constructed from the MPO symme-
tries themselves, when closed with arbitrary boundary conditions. It
is important to note that while (ordinary) string-net models are built
using a single fusion category, general representations of weak Hopf
algebras involve two different fusion categories: one is the representa-
tion category of the weak Hopf algebra, the other is the category (or
a subcategory) of the representations of the dual weak Hopf algebra.
The correspondence between fusion categories, MPOs, and weak Hopf
algebras then suggests that string-net models based on bimodule cate-
gories [85] and PEPS constructed from weak Hopf algebras are actually
the same.

In Chapter 5 of this thesis we describe how pivotal and spheri-
cal weak Hopf algebras and C*-weak Hopf algebras possess a pulling-
through structure, pointed out in Section 2.2, satisfying a sequence of
increasingly strong conditions. This motivates the definition of pulling-
through algebras in Chapter 6, whose MPO representation possesses
such a pulling-through structure which satisfies the corresponding con-
ditions. In Chapter 7, we construct PEPS based on pulling-through al-
gebras, show that their symmetry structure is scale invariant, which is
central for follow-up work, and demonstrate that in the case of C*-Hopf
algebras the resulting models are equivalent to the class of generalized
Kitaev models.

3. Phases of matter in 1D open systems

Finally, we address the analysis and classification of exotic topo-
logical phases of quantum matter in 1D open systems, which is at the
very core of condensed-matter physics.

A definition of such a phase which tries to capture the global prop-
erties in the closed regime, motivated by quantum information, is the
following: Two ground states are in the same phase if there exists a
short-depth geometrically local quantum circuit mapping one ground
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state into the other [24, 17]. A phase is simply an element in the quo-
tient set defined by that equivalence relation. Using Hastings-Wen’s
quasi-adiabatic evolution [60] and Lieb-Robinson bounds [82] one can
prove that this property is implied by the more standard definition of
phase based on the existence of a gapped path of Hamiltonians con-
necting both systems [4].

The main advantage of the definition based on quantum circuits is
that it focuses on states rather than on Hamiltonians, which is crucial
to extend it to more general setups, like the one we are addressing
here: open quantum systems. However, this approach poses an addi-
tional problem: one has to identify the relevant class of states to clas-
sify. For closed quantum systems this relevant class is precisely the set
of ground states of gapped short-range Hamiltonians. As commented
above, quantum information theory provided us with a characterization
of this set: ground states of short-ranged gapped Hamiltonians fulfill
an area law for the entanglement between neighbouring regions, which
implies that they are well approximated by tensor network states, in
particular by MPS and PEPS [62, 3, 33].

A natural approach to classify phases is to first restrict the classifi-
cation to “simple” states that nevertheless are representatives for each
phase. Since topological properties are global, these representatives are
taken to be insensitive to real space renormalization steps (being those
a finite depth circuit), that is, they are renormalization fixed points
(RFP). In 2D, for instance, the string-net models of Levin and Wen
[80] are believed to provide a complete set of renormalization fixed
points for non-chiral 2D topological phases.

The restriction to RFPs has two important benefits. On the one
hand, RFPs in gapped phases have zero correlation length and thus
they are exactly MPS and PEPS [33]; no approximation is needed. On
the other hand, it is easier to identify the key global invariants and
thus identify the different phases of RFP states.

These two points have been the crucial insights to successfully com-
plete the classification of 1D phases with symmetries, the so-called sym-
metry protected topological (SPT) phases, already introduced above in
Section 1.1. Let us illustrate that this is the case by recalling the steps
that led to the classification of 1D SPT phases. The first step was to
prove that any MPS can be transformed into an RFP MPS in the same
phase [113]. This restricts the classification problem to just RFP MPS.
The second step was to identify the invariants of the phases using the
set of RFP MPS. These invariants are a set of quantities which, on the
one hand, are robust against short depth circuits and, on the other,
are sufficient to identify each phase uniquely. For SPT phases with
unique ground state, the invariants are the different equivalent classes
of the second cohomology group of the symmetry group [26, 113]. For
SPT phases with symmetry breaking and therefore degenerate ground
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states, the invariants are the different induced representations of the
non-symmetry broken subgroup together with its second cohomology
group [113]. The third step was to prove that any two RFP MPS that
share the same invariants can be mapped into each other with a short
depth quantum circuit. On top of that, a final and important step has
been recently made: the breakthrough results of Y. Ogata [98] show
that one can even extend these arguments beyond the framework of
MPS to cover all gapped short-range Hamiltonians.

All the previous results stand for closed quantum systems, where
the object of interest is the ground state of a Hamiltonian. However, the
question of classifying phases is far from being answered for open quan-
tum systems, even in one dimension. Since isolation is never practically
achieved, the characterization of those systems play a fundamental role
in real applications.

In this dissertation, we take the first steps towards the classifica-
tion of open quantum systems in 1D. A main difference between open
and closed quantum systems is that evolutions in closed quantum sys-
tems (either Hamiltonian evolution or quantum circuits) are reversible,
whereas this is no longer true in open quantum systems evolved under
a Linblad master equation. For instance, if one starts in a topolog-
ically ordered state, like the toric code [72], one cannot find a short
depth quantum circuit mapping it into a product state. Short depth
quantum circuits cannot create or destroy global correlations. How-
ever, local depolarizing noise can convert the toric code (and indeed
any topologically ordered state, no matter how complex) into a prod-
uct state in a short amount of time [34]. Destroying global correlations
is therefore easy in the open quantum systems regime. Constructing
global correlations is, on the other hand, still hard. In fact, local fast
dissipative evolutions cannot create global correlations [73]. This shows
that in the open quantum setting, phases should not be thought of as
classes of an equivalence relation, but rather as a partial order given
by the existence of a local fast dissipative evolution mapping one state
into another one. This partial order can also be understood as the
complexity present in the different topological phases. This proposal,
due to [34], is the one we are taking here. Concretely, we will say
that a mixed state ρ1 is more complex than another one ρ2 if there
is a short-depth (geometrically local) circuit of quantum channels, i.e.
completely positive trace-preserving linear maps, mapping ρ1 into ρ2 .

There are several subtleties to make this definition formal. First of
all, ρ1 and ρ2 should be well defined for all system size n. Second, one
should ask only for getting sufficiently close to ρ2, allowing for both
polylog(n) depth and polylog(n) locality in the gates of the circuit.
Finally, one could take either a discrete point of view, as here, or a
continuous one, asking for a rapid mixing quasi-local Linbladian evolu-
tion that approximates ρ2 starting from ρ1. Since in this thesis we are
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working only with RFP states, we will not need any of those subtleties
here and we refer to [34] for a detailed analysis of those.

We notice that there are other definitions of phases in the open
quantum system setting, like the works of Diehl et al. for Gaussian
mixed states [37, 9, 10] and for quasi thermal states [56], where the
authors generalize the notion of phases via gapped paths of Hamilto-
nians or via local unitary transformations respectively. We refer also
to [34] for a detailed discussion about why the definition we are taking
here seems more appropriate.

Encouraged by the successful classification of pure states sketched
above, we will focus on RFP that are gapped mixed states, that is,
mixed states which fulfill an area law for the mutual information. This
is motivated by two facts. On the one hand, it is known that Gibbs
states of short-range Hamiltonians fulfill an area law for the mutual
information [127]. On the other hand, it is known that fixed points
of rapid mixing dissipative evolutions also fulfill an area law for the
mutual information [16].

This restriction naturally leads us to the set of RFP mixed states
with an MPDO representation. The structure of RFP MPDOs has
been studied in detail in [31] where, up to minor technical conditions,
the following is shown: (i) An MPDO is an RFP if there exist two
quantum channels T and S that implement the local coarse graining
and the local fine graining respectively, for which the given MPDO
is a fixed point. (ii) The RFP condition for MPDOs is characterized
operationally by the absence of length scales in the system; in particular
by having zero correlation length and saturation of the area law. (iii)
The existence of such T and S maps is equivalent to the fact that from
the MPDO an MPO algebra can be constructed.

This result brings the classification of 1D mixed states into the
realm of the understanding and classification of MPO algebras. As
explained above in Section 1.4, MPO algebras are precisely the math-
ematical objects behind the classification of RFP 2D topologically or-
dered pure states in terms of PEPS. Indeed, RFP MPDOs are expected
to contain the set of boundary states associated to RFP 2D non-chiral
topologically ordered systems [31].

In Chapter 8 we recall the definition of RFP MPDOs given in [31]
and provide the construction of a family of RFP MPDOs arising from
any given biconnected C*-weak Hopf algebra. In particular, we provide
explicit constructions of the local coarse-graining and local fine-graining
quantum channels T and S commented before. In Chapter 9 we de-
scribe the previous RFP MPDOs as the boundary states of topological
2D PEPS. In Chapter 10 we prove that the previous families of RFP
MPDOs are in the trivial phase in the C*-HA case, in the sense that
they can be obtained via a finite-depth and bounded-range circuit of
quantum channels acting on the maximally mixed state. Moreover,
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we show that this result can be extended to the trivial sector of any
biconnected C*-weak Hopf algebra.

Finally, Chapter 11 covers the conclusions, as well as the questions
that have been left open and our ideas for further work.

4. Contributions

Two pre-prints have been produced during the development of this
dissertation.

The first one, [93], entitled Matrix Product Operator Algebras I:
Representations of Weak Hopf Algebras and Projected Entangled Pair
States, covers Chapters 3 to 7 and Appendices A and B, and has been
the result of joint work with András Molnár, José Garre Rubio, Norbert
Schuch, José Ignacio Cirac and David Pérez Garćıa. As a summary, in
this paper we have introduced the correspondence between coalgebras
and MPS, as well as a “dictionary” between the different properties
that manifest more specific structures, such as pre-bialgebras, weak
bialgebras, weak Hopf algebras and Hopf algebras, in terms of tensor
networks or, more specifically, Matrix Product Operators. In addi-
tion, we define the notion of pulling-through algebra, which abstracts
the minimal requirements for defining topologically ordered 2D tensor
networks from MPO algebras, and demonstrate the usefulness of this
framework by constructing Kitaev’s quantum double models from Hopf
algebras solely from an MPO representation of the Hopf algebra.

The second one, [106], under the title Matrix Product Operator
Algebras II: Phases of Matter for 1D Mixed States, covers the results
presented in Chapters 8 to 10 and Appendices C to G, and has been
the result of the joint work with András Molnár, José Garre Rubio and
David Pérez Garćıa. The bridge established in the first paper between
weak Hopf algebras and Matrix Product Operators has provided us,
among other things, with the tools to rigorously define and study, in
this second paper, the phases of a wide family of open quantum systems
(via shallow circuits of quantum channels) in the absence of length
scales, i.e. described by density operators that are renormalization
fixed points.

All results in Chapters 3 to 10, as well as in Appendices A to G,
constitute original content, unless otherwise stated. Finally, let us
remark that some results included in this thesis, for which we now
give proofs based on tensor networks, are well-known results in the
literature of weak Hopf algebras, while other results are completely
new. We explicitely specify whenever we are recovering a known result
about weak Hopf algebras.
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CHAPTER 2

Preliminaries

In this chapter we recall elementary notions from linear algebra, the
axiomatic framework of quantum mechanics and the graphical notation
for tensor networks. From now on, we assume that all vector spaces
in this dissertation are finite dimensional and their ground field is the
field of complex numbers C.

An associative algebra is a vector space A endowed with an as-
sociative linear map A ⊗ A → A, called multiplication, denoted by
juxtaposition, and it is said to be unital if there exists an element
1 ∈ A, called unit, satisfying 1x = x1 = x for all elements x ∈ A. A
(unital) C*-algebra is an associative (unital) algebra A with an anti-
linear involutive algebra anti-homomorphism ( · )∗ : A → A, x 7→ x∗,
called ∗-operation, and a compatible Banach space structure. In this
context, positive elements of A are elements of the form x = y∗y for
some element y ∈ A. As usual, the multiplication, the unit element and
the ∗-operation of two C*-algebras A and B are implicitly extended to
their tensor product space A⊗B componentwise.

For any two vector spaces V and W , we denote by B(V,W ) the
associative algebra of C-linear maps from V to W . In addition, let
B(V ) := B(V, V ) denote the associative unital algebra of C-linear en-
domorphisms on V , where the unit element is the identity map, denoted
IdV or simply Id. If V is a Hilbert space, i.e. it can be equipped with an
inner product 〈 · | · 〉 : V × V → C (as usually prescribed in physics, it
is linear in the second argument and anti-linear in the first argument),
then B(V ) is a unital C*-algebra. In this setting, for every opera-
tor X ∈ B(V ) there exists a unique operator X† ∈ B(V ) such that
〈w|X(v)〉 = 〈X†(w)|v〉 for all v, w ∈ V (and this is the ∗-operation). It
is said that an operator X ∈ B(V ) is normal if XX† = X†X, Hermit-
ian or self-adjoint if X = X† and positive semidefinite if it is a positive
element of the C*-algebra, i.e. X = Y †Y for some operator Y ∈ B(V ).
Finally, we denote by V ∗ := B(V,C) the dual vector space of V .

Finally, it is common in quantum physics to denote vectors and
linear functionals using the bra-ket notation, which consists in denoting
them between a vertical bar and an angle bracket. For instance, a
vector v ∈ V would be usually denoted in the form |v〉, called ket. On
the other hand, since every linear functional f ∈ V ∗ can be expressed
in the form f = 〈w| · 〉 for some w ∈ V , it is common to denote it
simply by 〈w|, called bra.
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1. The postulates of quantum mechanics

Since its origin, quantum mechanics has become a general theoret-
ical framework for the description of almost every physical system at
the microscopic level. This framework consists of a mathematical core
formulated as postulates (or axioms) and becomes a physical theory by
adding a set of correspondence rules that tell us which mathematical
objects we have to use in different physical situations. Unlike classical
physical theories, these rules do not turn out to be very intuitive. In
this section we will briefly describe the most basic principles.

First of all, let us note that in quantum mechanics it is useful to
consider physical experiments divided into two procedures: preparation
and measurement. Although this may seem irrelevant, this fact empha-
sizes one of the basic differences between classical and quantum physics,
since in the former it is not necessary to talk about measurements per
se.

In addition, we may think that for a physical theory to be “correct”,
we can ask it to predict the exact result of any given measurement given
all the information about the setup or, in other words, the initial condi-
tions of the system. However, in the quantum world this is not possible
and we can only predict the probabilities of the results of our exper-
iments. Therefore, in this framework one does not predict individual
events in general. Moreover, by virtue of Bell’s theorem, there is good
reason to believe that this is not because the theory is incomplete, but
is intrinsic to nature.

1.1. Description of the state of a system. Since many different
preparations may give rise to the same probability distributions, it is
reasonable to introduce the concept of state, that specifies the effect
of a preparation regardless of how it was carried out. Mathematically,
associated with any physical system, its possible states are collected in
a complex Hilbert space H, known as the state space of the system.
The system is described then by a normalized vector ψ ∈ H, called
quantum pure state.

In this setting, given any two quantum pure states ψ, φ ∈ H, any
coherent superposition of the two states λψ + µφ ∈ H where λ, µ ∈ C
are two complex numbers such that the resulting state above is again a
normalized vector is also a quantum pure state. This obvious property
for vectors is known as the superposition principle of quantum states,
and it is a fundamental feature that is not present in classical mechan-
ics.

Example 2.1. The simplest example, H := C2, is known as a qubit
system, the quantum analog of a bit. Contrasting to a bit, which has
only two possible values, a qubit could be in any kind of superposition
of the two basis states.
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This framework can be further extended to allow us to work when
the precise state of the system is not known, but some statistical knowl-
edge about it is available. More specifically, we would like to describe
a quantum system that can be in a quantum pure state ψi ∈ H with
probability pi ∈ [0, 1], i = 1, . . . , k. For this purpose, we will extend the
concept of state as follows: a state is a positive semidefinite automor-
phism with trace one, ρ ∈ B(H), or more precisely, a density operator
or quantum mixed state. A vital feature of the set of density operators
is that it is convex: given a set of density operators ρi and probabilities
pi, i = 1, . . . , k, the “mixture” ρ =

∑
i piρi is again a density operator.

In this setting, quantum pure states are rank-one projectors and they
form the extreme points of the set of density operators.

1.2. Composite systems. Contrary to the case of the classical
joint probability of two systems A and B, in the quantum world we deal
with a vector space (while an experiment in the classical world would be
restricted to the use of a certain basis) and hence composite quantum
systems are described by tensor products: Consider two state spaces
described by Hilbert spaces HA and HB, then, the state space of the
composite system is the tensor product Hilbert space H := HA ⊗HB.

The simplest quantum pure states of a composite system are product
states, i.e., tensor products of individual states |ψ〉 = |ψA〉 ⊗ |ψB〉. On
the other hand, states that do not factorize are said to be entangled
or to exhibit correlations. This is commonly written in a shorter form
by introducing the concept of reduced density operator, defined by the
action of the mapping B(HA⊗HB)→ B(HA), ρ 7→ ρA := (Id⊗Tr)(ρ).
This map is called the partial trace (here, performed in the second
subsystem, B) and the resulting quantum mixed state ρA is usually
known as a marginal of ρ, since it encodes precisely the information
that can be extracted from ρ by acting only on A.

1.3. Time evolution of a system. In contrast to other quanti-
ties, in quantum mechanics time is treated in a “classical” way, in the
sense that it will be parameterized by real numbers. The time evolu-
tion of a quantum pure state ψ(t) ∈ H is governed by Schrödinger’s
equation

i~
dψ(t)

dt
= H(ψ(t)),

where H ∈ B(H) is a self-adjoint operator called Hamiltonian. Hence
the evolution is unitary: There is a semigroup R → B(H), t 7→ Ut, of
unitary operators such that ψ(t) = Ut(ψ(0)) for all t ∈ R.

However, there are many factors one has to take into account. For
instance, for a many-body system of n particles, not all unitaries can
be realized in terms of a Hamiltonian as U = e−iH(t−t0), since in such
context one usually considers Hamiltonians involving only few-body
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interactions, i.e. H =
∑

i hi, where each hi acts non-trivially on only
a small number of nearby particles.

Another issue for time evolution of a quantum system is due to
decoherence. As already discussed above, the marginal ρS of the system
comes from a larger system HS⊗HE, composed of both the system and
its environment, whose evolution is unitary. However, when one only
has access to the system but not the environment, the dynamics of the
system alone is in general non-unitary.

The question then becomes what the form of the general dynam-
ics E : B(H) → B(H) of the system could be. First, linearity is
an inherent quantum mechanical requirement. Second, E has to map
density operators onto density operators. Therefore, since every ele-
ment in B(H) is a linear combination of density operators we obtain
by virtue of linearity that Tr(E(X)) = Tr(X) for all X ∈ B(H), that
is, E is trace-preserving. Besides, positivity alone is, however, not suf-
ficient: Consider H as a part of a bipartite system H ⊗ K, so that
the evolution of a larger system is described by E ⊗ IdK; that is, the
additional system merely plays the role of a spectator as the evolution
of this part is trivial. Yet, E ⊗ IdK should again be a positive map,
which is a stronger requirement, known under the name of complete
positivity of E. Notably, the set of completely positive trace preserving
linear maps, called for simplicity quantum channels, precisely coincides
with the set of maps obtained by the following procedure: initialize the
environment in a pure state, evolve the joint system-enviroment by a
unitary evolution on the Hilbert space HS⊗HE and finally implement
the partial trace on the environment.

1.4. Description of physical quantities. Physical quantities
are represented by self-adjoint operators O ∈ B(H), known as ob-
servables. The average value or the expectation value of the observ-
able O ∈ B(H) in the system described by the quantum mixed state
ρ ∈ B(H) is Tr(ρO), and it coincides with the expectation value
〈ψ|O(ψ)〉 for a quantum pure state ψ ∈ H.

1.5. Tensor networks states. Tensor network states are a par-
ticular family of quantum states representing many-body systems de-
fined on graphs or lattices. They are generated by a set of tensors
which are assigned to each vertex and are contracted according to the
geometry of the graph. More concretely, let us consider a directed pseu-
dograph Γ, i.e. such that multiple edges are allowed between vertices,
with vertex set V and edge set E. Intuitively, one can think of a graph
as (a part of) a system of spins or particles, where vertices represent
them and edges indicate the interactions between them. Every edge
e = (p, q) ∈ E consists of two distinct elements from V, called endpoints
of e; p is said to be the tail of e and q is said to be the head of e. For any
vertex p, we denote by et(p) ⊂ E (resp. eh(p)) the set of edges whose
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tail (resp. head) is p. To every edge e ∈ E we associate a complex vector
space We of dimension De := dim(We). In turn, to every vertex p ∈ V

we associate a tensor Ap ∈ (⊗e∈eh(p)W
∗
e ) ⊗ (⊗e∈et(p)We) ⊗ Hp, where

Hp is a complex Hilbert space of dimension dp := dim(Hp) describing
the physical degrees of freedom at p. In order to obtain a physical
state we build first the global fiducial state ⊗p∈VAp by taking tensor
products and then contract together the virtual indices corresponding
to the same edge. The result is a vector |ψ〉 ∈ ⊗p∈VHp, where indi-
vidual physical states are now correlated according to the graph and
constitutes a tensor network state of a quantum many-body system.

2. Graphical notation for tensor networks

In this section we introduce the graphical notation of tensor calculus
that we use throughout the dissertation. This graphical notation is
especially useful to visualize equations that involve the contraction of
many higher rank tensors (i.e. tensors with more than two indices) and
it is standard in the field of tensor networks. In this thesis, however,
we face extra challenges as we use the graphical language parallel to an
algebraic one, and thus we have to modify the usual graphical language
in order to be able to translate between the two languages.

From a computational point of view, tensors are just multi-dimen-
sional arrays. In the usual graphical notation of tensor calculus, one
denotes tensors by dots (and various shapes) with lines connected to
them. The number of lines connected to the dot (or other shape) is the
rank of the tensor, and each line corresponds to one of the vector spaces
in the tensor product. For example, the following diagrams represent
a scalar, a vector and a matrix, respectively:

s =
s
, v =

v
, A =

A
.

Tensor contraction is denoted by joining the lines corresponding to the
contracted indices of the two tensors. For example the scalar product
of two vectors, a matrix acting on a vector and the product of two
matrices are denoted by the following diagrams, respectively:∑

i

wivi =
w v

,
∑
j

Aijvj =
A v

,
∑
j

AijBjk =
A B

.

Here we have made the implicit assumption that the first index is the
left line, the second one is the right one. For higher rank tensors and
more complicated contraction schemes one has to keep track of which
index belongs to which line (e.g. fixing a convention such as in the
previous figure). In the following we outline a notation that allows us
to distinguish the different indices of the tensor without requiring them
to be always at the same position. This notation is thus suitable to
depict more complicated tensor constructions such as the definition of
a PEPS.
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To introduce our modification of the graphical notation, let us first
formalize what tensors and tensor contractions are. Rank-n tensors
are elements of the tensor product V1 ⊗ · · · ⊗ Vn for some finite di-
mensional vector spaces V1 . . . Vn. One can naturally take tensor prod-
ucts of tensors: for example, if V1, V2 and V3 are vector spaces and
r = v1 ⊗ v2 ∈ V1 ⊗ V2 and s = v3 ⊗ f ∈ V3 ⊗ V ∗2 , where V ∗2 de-
notes the space of linear functionals on V2, then their tensor product
t = r ⊗ s is t = v1 ⊗ v2 ⊗ v3 ⊗ f . Tensor contraction (without intro-
ducing a scalar product) is then the following operation: if amongst
the n components of the tensor product both a vector space V and its
dual V ∗ appears, then one can form a rank-(n − 2) tensor by acting
with the linear functional in V ∗ on the vector in V . For example, the
tensor t = v1 ⊗ v2 ⊗ v3 ⊗ f defined above is an element of the space
V1⊗V2⊗V3⊗V ∗2 , and thus one can contract its second and fourth com-
ponents to obtain a rank-two tensor C24(t) = f(v2) · v1 ⊗ v3 ∈ V1 ⊗ V3.

As we have seen, to make sense of tensor contraction without a
scalar product, it is important to differentiate between vector spaces
and linear functionals. We will denote indices corresponding to vectors
by outgoing arrows, while indices corresponding to linear functionals by
incoming arrows. Moreover, to distinguish between the different indices
of the tensor, we will label the lines with vector spaces. For outgoing
arrow, the label is the corresponding tensor component. For incoming
arrow, the label is the vector space the given tensor component is the
dual of. For example, a vector v ∈ V , a linear functional f ∈ V ∗ and
a rank-two tensor A ∈ V ⊗ V ∗ are denoted, respectively, by

v =
v

V
, f =

f

V
, A =

A

V V
.

Tensor contraction is still denoted by joining lines. Note, however, that
now only lines with the same label can be joined that also point in the
same direction. For example,

f(v) =
f v

V
, A · v =

A v

VV
, f(A · v) =

Af v

V V
.

The vector space V is canonically isomorphic to V ∗∗, and thus one
can equally think of V as the space of linear functionals on V ∗. Cor-
respondingly, in our graphical notation every arrow can be reversed by
changing the label from V to V ∗. For example, there are four different
ways to depict a rank-two tensor A ∈ V ⊗ V ∗:

A

V V
=

A

V ∗ V
=

A

V V ∗
=

A

V ∗ V ∗
.

The first depiction of A suggests to interpret it as a linear map Â :
V → V , while the last equation suggests to interpret it as a linear map
V ∗ → V ∗; this linear map is ÂT . Such rank-two tensors are sometimes
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labeled by the linear map Â; when this is the case, we will try to be
consistent and label the vector spaces by V and not by V ∗.

As we will depict tensor networks in two dimensions, sometimes it
will be convenient to rotate tensors. This means that vectors don’t
always point to the left, and thus we actually need the arrows to dis-
tinguish between the two indices of a rank-two tensor. Such a rotation
is, for example, the following:

A

V V
=

A

VV .

In the rest of the paper we will often deal with rank-three and rank-
four tensors of the form A ∈ V ⊗W ⊗W ∗ and O ∈ V ⊗V ∗⊗W ⊗W ∗.
These tensors are denoted by

A = WW
V

and O = WW
V

V

.

For better visual distinction, we have introduced colors: the edges
labeled W are colored red and the edges labeled V are colored black.
In fact, in cases where the vector spaces V and W are fixed and we
only need to distinguish between V, V ∗,W and W ∗, we will drop the
labels and keep the colors only, denoting A and O by

A = and O = .

Finally, let us exemplify the construction procedure of a tensor
network state described in Section 1.5, now using graphical notation:

3

1

2 4

5 →
A3A1

A2 A4

A5 → A3A1

A2 A4

A5

We start from a directed pseudograph Γ = (V,E) as first represented,
and a family {Ap : p ∈ V} of individual tensors, each of them associated
to a vertex of the graph. The global fiducial state, ⊗p∈VAp, i.e. the
tensor product of all tensors, is simply depicted by placing them next to
each other. Finally, contracting the corresponding indices is illustrated
by joining the corresponding lines. Let us stress that, as commented
above, physical indices are represented by black lines, in contrast to
virtual indices, represented by red lines.
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CHAPTER 3

Coalgebras and matrix product states

In this chapter we define coalgebras and matrix product states
(MPS) and show that the latter can be thought of as representations of
coalgebras. We also show that this correspondence holds the other way
around as well: given an MPS tensor, one can construct a coalgebra
such that the MPS forms a representation of the constructed coalgebra.
This observation thus makes MPS and coalgebras completely equiva-
lent. We elaborate on a special case: when the coalgebra is cosemisim-
ple, the corresponding MPS tensor is a sum of injective tensors (see
Definition 3.5), and vice versa, given an MPS that is a sum of injective
tensors, the constructed coalgebra is cosemisimple. We also define the
notion of cocentral and non-degenerate coalgebra elements and show
how these properties are reflected in the MPS representation.

We start by defining coalgebras.

Definition 3.1. The triple (C,∆, ε) is a coalgebra if C is a finite di-
mensional vector space over C, ∆ : C → C ⊗ C is a linear map called
comultiplication such that it is coassociative:

(∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆,

and ε ∈ C∗ is a linear functional called counit, such that

(ε⊗ Id) ◦∆ = (Id⊗ ε) ◦∆ = Id,

where we have identified C⊗ C ∼= C⊗ C ∼= C.

Coalgebras emerge as the dual of algebras: Given a finite dimen-
sional algebra A with multiplication µA : A ⊗ A → A and unit 1, we
can define a comultiplication on A∗ by defining

∆A∗ : A∗ → A∗ ⊗A∗, ∆A∗ := µTA,

that is,
∆A∗(f)(x⊗ y) := f(xy),

where x, y ∈ A and f ∈ A∗: Coassociativity of ∆A∗ = µTA is equivalent
to the associativity of µA, and the map given by f 7→ f(1) defines the
counit of A∗. Vice versa, if C is a coalgebra with comultiplication ∆C

and counit ε, then we can naturally give C∗ an algebra structure by
defining the multiplication via µC∗ := ∆T

C , i.e. by

(fg)(x) := (f ⊗ g) ◦∆C(x),

where f, g ∈ C∗ and x ∈ C; the unit of C∗ is then ε.

33



Coassociativity of the comultiplication allows us to write ∆2(x)
instead of (∆⊗ Id) ◦∆, and ∆n(x) for n repeated application of ∆ on
x. In the following we will use Sweedler’s notation of the coproduct
and write

∆n(x) =: x(1) ⊗ x(2) ⊗ · · · ⊗ x(n+1).

We will show below that this shorthand notation actually hides a more
complicated sum that has a special structure called matrix product
state.

Definition 3.2. Let {V1, . . . , Vn} and {W0,W1, . . . ,Wn} be two col-
lections of finite dimensional vector spaces over C. A matrix product
state (MPS) is given by tensors Ai ∈ Vi ⊗Wi−1 ⊗W ∗

i , i = 1, . . . , n,
Ai =

∑
k |k〉 ⊗Aki and a matrix X ∈ Wn ⊗W ∗

0 ; the state generated by
the MPS is given by

|ψ〉 =
∑
k

Tr(XAk1
1 · · ·Aknn )|k1 . . . kn〉

or, in graphical notation,

|ψ〉 =
X A1 A2 An

. . . .

We say that the MPS is translation invariant (TI) with open boundary
condition if V1 = · · · = Vn, W0 = · · · = Wn and A1 = · · · = An.

Let us now show that in any coalgebra C the repeated coproduct of
an element x ∈ C, ∆n−1(x), can be represented as an MPS on n sites.

Theorem 3.3. Let C be a coalgebra, Vi be finite dimensional vector
spaces over C and Φi : C → Vi linear maps, i = 1, . . . , n. Let W be a
vector space and Ψ : C∗ → B(W ) be an injective representation of the
algebra C∗. Let Ai ∈ Vi ⊗B(W ) be defined by

Ai
:=
∑
x∈B

Φi(x)⊗Ψ(δx),

where B is a basis of C, and δx denotes the dual basis elements (i.e.
δx ∈ C∗ and δx(y) = δx,y for any x, y ∈ B). Then for all x ∈ C there
exists a matrix b(x) ∈ B(W ) such that for all n > 0,

(Φ1 ⊗ · · · ⊗ Φn) ◦∆n−1(x) =
b(x) A1 A2 An

. . . .

Let us remark that the tensor Ai is independent of the concrete
choice of the basis B of C, as the expression

∑
x∈B x⊗δx is independent

of B. Let us also remark that there might be many different choices
for the matrix b(x) satisfying the required equation.
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Proof. Notice that∑
x,y

f(x)g(y)δxδy = fg =
∑
z∈B

fg(z)δz =
∑
z∈B

f(z(1))g(z(2))δz,

where in both equations we have used that any linear functional f ∈ C∗

can be decomposed in the form f =
∑

x∈B f(x)δx. As this is true for
all f, g ∈ C∗, we conclude that∑

x,y∈B

x⊗ y ⊗ δxδy =
∑
z∈B

z(1) ⊗ z(2) ⊗ δz =
∑
z∈B

∆(z)⊗ δz.

This means that

A1 A2

=
∑
x,y∈B

Φ1(x)⊗ Φ2(y)⊗Ψ(δxδy)

=
∑
z∈B

(Φ1 ⊗ Φ2) ◦∆(z)⊗Ψ(δz).

A similar equation holds for any number of consecutive tensors, i.e.

A1 A2 An

. . . =
∑
x∈B

(Φ1 ⊗ · · · ⊗ Φn) ◦∆n−1(x)⊗Ψ(δx).

As Ψ is an injective representation of C∗, there exists a matrix b(x) for
all x ∈ C such that

f(x) = Tr (b(x)Ψ(f))

holds for all f ∈ C∗. Note that this equation does not uniquely deter-
mine b(x); there may be many different choices of b(x) satisfying this
equation. Using any such choice of b(x), the following holds:

b(x) Ai
=
∑
y∈B

Tr (b(x)Ψ(δy)) Φi(y) =
∑
y∈B

δy(x)Φi(y) = Φi(x).

Finally, combining this statement with the previous one results in the
desired equation

(Φ1 ⊗ · · · ⊗ Φn) ◦∆n−1(x) =
b(x) A1 A2 An

. . . .

�

From now on, unless otherwise specified, we only consider trans-
lation invariant representations of coalgebras. This restriction is not
essential and most statements obviously generalize to non-TI represen-
tations, but it eases the notation. For example, as all tensors are the
same, we will drop the label A denoting the MPS tensor and simply
write

(Φ⊗ · · · ⊗ Φ) ◦∆n−1(x) =
b(x)

. . . .
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Remark 3.4. Let us now show that the construction of Theorem 3.3
can be reversed in the translation invariant case: Given a translation
invariant MPS with open boundary condition, one can construct a
coalgebra C such that the MPS becomes a representing MPS of C.
Indeed, let A ∈ V ⊗W ⊗W ∗ be an MPS tensor and let us write

A =
∑
i

|i〉 ⊗ Ai

where i = 1, . . . , d with d = dim(V ) and Ai ∈ B(W ). Let us define the
algebra A as

A = Span
⋃
n∈N

{
Ai1Ai2 · · ·Ain : (i1, . . . , in) ∈ {1, . . . , d}×n

}
,

and let C = A∗. Let us fix now a basis B of C; elements of this basis
are denoted by x, y, . . . This basis then also fixes a basis (the dual
basis) on C∗ = A. Elements of this basis are denoted by δx, δy, . . . By
definition the matrices Ai are elements of A, and thus one can expand
them in this (dual) basis. One can thus write A =

∑
x∈B |vx〉 ⊗ δx for

some vectors |vx〉 ∈ V . This tensor then can be interpreted as a map
Φ : C→ V by

Φ(x) =
∑
y∈B

δy(x)|vy〉.

Note that, by the definition of the dual basis, Φ(x) = |vx〉 for any
x ∈ B. This implies that the following equation also holds:

A =
∑
x∈B

Φ(x)⊗Ψ(δx),

with Ψ = Id. Finally, as any element x ∈ C is a linear functional on A

(C = A∗), one can find a matrix b(x) such that x(m) = Tr(b(x)m) for
all matrices m ∈ A. With this, we have obtained that for any x ∈ C,

Φ⊗n ◦∆n−1(x) =
b(x) A A A

. . . ,

i.e. the MPS defined above forms a representation of C with the prop-
erties listed in Theorem 3.3.

1. Cosemisimplicity and injectivity of the representing MPS

In this section we introduce cosemisimple coalgebras as well as in-
jective MPS and examine the connection between these two properties:
the MPS representation of a cosemisimple coalgebra decomposes into
a sum of injective MPS, and conversely, given an MPS that decom-
poses into a direct sum of injective MPS, the corresponding coalgebra
is cosemisimple.

Let C be a coalgebra (finite dimensional, over C). As we have seen
above, C∗ has a natural algebra structure. In the following we will
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talk about representations of this algebra C∗, as the MPS construc-
tion above uses the representations of that algebra. Recall that two
representations Ψ1 : C∗ → B(W1) and Ψ2 : C∗ → B(W2) are called
equivalent if there is an invertible linear map Z : W1 → W2 such that
Ψ1(f) = Z−1Ψ2(f)Z for all f ∈ C∗. In particular, the dimension of
the two equivalent representations coincide, dim(W1) = dim(W2). The
set of irreducible representation equivalence classes, also called sec-
tors, of the algebra C∗ is denoted by Irr(C∗), and the elements of this
set will be denoted by small Roman letters a, b, c, . . . The dimension
of (all) irreducible representations from the sector a will be denoted
by Da. For convenience, let us fix a concrete representation Ψa on
vector space Wa from each sector a. Recall that by the density theo-
rem [40], Ψa(C

∗) = B(Wa) ' MDa for all irreducible representations
Ψa, where MDa denotes the set of Da × Da matrices over C; in fact
Φ(C∗) =

⊕
a∈I⊆Irr(C∗) MDa ⊗ Idma for all representations of the form

Φ(x) =
⊕

a∈I⊆Irr(C∗) Φa(x)⊗ Idma .
We say that the coalgebra C is cosemisimple if the algebra C∗ is

semisimple, i.e. if C∗ '
⊕

a∈Irr(C∗) MDa . In particular, C∗ has finitely
many sectors. If C∗ is semisimple, then any representation Ψ of it, up
to a basis transformation, is of the form

Ψ(x) '
⊕

a∈I⊆Irr(C∗)

Ψa(x)⊗ Idma ,

where a runs over a subset I of sectors of C∗ and Ψa are the previously
fixed representatives from the class a, and the numbers ma denote the
multiplicity of the irreducible representation Ψa in the decomposition
of Ψ. The representation Ψ is injective if and only if all sectors are
present in this decomposition1, i.e. if I = Irr(C∗). As Ψ is a direct sum
of irreducible representations, the density theorem applies and thus
Ψ(C∗) =

⊕
a∈I⊆Irr(C∗) MDa ⊗ Idma .

The MPS tensor A in Theorem 3.3 is constructed using a repre-
sentation Ψ of C∗ that is assumed to be injective. Therefore, if C is
cosemisimple, A decomposes as

A '
∑
x∈B

Φ(x)⊗
⊕

a∈Irr(C∗)

Ψa(δx)⊗ Idma .

As the defining property of b(x) is that Tr (b(x)Ψ(f)) = f(x), the
matrix b(x) can also be chosen w.l.o.g. in this form, i.e. such that in
the same basis as Ψ, it reads

b(x) '
⊕

a∈Irr(C∗)

ba(x)⊗ Idma .

1Note that even if C∗ arises as the group algebra CG of some finite group G, we
are talking about the representation of the group algebra, and not the representation
of the group; that is, we require the map Φ : CG → B(V ) to be injective, not the
map Φ|G : G→ B(V ).
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If b(x) is in this form, then it is uniquely defined by the equation
Tr (b(x)Ψ(f)) = f(x) and the map x 7→ b(x) is linear and a bijection
between C and

⊕
a∈Irr(C∗) MDa .

We have thus obtained that the MPS representing a cosemisimple
coalgebra decomposes into a sum of MPS with smaller bond dimension,

b(x)
. . . =

∑
a∈Irr(C∗)

ma
ba(x)

. . .Wa Wa Wa Wa ,

where
WaWa =

∑
x∈B

Φ(x)⊗Ψa(δx),

for the previously fixed irreducible representation representatives Ψa

in the sector a. In the following, we will choose the representation
Ψ such that it contains exactly one irreducible representation from
each sector (i.e. such that ma = 1). The previously fixed irreducible
representation representatives Ψa determine the vector spaces Wa for
each a, and thus from now on, we do not display the labels Wa in
graphical representation, only the label a. Therefore we will write

b(x)
. . . =

∑
a∈Irr(C∗)

ma
ba(x)

. . .a a a a ,

with

(1) aa =
∑
x∈B

Φ(x)⊗Ψa(δx).

The MPS tensors in Equation 1, provided that Φ has certain properties,
are special:

Definition 3.5. An MPS tensor A ∈ V ⊗B(W ), A =
∑

i |i〉 ⊗ Ai is
normal if there is an n ∈ N such that

Span{Ai1 · · ·Ain : (i1, . . . , in) ∈ {1, . . . , dim(V )}×n} = B(W ).

The tensor is called injective if it is normal with n = 1.

It is immediate to see that the MPS tensors defined in Equation 1
are injective if and only if Φ is injective and they are normal if and
only if there is an n such that Φ⊗n ◦∆n−1 is injective. We will call such
a linear map normal.

We have thus obtained that if C is a cosemisimple coalgebra and Φ
is a C → V linear map such that Φ⊗n ◦ ∆n−1 is injective for some n,
then the coproduct of an element x has a special MPS representation
of the form

Φ⊗n ◦∆n−1(x) =
∑

a∈Irr(C∗)
ba(x)

. . .a a a a ,

where each MPS tensor is normal. This statement now can be reversed:
let us consider a set S of injective MPS tensors A ∈ V ⊗B(WA) for each
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A ∈ S such that no two of them are related to each other with a basis
transformation. One then can construct a cosemisimple coalgebra C, a
map Φ : C → V and a bijection B :

⊕
A∈S B(WA) → C, the inverse of

the map x 7→ b(x), such that∑
A∈S

XA A A A
. . . = Φ⊗n ◦∆n−1 ◦B(⊕A∈SXA).

2. Cocentral and non-degenerate elements

In this section we define the co-center of a coalgebra and show
that in a cosemisimple coalgebra the set of cocentral elements have
special MPS representations: They are translation invariant MPS with
periodic boundary condition.

Let C be a coalgebra with comultiplication ∆ : C → C ⊗ C. Then
the map ∆op : C→ C⊗ C defined by swapping the two components of
the tensor product in ∆(x),

∆op(x) := x(2) ⊗ x(1),

is also a comultiplication. Using the opposite comultiplication, we de-
fine:

Definition 3.6. An element x ∈ C is called cocentral or trace-like if it
satisfies ∆op(x) = ∆(x).

Due to the definition of the multiplication in C∗, if x ∈ C is cocen-
tral,

(fg)(x) = (f ⊗ g) ◦∆(x) = (g ⊗ f) ◦∆op(x)

= (g ⊗ f) ◦∆(x) = (gf)(x)

for all f, g ∈ C∗. This thus means that the map x : f 7→ f(x) is a trace-
like (cyclic) linear functional on C∗, i.e. the set of cocentral elements
of C is exactly the set of trace-like linear functionals of C∗. Due to
their cyclicity, repeated coproducts of these elements are translation
invariant:

x(n) ⊗ x(1) ⊗ · · · ⊗ x(n−1) = (Id⊗∆n−2) ◦∆op(x)

= (Id⊗∆n−2) ◦∆(x) = ∆n−1(x) = x(1) ⊗ x(2) ⊗ · · · ⊗ x(n).

The corresponding MPS representation is also translation invariant, i.e.
b(x) is such that

b(x)
. . . =

b(x)
. . . .

Let us assume now that C is cosemisimple. In this case, cocentral ele-
ments of C have very simple MPS representations: If x ∈ C is cocentral
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and Φ is normal, then

Φ⊗n ◦∆n−1(x) =
∑

a∈Irr(C∗)
ba(x)

. . .a a a a

=
∑

a∈Irr(C∗)

λa . . .a a a ;

indeed, the boundary matrix b(x) = ⊕aba(x) is defined by

Tr(b(x)Ψ(f)) = f(x)

for all x ∈ C, and as x is trace-like,

Tr(ba(x)Ψa(f)Ψa(g)) = Tr(Ψa(f)ba(x)Ψa(g))

for all f, g ∈ C∗ and a ∈ Irr(C∗). As Ψa is an irreducible representation,
both Ψa(f) and Ψa(g) span the full matrix algebra and thus ba(x) is
necessarily proportional to the identity.

Let τa denote the character of the sector a. As τa is a linear func-
tional on C∗, it can also be viewed as an element of the coalgebra C.
By definition, τa(f) = Tr(Ψa(f)), and thus it can be written as

τa(f) = Tr(b(τa)Ψ(f))

with bb(τa) = δabIda. That is, the MPS representation of τa is

Φ⊗n ◦∆n−1(τa) = . . .a a a .

Another set of special elements in the coalgebra are those that have
full-rank coproduct.

Definition 3.7. An element x ∈ C is called non-degenerate if its co-
product ∆(x) is full rank.

Equivalently, x ∈ C is non-degenerate if and only if

(Id⊗ C∗) ◦∆(x) = (C∗ ⊗ Id) ◦∆(x) = C,

or, with other words, if for all y ∈ C there exist linear functionals
f, g ∈ C∗ such that

y = (Id⊗ f) ◦∆(x) = (g ⊗ Id) ◦∆(x).

Remark 3.8. Let us now show that if C is cosemisimple, then x is
non-degenerate if and only if its MPS representation is of the form

Φ⊗n ◦∆n−1(x) =
∑

a∈Irr(C∗)
ba(x)

. . .a a a a ,

where all ba(x) are invertible. To prove this, note first that for any
linear functional f ∈ C∗ the element y = (f ⊗ Id) ◦ ∆(x) is described
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by the MPS

Φ⊗n ◦∆n−1(y) =
∑

a∈Irr(C∗)
ba(x)Ψa(f)

. . .a a a a ,

i.e. the boundary describing y = (f ⊗ Id) ◦ ∆(x) is given by ba(y) =
ba(x)Ψa(f) in every sector a ∈ Irr(C∗). Similarly, the boundary de-
scribing y = (Id⊗ g) ◦∆(x) is given by ba(y) = Ψa(g)ba(x). Therefore
x is non-degenerate if and only if for all y ∈ C there are f, g ∈ C∗ such
that

ba(y) = Ψa(g)ba(x) = ba(x)Ψa(f).

As Ψa(f) can be any matrix, this is equivalent with the invertibility of
ba(x).

As a particular case of the previous statement, let us consider a
cocentral coalgebra element x =

∑
a λaτa, where τa ∈ C are the ir-

reducible representation characters of C∗. Then, x is non-degenerate
if and only if λa 6= 0 for all a ∈ Irr(C∗). For example, the cocentral
element Θ =

∑
a τa with MPS representation

Φ⊗n ◦∆n−1(Θ) =
∑

a∈Irr(C∗)

. . .a a a ,

is a non-degenerate cocentral element. Using this element Θ, one can
interpret b(x) (or, more precisely, Ψ−1(b(x))) as the linear functional
that satisfies (Ψ−1(b(x))⊗ Id) ◦∆(Θ) = x.
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CHAPTER 4

Pre-bialgebras and their matrix product operator
representations

In this chapter we define pre-bialgebras as well as matrix product
operators (MPO). We show that the MPS representations of coalge-
bras from the previous chapter naturally generalize to pre-bialgebras
providing an MPO representation for them. We further investigate this
MPO representation for cosemisimple pre-bialgebras.

Definition 4.1. A is a pre-bialgebra if it is both an algebra and a
coalgebra such that the comultiplication ∆ is multiplicative, i.e.

∆(xy) = ∆(x)∆(y)

for all x, y ∈ A

Recall that multiplication in A⊗A is taken componentwise, i.e.

(x⊗ y)(z ⊗ w) := xz ⊗ yw.
If A is a pre-bialgebra with multiplication µA and comultiplication ∆A,
then A∗ is also a pre-bialgebra with multiplication µA∗ := ∆T

A and
comultiplication ∆A∗ := µTA. It is clear from context whether we refer
to the comultiplication of A or that of A∗, and thus in the following
we drop the subscripts A and A∗, and simply write ∆ for both ∆A and
∆A∗ . That is, the multiplication and comultiplication in A∗ are such
that for all f, g ∈ A∗ and x, y ∈ A,

(fg)(x) := (f ⊗ g) ◦∆(x) and ∆(f)(x⊗ y) := f(xy).

Furthermore, the unit of A∗ is the counit of A and the counit of A∗ is
the unit of A.

In the following, we will talk about representations of the pre-bialge-
bra A. These representations should be understood as representations
of the algebraic structure of A, i.e. disregarding the coalgebra structure.
The extra structure given by the comultiplication allows us to define
the tensor product of representations. Let Φ1 : A → B(V1) and Φ2 :
A→ B(V2) be two representations of A. Then, as the comultiplication
∆ is multiplicative,

(Φ1 ⊗ Φ2) ◦∆ : A→ B(V1 ⊗ V2)

is also multiplicative. This map is not a representation on V1 ⊗ V2,
however, since (Φ1⊗Φ2)◦∆(1) is not the identity, unless ∆(1) = 1⊗1.
The element (Φ1 ⊗ Φ2) ◦ ∆(1) is a projector and is absorbed by any
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element from (Φ1 ⊗ Φ2) ◦ ∆(A), as a1 = 1a = a for all a ∈ A. This
means that all operators in (Φ1 ⊗ Φ2) ◦∆(A) can be restricted to the
range of (Φ1⊗Φ2)◦∆(1). Let V1�V2 denote this subspace of V1⊗V2. By
definition, (Φ1⊗Φ2)◦∆(1) restricted to V1�V2, (Φ1⊗Φ2)◦∆(1)|V1�V2 ,
is the identity, and thus the map defined by

(Φ1 � Φ2)(x) := (Φ1 ⊗ Φ2) ◦∆(x)|V1�V2

is a representation of A. This representation is then called the tensor
product of the representations Φ1 and Φ2. Using associativity of the
comultiplication, one can define the n-fold tensor product of represen-
tations for any n > 2 integer as well: given Φi : A → B(Vi) represen-
tation for i = 1 . . . n, the tensor product representation Φ1 � · · · � Φn

is given by the restriction of (Φ1 ⊗ · · · ⊗ Φn) ◦∆n−1(x) onto the range
of (Φ1 ⊗ · · · ⊗ Φn) ◦∆n−1(1) in the vector space V1 ⊗ · · · ⊗ Vn.

Just as in the previous chapter, using the coalgebra structure of A,
one can form MPS representations of A. As A has an algebra structure
as well, it is natural to choose the linear map Φ used at the construction
of the MPS to be a representation of the algebra. The resulting MPS
is then interpreted as an operator, and in fact, this structure is called
a matrix product operator.

Definition 4.2. Let {V1, . . . , Vn} and {W0,W1, . . . ,Wn} be two col-
lections of finite dimensional vector spaces over C. A matrix prod-
uct operator (MPO) is given by tensors Ai ∈ Vi ⊗ V ∗i ⊗Wi−1 ⊗W ∗

i .
i = 1, . . . , n, Ai =

∑
k,l |k〉〈l| ⊗ Akli and a matrix X ∈ Wn ⊗W ∗

0 ; the
operator generated by the MPO is given by

O =
∑
k,l

Tr(XAk1l1
1 · · ·Aknlnn )|k1 . . . kn〉〈l1 . . . ln|

or, in graphical notation,

O =
X A1 A2 An

. . . .

Fixing a representation Φ : A → B(V ) of A and an injective rep-
resentation Ψ : A∗ → B(W ) of A∗, one can repeat the procedure
described in the previous chapter to form MPOs representing the coal-
gebra structure of A:

Φ⊗n ◦∆n−1(x) =
b(x)

. . .

with

=
∑
x∈B

Φ(x)⊗Ψ(δx),

where B is a basis of A, and Φ is a representation of A, and the matrices
b(x) are such that Tr (b(x)Ψ(f)) = f(x). As described above, the map

44



Φ⊗n ◦∆n−1, in general, is not a representation of A as 1 is not mapped
to the identity operator on the space V ⊗n:

Φ⊗n ◦∆n−1(1) =
b(1)

. . . 6= Id⊗nV .

These MPOs, nevertheless, are multiplicative as Φ⊗n ◦ ∆n−1 is multi-
plicative:

(2)
b(y)

b(x)

. . .

. . .

=
b(xy)

. . . .

In particular, these MPOs are invariant under multiplying with Φ⊗n ◦
∆n−1(1) from either side,

b(1)

b(x)

. . .

. . .

=
b(x)

b(1)

. . .

. . .

=
b(x)

. . . .

One can thus restrict V ⊗n to the range of Φ⊗n ◦∆n−1(1) (notice that
this is a projector as 1 · 1 = 1), and on this space the MPOs form a
representation of A. Note that this restriction is only necessary for
n > 1; for n = 1 the representing MPOs are simply x 7→ Φ(x):

Φ(x) =
b(x)

.

In particular, on a single site, unlike for n > 1 sites, the unit is repre-
sented by the identity operator:

Id = Φ(1) =
b(1)

.

1. Cosemisimplicity

Let A be a pre-bialgebra, then A∗ is a pre-bialgebra as well. As
such, one can form tensor products of its representations, i.e. if Ψ1 :
A∗ → B(W1) and Ψ2 : A∗ → B(W2) are representations of A∗, then
(Ψ1 ⊗ Ψ2) ◦ ∆A∗ restricted to the range of (Ψ1 ⊗ Ψ2) ◦ ∆A∗(ε) is a
representation1 of A∗ denoted by Ψ1 � Ψ2.

Just as for coalgebras, we say that a pre-bialgebra A is cosemisim-
ple if the algebra A∗ is semisimple, i.e. if every representation of it
decomposes into a direct sum of irreducible representations. In partic-
ular, let us fix irreducible representations Ψa : A∗ → B(Wa) for each

1Remember that the unit of A∗ is ε.
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sector a ∈ Irr(A∗); then given two of these irreducible representations,
Ψa and Ψb, their tensor product Ψa�Ψb decomposes into a direct sum
of irreducible representations as follows:

Ψa � Ψb '
⊕

c∈Irr(A∗)

Ψc ⊗ IdNc
ab
,

i.e. in the decomposition of Ψa � Ψb the irreducible representation Ψc

appears N c
ab times. These N c

ab non-negative integers are called fusion
multiplicities. Note that N c

ab might be 0; in that case the irreducible
representation Ψc does not appear in the decomposition. The above
equation holds up to a basis transformation, i.e. for all a, b, c ∈ Irr(A∗)
there are invertible operators Zab :

⊕
cWc⊗CNc

ab → Wa�Wb such that
for all f ∈ A∗

(3) (Ψa � Ψb) (f) = Zab

 ⊕
c∈Irr(A∗)

Ψc(f)⊗ IdNc
ab

 (Zab)
−1 ,

or equivalently, for all a, b, c ∈ Irr(A∗) there are N c
ab operators Zcµ

ab :
Vc → Va�Vb and Y cµ

ab : Va�Vb → Vc (here µ = 1, . . . , N c
ab are integers)

such that

(Ψa � Ψb) (f) =
∑

c∈Irr(A∗)

Nc
ab∑

µ=1

Zcµ
abΨc(f)Y cµ

ab and Y cµ
ab Z

dν
ab = δcdδµνIdVc .

These operators then can be extended2 to map from (and to) Wa⊗Wb

instead of Wa �Wb, i.e. there are linear maps V cµ
ab : Wc → Wa ⊗Wb

and W cµ
ab : Wa ⊗Wb → Wc, called fusion tensors, such that

(4) (Ψa⊗Ψb) ◦∆(f) =
∑
c

Nc
ab∑

µ=1

V cµ
ab Ψc(f)W cµ

ab , W
cµ
ab V

dν
ab = δcdδµνIdWc ,

for all a, b, c ∈ Irr(A∗) and f ∈ A∗. The fusion tensors are rank-four
tensors; the index µ, however, plays a very different role than the rest
of its indices. This allows us to think of the fusion tensors as a set for
rank-three tensors instead, and write

V cµ
ab =

µ
a

b
c and W cµ

ab =

µ
a

b
c .

Using this notation, the graphical representation of Equation 4 is the
following:

(5) (Ψa⊗Ψb) ◦∆(f) =
∑
c,µ

µ µ

f

c c
a

b

a

b and

µ ν
a

b
c d = δcdδµνIdc.

2Note that as ε is a projector, Va ⊗ Vb = Ker((Ψa �Ψb)(ε))⊕ Im(Ψa �Ψb)(ε).
The extension of the operators Y cµab is such that they act as zero on the space
Ker((Ψa � Ψb)(ε)).

46



Let us stress again that the fusion tensors V cµ
ab (and W cµ

ab ) do not map
to (and from) the whole space Wa⊗Wb, instead only to (and from) the
subspace Wa�Wb. A projector onto this subspace is (Ψa⊗Ψb)◦∆(ε) 6=
Ida ⊗ Idb, that has the graphical representation

(6) (Ψa ⊗Ψb) ◦∆(ε) =
∑
c,µ

µ µ

c
a

b

a

b .

The operators V cµ
ab and W cµ

ab are not unique, instead only their ten-
sor product

∑
µ V

cµ
ab ⊗ W cµ

ab is fixed. This allows for a basis change:∑
µ V

cµ
ab ⊗W

cµ
ab =

∑
µ V̂

cµ
ab ⊗ Ŵ

cµ
ab if and only if V̂ cµ

ab =
∑

ν KµνV
cν
ab and

Ŵ cµ
ab =

∑
ν(K

−1)νµW
cν
ab for some N c

ab × N c
ab complex invertible matrix

K. Note as well that the value of
∑

µ V
cµ
ab ⊗W

cµ
ab depends on the choices

of the irreducible representation representatives Ψa that we have made
at the beginning of this chapter; different choices will lead to a gauge
transformation of V cµ

ab and W cµ
ab , i.e. if the irreducible representation

representatives are chosen to be Ψ̂a = UaΨaU
−1
a instead of Ψa for each

a ∈ Irr(A∗) (here Ua are general invertible matrices), then the corre-

sponding V̂ cµ
ab and Ŵ cµ

ab are given by

V̂ cµ
ab = (Ua ⊗ Ub)V cµ

ab U
−1
c and Ŵ cµ

ab = UcW
cµ
ab (U−1

a ⊗ U−1
b ).

Let us now show using this graphical language how the so-called F -
symbols of the representation category of A∗ emerge. Using Equation 5,
coassociativity of the comultiplication of A∗ implies that for all f ∈ A∗

and a, b, c, e ∈ Irr(A∗),∑
d,µ,ν

µµ
νν

f

d
a

b
c

d
a

b
c

e e =
∑
d,µ,ν

µµ
νν

f
d

c

b
a

d
c

b
a

e e

.

As this equation holds for all f ∈ A∗, and Ψe(A
∗) = MDe for each

irreducible representation block e, i.e. the matrix Ψe(f) can take any
value, we conclude that

(7)
∑
d,µ,ν

µµ
νν

d
a

b
c

d
a

b
c

e e =
∑
d,µ,ν

µµ
νν

d
c

b
a

d
c

b
a

e e

,

or equivalently, that there is an invertible (square) matrix F abc
e of di-

mension
∑

dN
d
abN

e
dc =

∑
dN

d
bcN

e
ad such that

µ
ν

d
a

b
c

e =
∑
d,µ,ν

(
F abc
e

)dµν
fηρ η

ρ

f
c

b
a

e

,

µ
ν
d

a

b
c

e =
∑
d,µ,ν

[(
F abc
e

)−1
]fηρ
dµν η

ρ

f
c

b
a

e

.
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Standard arguments show that these F -symbols satisfy a consistency
condition called the pentagon equation.

Let us now investigate the MPO representations of a cosemisimple
pre-bialgebra A. Just as in the MPS case, the MPOs representing A

decompose into a sum of MPOs with smaller bond dimension corre-
sponding to the irreducible representations of A∗. We denote these
MPOs by writing the label a ∈ Irr(A∗) on the virtual indices of the
tensor:

Φ⊗n ◦∆n−1(x) =
∑

a∈Irr(A∗)
ba(x)

. . .a a a a

with

aa =
∑
x∈B

Φ(x)⊗Ψa(δx).

If Φ is injective, then each smaller MPO tensor is injective and if there
is a positive integer n such that Φ⊗n ◦∆n−1 is injective, then they are
normal. The above decomposition is thus nothing but the decomposi-
tion of the MPO into its normal components.

Let us now consider the product of two MPOs each representing an
element of A, such as in Equation 2. The l.h.s. of this equation then
decomposes to injective blocks as described above. On the r.h.s. both
MPOs can be decomposed into injective blocks, therefore their product
can also be decomposed into a sum:

b(y)

b(x)

. . .

. . .

(8)

=
∑

a,b∈Irr(A∗) bb(y)

ba(x)

. . .

. . .

b b b b

a a a a

.

It turns out, however, that these MPOs are still not injective, i.e. they
can be further decomposed. To understand why, let us investigate the
tensor describing such an MPO:

bb

aa

:=
∑
x,y∈B

Φ(x)Φ(y)⊗ (Ψa(δx)⊗Ψb(δy))

=
∑
x∈B

Φ(x)⊗ (Ψa ⊗Ψb) ◦∆(δx),
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where the last equality, analogous to the proof of Theorem 3.3, holds
because for every f ∈ A∗,∑

x,y∈B

f(xy)δx ⊗ δy =
∑
x,y∈B

f(1)(x)f(2)(y)δx ⊗ δy = f(1) ⊗ f(2)

=
∑
x∈B

f(x)∆(δx),

and thus ∑
x,y∈B

xy ⊗ δx ⊗ δy =
∑
x∈B

x⊗∆(δx).

This form of the MPO tensor thus involves the tensor product of the
irreducible representations Ψa and Ψb. In Equation 5 we have seen how
to decompose such a representation into irreducible representations.
Using that equation, the product of the MPO tensors satisfy

(9) bb

aa

=
∑

c∈Irr(A∗)

Nc
ab∑

µ=1

µ µ

cc
a

b

a

b and

µ ν
a

b
c d = δcdδµνIdc.

Using Equation 9 in Equation 8, we can finally decompose the r.h.s. of
Equation 2 into the sum of injective MPOs:

∑
a,b∈Irr(A∗) bb(y)

ba(x)

. . .

. . .

b b b b

a a a a

(10)

=
∑
a,b,c,µ

ba(x)

bb(y)

. . .
a

b

a

b
c c c .

We have thus obtained that the product of two algebra elements x and
y is described by the boundary

(11) bc(xy) =
∑
a,b,µ

ba(x)

bb(y)

a

b

a

b
cc .

Let us note here that so far we have not investigated how the unit of
the pre-bialgebra is represented. The existence of the unit in A, in fact,
imposes further restrictions on the structure of the MPOs representing
pre-bialgebras. Remember that Φ⊗n◦∆n−1(1) is a non-trivial projector
that is represented by:

Φ⊗n ◦∆n−1(1) =
∑

a∈Irr(A∗)
ba(1)

. . .a a a a 6= Id⊗n.
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The relation 1x = x1 = x, using Equation 11, then implies that the
matrices ba(1) have the following property:

(12) bc(x) =
∑
a,b,µ

ba(x)

bb(1)

a

b

a

b
cc =

∑
a,b,µ

ba(1)

bb(x)

a

b

a

b
cc ,

or equivalently,

(13) δa,cIda ⊗ Ida =
∑
b,µ bb(1)

a

b

a

b
cc =

∑
b,µ

bb(1)
b

a

b

a
cc .

2. Cocentral elements and the Grothendieck ring

Let us consider a cosemisimple pre-bialgebra A. Then the cocenter
of A, as we have seen in Chapter 3, consists of elements x of the form

Φ⊗n ◦∆n−1(x) =
∑

a∈Irr(A∗)

λa . . .a a a
.

Let τa ∈ A be the character of the sector a ∈ Irr(A∗), i.e. the cocentral
element with MPO representation

Φ⊗n ◦∆n−1(τa) = . . .a a a
.

Let us evaluate the product of two irreducible representation characters
τa and τb. Using the previously derived results, it is immediate to see
from their MPO representations that

. . .

. . .

b b b

a a a

=
∑
c,µ

. . .
a

b
c c c

=
∑
c

N c
ab

. . .a a a
,

where the first equation is Equation 10 using that ba(τc) = δacIdc for all
a, c ∈ Irr(A∗), and the second is just the orthogonality relations from
Equation 9 together with the fact that µ runs from 1 to N c

ab. This
equation then reads as

(Φ⊗n ◦∆n−1(τa))(Φ
⊗n ◦∆n−1(τb)) =

∑
c

N c
ab(Φ

⊗n ◦∆n−1(τc)),

and thus it implies, as Φ⊗n ◦∆n−1 is a homomorphism and it is w.l.o.g.
injective, that

(14) τaτb =
∑
c

N c
abτc.
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Let us remark here that to obtain this well-known result, one does
not have to consider MPO representations. Instead, the same result
can be obtained directly from the decomposition of the tensor product
representation into irreducible representations: let Ψa be an irreducible
representation on a vector space Va such that it is from the sector a
(and thus its character is τa), and Ψb an irreducible representation on a
vector space Vb such that it is from the sector b (and thus its character
is τb). Then, by definition of the multiplication in A∗,

(τaτb)(f) = (τa ⊗ τb) ◦∆(f)

= (TrVa ⊗TrVb) ◦ (Ψa ⊗Ψb) ◦∆(f)

= Tr((Ψa ⊗Ψb) ◦∆(f)).

In this last trace the operator (Ψa⊗Ψb)◦∆(f) is supported on Va�Vb
instead of the whole tensor product space Va⊗ Vb, and thus restricting
(Ψa ⊗Ψb) ◦∆(f) to Va � Vb does not change its trace:

(τaτb)(f) = Tr(Ψa ⊗Ψb) ◦∆(f) = Tr(Ψa � Ψb)(f).

Finally, this representation decomposes into irreducible representations
(see Equation 3), and thus the trace can be evaluated:

(τaτb)(f) = Tr(Ψa � Ψb)(f) =
∑
c

N c
ab Tr Ψc(f) =

∑
c

N c
abτc(f),

that is equivalent to Equation 14. We have thus seen that:

Proposition 4.3. In a finite dimensional cosemisimple pre-bialgebra
A over C the irreducible representation characters of A∗ correspond to
the injective blocks in the MPO representation of A. For a ∈ Irr(A∗),
the irreducible representation character τa ∈ A has the following MPO
representation:

Φ⊗n ◦∆n−1(τa) = . . .a a a
.

These MPOs form a closed ring3 over Z, i.e. for all a, b, c there are non-
negative integer numbers N c

ab such that τaτb =
∑

cN
c
abτc, or graphically,

. . .

. . .

b b b

a a a

=
∑
c

N c
ab

. . .a a a
.

This ring is then called the Grothendieck ring of A.

3Not necessarily unital; note that the unit of the algebra 1 ∈ A might have a
non-trivial boundary, and thus, in general, it is not in the Grothendieck ring.
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3. Duality

As we have seen before, the dual A∗ of a pre-bialgebra A is a pre-
bialgebra as well. As such, it also has MPO representations. Let us fix
a representation Ψ of A∗ on a vector space W , and a representation Φ
of A∗∗ = A on a vector space V . Then the previous construction leads
to the following MPO representation:

(15) Ψ⊗n ◦∆n−1(f) =
b(f)

. . .

with

:=
∑
x∈B

Ψ(δx)⊗ Φ(x),

where B is a basis of A. Notice that this MPO tensor is exactly 90
degree rotation of the MPO tensor describing the coproduct of elements
in A. As above, these MPOs form a representation of A∗,

b(fg) A A A
. . . =

b(g)

b(f)

A

A

A

A

A

A. . .

. . .

.

If A is semisimple (in general this does not follow from semisimplicity
of A∗), then this MPO representation of A∗ decomposes into a sum of
smaller bond dimensional MPOs corresponding to the characters of A:

Ψ⊗n ◦∆n−1(f) =
∑

α∈Irr(A)
bα(f)

. . .α α α α

with
αα :=

∑
x∈B

Ψ(δx)⊗ Φα(x),

where B, as above, is a basis of A. We will denote sectors of A with
Greek letters, and sectors of A∗ with Latin letters. Just as above, there
are linear maps V̂ γm

αβ and Ŵ γm
αβ , m = 1, . . . , N̂γ

αβ, such that

ββ

αα

=
∑

γ∈Irr(A)

N̂γ
αβ∑

µ=1

m m
γγ

α

β

α

β and

m n
α

β
γ δ = δγδδmnIdγ.

These linear maps give rise to a set of F -symbols (also satisfying the
pentagon equations) that are, in general, different from the ones in the
previous sections.
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CHAPTER 5

Weak bialgebras and weak Hopf algebras

In this chapter we introduce weak bialgebras, weak Hopf algebras,
pivotal weak Hopf algebras, spherical weak Hopf algebras and C*-weak
Hopf algebras. All these structures are all special pre-bialgebras, and as
such, we use their MPO representations to reason about the structure
of these objects; this is possible as the MPO representations are w.l.o.g.
injective. Our main result is Theorem 5.9, where we construct a special
normalized integral Λ in any cosemisimple weak Hopf algebra over C.
This integral Λ is then used to prove that in a cosemisimple co-pivotal
weak Hopf algebra over C, there is a cocommutative projector with a
property reminiscent to the definition of an integral that will allow us
to define MPO-injective PEPS. We then further specialize these results
to spherical and C*-weak Hopf algebras.

1. Weak bialgebras

In this section we define weak bialgebras and show that the MPO
representation of the unit of a cosemisimple WBA A has the following
property: for all sectors a of A∗, ba(1) is either 0 or rank-one. We show,
moreover, that the Grothendieck ring of A has a unit. This unit can
be written in the form

τVac(A∗) :=
∑

e∈Vac(A∗)

τe,

where Vac(A∗) ⊆ Irr(A∗) consists of the sectors a for which ba(1) 6= 0.

Definition 5.1. A weak bialgebra (WBA) is a pre-bialgebra A such
that the unit 1 ∈ A and counit ε ∈ A∗ satisfy

1(1) ⊗ 1(2) ⊗ 1(3) = 1(1) ⊗ 1(2)1(1′) ⊗ 1(2′) = 1(1) ⊗ 1(1′)1(2) ⊗ 1(2′),(16)

ε(1) ⊗ ε(2) ⊗ ε(3) = ε(1) ⊗ ε(2)ε(1′) ⊗ ε(2′) = ε(1) ⊗ ε(1′)ε(2) ⊗ ε(2′).(17)

We will refer to Equation 16 as the unit axiom and to Equation 17 as
the counit axiom.

In the equations above 1 and ε appears twice in the same Sweedler
notation. To distinguish between the two appearances, we added a
prime to the subindices of one of them. One can also write the unit
axiom, Equation 16, as

∆2(1) = (1⊗∆(1))(∆(1)⊗ 1) = (∆(1)⊗ 1)(1⊗∆(1)),
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while the counit axiom, Equation 17, is more convenient to think of as

ε(xyz) = ε(xy(1))ε(y(2)z) = ε(xy(2))ε(y(1)z).

As pre-bialgebras are self-dual and the above two axioms are the dual
of one another, weak bialgebras are also self-dual: if A is a WBA, then
A∗ is also a WBA.

Let A be a cosemisimple WBA. The graphical representation of the
unit axiom, Equation 16, is

∑
c

bc(1)
=
∑
a,b

ba(1)

bb(1)

=
∑
a,b bb(1)

ba(1) .

Decomposing the product of the two MPO tensors using the fusion
tensors (Equation 9), we arrive at

∑
c

bc(1)
=
∑
a,b,c,µ bb(1)

ba(1)
c c

µµ

=
∑
a,b,c,µ

ba(1)

bb(1)

c c

µµ

.

Applying linear functionals f, g and h on the three components, we
arrive at the equations

∑
c

fc gc hc

bc(1)

ccc =
∑
a,b,c,µ

gc
fa

bb(1)

ba(1)

hb

µµ

=
∑
a,b,c,µ

gc
ba(1)

fb

ha

bb(1)

µµ

,

where fc denotes the part of f supported on the sector c, i.e.

fc = pcf = fpc,

where pc ∈ Z(A∗) is the irreducible representation projector onto the
sector c. This equation is true for all f, g and h, and thus, since Ψc(A

∗)
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is the full matrix algebra MDc for all sectors, we obtain

δa,cδb,c
bc(1)

=
∑
µ bb(1)

a

b

ba(1)
c c

µµ

,(18)

δa,cδb,c
bc(1)

=
∑
µ

ba(1)

b

a

bb(1)

c c

µµ

.(19)

Combining these two equations, we arrive at

∑
µ bb(1)

ba(1)

bb(1)

ba(1)
c c

µµ

= δa,cδb,c

bc(1)

bc(1)bc(1)

= δa,cδb,c

bc(1)

bc(1)

bc(1)

.

Comparing the last two expressions, we obtain that bc(1) is rank-1 for
all c where it is non-zero, i.e. there is a vector c ∈ Vc and a linear
functional c ∈ V ∗c such that

(20) bc(1) =
c c

.

Let Vac(A∗) be the set of sectors such that bc(1) 6= 0. Let us now
consider Equations 18 and 19 such that the sectors a and b are from
this set Vac(A∗), while c is an arbitrary sector. Using Equation 20, we
obtain∑

µ

b

a

b

a
c c

µµ

=
∑
µ

a

b

a

b
c c

µµ

= δa,cδb,c(Idc ⊗ Idc).(21)

In particular, N c
ab 6= 0 for a, b ∈ Vac(A∗) and c ∈ Irr(A∗) if and only if

a = b = c. As b(1) is rank-one in every sector where it is non-zero, the
MPO representation of 1 ∈ A can be written as

(22) Φ⊗n ◦∆n−1(1) =
∑

e∈Vac(A∗)

. . . eeeee .

Note that the fact that 1 ∈ A is the unit of the algebra implies, using
Equation 13, that for all a, c ∈ Irr(A∗),

∑
e∈Vac(A∗)

µ

a

e

a

e
c c

µµ

=
∑

e∈Vac(A∗)
µ

a

e

a

e
c c

µµ

= δa,c(Idc ⊗ Idc).

(23)
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Let us now consider the element 1(1)1(2). The MPS representation of
this element is given by

Φ(1(1)1(2)) = Φ(1(1))Φ(1(2)) =
∑

e∈Vac(A∗)

e

e

e

=
∑

e∈Vac(A∗),f,µ

e

e

e

ff

µµ

=
∑

e∈Vac(A∗)
e

=
∑
e

Φ(τe),

where in the fourth equality we have used Equation 21. As Φ is injec-
tive w.l.o.g., this implies that 1(1)1(2) =

∑
e∈Vac(A∗) τe. Let us denote

this element of the algebra as τVac(A∗). Notice now that ∆(1)∆op(1) is
represented by the product∑

e,f∈Vac(A∗)

ee e

fff f =
∑

e,f∈Vac(A∗)
c,d,µ,ν

µµ νν

f f

e ee
cc dd

ff

=
∑

e∈Vac(A∗)

e
,

where in the last equation we have used Equation 21. Again, as Φ⊗Φ is
w.l.o.g. injective, we conclude that ∆(1)∆op(1) = ∆(τVac(A∗)). Similar
calculation shows that ∆op(1)∆(1) = ∆(τVac(A∗)) as well, and thus we
have proven1 that

∆(τVac(A∗)) = ∆(1)∆op(1) = ∆op(1)∆(1).

This, in fact, implies that τVac(A∗) is the unit of the Grothendieck ring of
A∗ (and of the character algebra as well), as for any co-central τ ∈ A,

∆(τVac(A∗)τ) = ∆op(1)∆(1)∆(τ) = ∆op(1)∆(τ)

= ∆op(1)∆op(τ) = ∆op(τ) = ∆(τ),

i.e. τVac(A∗)τ = τ , and similarly ττVac(A∗) = τ as well. Notice that as
τVac(A∗) decomposes into a sum of irreducible representation charac-
ters, given any irreducible representation character τa, a ∈ Irr(A∗), the
following equations hold:

τa = τVac(A∗)τa =
∑

e∈Vac(A∗),b

N b
eaτb,

τa = τaτVac(A∗) =
∑

e∈Vac(A∗),b

N b
aeτb.

1The same result can be obtained by direct calculation as well [96]: using
the unit axiom Equation 16 twice, ∆(τVac(A∗)) = 1(1)1(3) ⊗ 1(2)1(4) = ∆(1)(1(2) ⊗
1(1)1(3)) = ∆(1)∆op(1)∆(1). Finally, again due to the unit axiom, ∆(1)∆op(1) =

∆op(1)∆(1), that leads to the desired result.
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Here both N b
ea ≥ 0 and N b

ae ≥ 0 are integers, and thus, as the equations
above are equivalent to

∑
e∈Vac(A∗) N

b
ea = δab and

∑
e∈Vac(A∗) N

b
ae = δab,

there are unique labels `a, ra ∈ Vac(A∗) such that for all e ∈ Vac(A∗)
and a, b ∈ Irr(A∗)

(24) N b
ea =

{
0 if e 6= `a,

δab if e = `a,
and N b

ae =

{
0 if e 6= ra,

δab if e = ra.

Using this property of the fusion multiplicities N c
ab, we notice that in

Equation 23 in the sum over e ∈ Vac(A∗) the summand is non-zero
only for e = `a on the l.h.s. and e = ra on the r.h.s. and in these cases
the sum over µ is trivial (because N c

`aa
= N c

ara = δac). We can thus
simplify Equation 23 to

a

e

a

e
c c = δe,`aδa,c(Idc ⊗ Idc),(25a)

a

e

a

e
c c = δe,raδa,c(Idc ⊗ Idc),(25b)

that hold for all e ∈ Vac(A∗), and a, c ∈ Irr(A∗). Let us note that
Equation 25 together with Equation 24 implies Equation 21, and thus
it is easy to check that the element defined by Equation 22 is indeed
the unit of A and that it satisfies the unit axiom. We have thus seen
that

Proposition 5.2. In a finite dimensional cosemisimple pre-bialgebra
A over C the unit axiom Equation 16 is equivalent to the following:

(1) there is a set Vac(A∗) ⊆ Irr(A∗) such that

τVac(A∗) =
∑

e∈Vac(A∗)

τe

is the unit of the Grothendieck ring of A∗, or equivalently, for
all a ∈ A there are unique labels `a, ra ∈ Vac(A∗) such that for
all e ∈ Vac(A∗) and b ∈ Irr(A∗)

N b
ea =

{
0 if e 6= `a,

δab if e = `a,
and N b

ae =

{
0 if e 6= ra,

δab if e = ra,

(2) and for all e ∈ Vac(A∗) there are vectors e ∈ Ve and linear
functionals e ∈ V ∗e such that for all e ∈ Vac(A∗) and a, c ∈
Irr(A∗),

a

e

a

e
c c = δe,`aδa,c(Idc ⊗ Idc),

a

e

a

e
c c = δe,raδa,c(Idc ⊗ Idc).

Definition 5.3. We will refer to the subset Vac(A∗) of Irr(A∗) as
vacuum and the sectors in Vac(A∗) as vacuum sectors. In this context,
if Vac(A∗) contains a single element, it is said that A is a coconnected
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pre-bialgebra, if Vac(A) contains a single element, it is said that it is a
connected pre-bialgebra, and it is said to be a biconnected pre-bialgebra
if it is both a connected and coconnected pre-bialgebra.

Let us now apply Equation 24 for the case that a ∈ Vac(A∗). As in
this case both equations in Equation 24 apply, we obtain that for all
a ∈ Irr(A) and e, f ∈ Vac(A∗),

(26) Na
ef =

{
1 if e = f = a,

0 otherwise.

Stating otherwise, we have obtained that for any e ∈ Vac(A∗), `e =
re = e holds. Note the difference between the MPO representation of
the unit of the algebra and the element τVac(A∗). The MPO representa-
tion of the unit of the algebra 1 ∈ A is

Φ⊗n ◦∆n−1(1) =
∑

e∈Vac(A∗)

. . . eeeee ,

and the MPO representation of the unit of the Grothendieck ring,
τVac(A∗), is

Φ⊗n ◦∆n−1(τVac(A∗)) =
∑

e∈Vac(A∗)

. . . eeeee
.

These two MPOs coincide if and only if the sector e is one-dimensional
for all e ∈ Vac(A∗).

Until now, we have only used the unit axiom, and not the counit
axiom: the unit τVac(A∗) ∈ A of the Grothendieck ring exists and the
MPO representation of the unit 1 ∈ A is rank-one in each injective
block even for pre-bialgebras that satisfy the unit axiom but not the
counit axiom. Let us now derive a consequence of the counit axiom
that we will use later on. First, note that the counit axiom can equally
be written as

∆2(ε) = (1⊗∆(ε))(∆(ε)⊗ ε) = (∆(ε)⊗ ε)(ε⊗∆(ε)),

and therefore the graphical representation of the counit axiom is∑
e,d,µ,ν

µµ
νν

d
a

b
c

d
a

b
c

e =
∑
d,e,µ,ν

µµ

νν

bb

a a

c c

b
e

d
=
∑
d,µ,ν

µµ

νν

b b

a a

c c

b
e

d
.

Using now the orthogonality relations in the first equation, we conclude
that the following equation holds:

(27)
∑
e,µ,ν

µµ

ν κ

b b
dd

a

c c
e

=

δνκ
∑

e,µ
µµ

d

c

d

c
e if Nd

ab 6= 0,

0 if Nd
ab = 0.

This equation, however, is not a sufficient condition for the unit of the
pre-bialgebra to satisfy the counit axiom Equation 17.
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2. Weak Hopf algebras

In this section we define weak Hopf algebras. In these algebras we
define a set of elements called integrals, and show that a cosemisimple
weak Hopf algebra over C has a special integral Λ that is a projector
and is such that Λ(fg) = Λ(S2(g)f) holds for all f, g ∈ A∗.

Definition 5.4. A weak Hopf algebra (WHA) is a WBA A together
with a linear map S ∈ B(A), called antipode, such that

S(x(1))x(2) = 1(1)ε(x1(2)),

x(1)S(x(2)) = ε(1(1)x)1(2),

S(x(1))x(2)S(x(3)) = S(x).

Given a WHA A with antipode SA, it is easy to check that the map
SA∗ : A∗ → A∗ defined by

(28) SA∗(f) := f ◦ SA,

for all f ∈ A∗ (i.e. SA∗ = STA), satisfies the antipode axioms as well, and
thus A∗ is a WHA too. From now on, we do not differentiate between
the antipode of A and that of A∗, and denote both by S. The antipode
S of a WHA is an anti-homomorphism (i.e. S(xy) = S(y)S(x)), an
anti-cohomomorphism (i.e. ∆ ◦ S = (S ⊗ S) ◦ ∆op) and a bijection
(see [14] for a proof). In fact, an equivalent characterization of the
antipode (of A∗) is that it is a bijective anti-homomorphism of A∗ such
that for every f ∈ A∗

S(f(1))f(2) ⊗ f(3) = ε(1) ⊗ fε(2),(29)

f(1) ⊗ f(2)S(f(3)) = ε(1)f ⊗ ε(2).(30)

Let A be a cosemisimple WHA and Ψ : A∗ → B(W ) be a rep-
resentation of A∗ on a vector space W . The antipode S of A∗ is an
anti-homomorphism, and thus the linear map Ψ̄ : A∗ → B(W ∗) defined
by

Ψ̄(f) = (Ψ ◦ S(f))T

is a representation of A∗ on the vector space W ∗. As S is a bijection,
Ψ̄ is an irreducible representation if Ψ is an irreducible representation.
Let Irr(A∗), as above, denote the irreducible representation equivalence
classes of A∗, also called sectors of A∗, and for every a ∈ Irr(A∗)
let us fix a representation Ψa on the vector space Va from the sector
a. For each irreducible representation Ψa the representation Ψ̄a is an
irreducible representation in another sector, that we denote by ā (note
that ā might coincide with a). As Ψ̄a and Ψā are in the same sector,
they are related to each other by a basis transformation, i.e. there are
linear maps Za : Wā → W ∗

a such that

Ψa(f) = ZaΨā(f)Z−1
a .

59



Let us denote this equation using the graphical notation of tensor net-
works. We have to be careful with the notation, as Ψa(f) is not one of
the representations that we have fixed previously. We thus have to use
a more verbose notation and display the representation itself and that
it is a linear map from W ∗

a to W ∗
a :

Ψa(f)

W ∗aW ∗a =
f Z−1

aZa

W ∗aāāW ∗a .

Let us now reverse the two arrows at the two ends of the figure. This
changes W ∗

a to Wa, and thus, as it is one of the previously fixed vector
spaces, we can simply write a on the line. Similarly, Ψa(f) changes
to Ψa(f)T = Ψa ◦ S(f), and thus, as Ψa is one of the previously fixed
representations, the rank-two tensor on the l.h.s. of the equation can
simply be labeled by S(f):

(31)
S(f)

aa =
f Z−1

aZa

aāāa .

The indices of S(f) are now oriented in the opposite direction as that
of f . Because of this, we often bend back the indices on the r.h.s. of
this equation such that we obtain

(32)
S(f)

aa =
f

Z−1
a

Za

āa

ā a

.

Let us warn here the reader about the subtleties of our notation. First,
Za has two incoming indices, and thus the only way to differentiate
between the two indices is via the labels a and ā. Note that even for
sectors for which a = ā, this forces us to write a and ā on the two
legs of the tensor. Second, there are two different operators with very
similar graphical representations:

Za

aā and
Zā

aā .

These two tensors should be read in the opposite direction: the first
index of Za is the one labeled by ā on its left, while the first index of
Zā is the one labeled by a on its right.

As we have mentioned above, the antipode of A is the transpose
of the antipode of A∗, see Equation 28. Therefore for all f ∈ A∗ and
x ∈ A the following holds:∑

a∈Irr(A∗)
bā(S(x)) f

āāā =
∑

a∈Irr(A∗)
ba(x) S(f)

aaa

=
∑

a∈Irr(A∗)
ba(x) Za f Z−1

a

a a ā ā a ,
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where in the second equation we have used Equation 31. As this equa-
tion holds for all f ∈ A∗, the boundary condition b(S(x)) describing
S(x) can be expressed as

(33)
bā(S(x))

āā =
ba(x) ZaZ−1

a

āaaā .

This allows us to write the repeated coproduct of S(x) as

(34) Φ⊗n ◦∆n−1 ◦ S(x) =
∑
a

ba(x)Z−1
a Za

. . . āāāāaaā
.

Let us consider now a new rank-4 tensor, denoted by gray dot, given
by

aa :=
∑
y

(Φ ◦ S)(y)⊗Ψa(δy) =
∑
x

Φ(x)⊗ (Ψa ◦ S)(δx),

where in the second equation we have used that if B is a basis with
basis elements y, then the set {x = S(y) : y ∈ B} forms a basis as
well and its dual basis is {δx = S−1(δy) : y ∈ B}. Note that we have
oriented the virtual indices of this tensor in the opposite direction as
in the MPO tensor given by black dots. This is because S is an anti-
homomorphism; more precisely, we can relate the two tensors using
Equation 31:

(35) aa =
Z−1
aZa

aāāa .

Using this gray tensor, one can rewrite Equation 34 as

(36) Φ⊗n ◦∆n−1 ◦ S(x) =
∑
a

. . .
ba(x)

aaaa
.

This MPO, by definition, is Φ⊗n ◦ S⊗n ◦ ∆n−1
op (x) (read from left to

right), as the virtual index of the MPO tensor is written in the opposite
direction than as usual. As Φ is w.l.o.g. injective, we have obtained the
relation

∆n−1 ◦ S(x) = S⊗n ◦∆n−1
op (x),

that is, in fact, a simple consequence of the fact that S is an anti-
cohomomorphism (i.e. ∆ ◦ S = (S ⊗ S) ◦∆op).
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Using the tensors Za that we defined in Equation 31, the antipode
axioms of A∗, Equations 29 and 30, can be expressed as

∑
b,µ,d,ν f

Za
Z−1
a

µµ
νν

d
c

āa
b

d
c

a

āa

b =
∑
dν f νν

d
a

c

a

cc ,

∑
c,µ,d,ν

f

Zb
Z−1
b

µµ
νν

d
a

b
b̄

b

c
d

a

b
b̄

c
=
∑
d,ν

f

νν

d
a

b

a

b

a
.

Let us explain briefly how to arrive at these graphical representations
of Equation 29 and Equation 30. In Equation 29, on the l.h.s. we
first need to take two repeated coproduct of f : this is achieved by the
two pairs of fusion tensors (see Equation 5). Then the antipode of the
first component is taken (see Equation 32) and it is multiplied with the
second component of the coproduct. On the r.h.s. of the same equation,
we multiply f with the second component of ∆(ε) (see Equation 6).
The second equation is obtained similarly. As these equations hold for
any f ∈ A∗, we conclude that

∑
d,µ,ν

Za
Z−1
a

µµ
νν

d
c

āa
b

d
c

a

āa

b = δbc
∑
d,ν νν

d
a

b

a

bb ,

∑
d,µ,ν

Zb
Z−1
b

µµ
νν

d
a

b
b̄

b

c
d

a

b
b̄

c
= δac

∑
d,ν νν

d
a

b

a

b

a

.

Using the orthogonality relations of the fusion tensors and multiplying
the first equation by Za, and the second equation by Z−1

b , we obtain

∑
µ

Za

µµ
ν

d
c

a
āa

b
d

ā
b

= δbc

Za

ν

d
a

ā

bb
,

∑
µ Z−1

b

µµ
ν

d

b̄
c

d
a

b
b̄

c = δac

Z−1
b

ν
d

a a

b
b̄ .

In particular, there are complex matrices Cd
ab of size Nd

ab×N b
ād and Ĉd

ab

of size Nd
ab ×Na

db̄
such that

(37)
∑
µ

(Cd
ab)νµ

µ

d

ā
b =

Za

ν

d
a

ā

b ,
∑
µ

(Ĉd
ab)νµ

µ
d

b̄
a =

Z−1
b

ν
d

a

b
b̄

.
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Let us now show that Cd
ab and Ĉd

ab are both invertible. In both equations
the tensors on both sides are linearly independent, therefore Nd

ab ≤ N b
ād

andNd
ab ≤ Na

db̄
. Applying these inequalities twice, we obtain thatNd

ab ≤
N b
ād ≤ Nd

¯̄ab, and that Nd
ab ≤ Nd

db̄
≤ Nd

a¯̄b
. As a 7→ ¯̄a is a permutation of

Irr(A∗), repeating these equations a few2 times we obtain that Nd
ab ≤

Nd
¯̄ab ≤ · · · ≤ Nd

ab and that Nd
ab ≤ Nd

a¯̄b
≤ · · · ≤ Nd

ab, i.e. in all of the

inequalities above equality holds. In particular, for all a, b, c ∈ Irr(A∗),
the numbers Nd

ab possess the following symmetries:

Nd
ab = N b

ād and Nd
ab = Na

db̄.

This implies that in both equations in Equation 37 we transform Nd
ab

linearly independent vectors to Nd
ab linearly independent vectors, i.e.

both Cd
ab and Ĉd

ab are invertible. It is easy to check that the argument
above can be repeated backwards, i.e. Equation 37 implies the antipode
axioms. We have thus seen that

Proposition 5.5. Let A be a finite dimensional cosemisimple WBA.
Then the map S : A∗ → A∗ given by

S(f)

aa =
f Z−1

aZa

aāāa

is an antipode making A∗ a WHA if and only if there are invertible
matrices Cd

ab of size Nd
ab ×N b

ād and Ĉd
ab of size Nd

ab ×Na
db̄

such that

∑
µ

(Cd
ab)νµ

µ

d

ā
b =

Za

ν

d
a

ā

b and
∑
µ

(Ĉd
ab)νµ

µ
d

b̄
a =

Z−1
b

ν
d

a

b
b̄

.

As it is interesting on its own, let us restate here the symmetry
properties of the fusion multiplicities N c

ab together with some of the
consequences of these symmetries:

Proposition 5.6. Let A be a finite dimensional cosemisimple WHA,
and a, b, c ∈ Irr(A∗). Then

(38) Nd
ab = N b

ād and Nd
ab = Na

db̄.

Moreover, the following equations hold:

• ¯̄a = a for all a ∈ Irr(A∗),
• `a = rā and ra = `ā for all a ∈ Irr(A∗), where `a, ra ∈ Vac(A∗)

are as in Equation 24,
• e = ē for all e ∈ Vac(A∗).

Proof. We have already proven Equation 38 above. Let us now
show that a = ¯̄a for all sectors a ∈ Irr(A∗). Applying the left side of
Equation 38 twice with d = a and b = ra, we obtain that

1 = Na
ara = N ra

āa = Na
¯̄ara .

2the order of the permutation a 7→ ¯̄a
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Using now Equation 24, this latter fusion multiplicity can only be non-
zero if a = ¯̄a.

Let us now show that for all a ∈ Irr(A), `ā = ra holds. Using the
left equation in Equation 38 with b = ra and d = a, we obtain that

1 = Na
ara = N ra

āa = N ā
raā,

where the last equation is the right equation in Equation 38. As ra ∈
Vac(A∗) and the above fusion number is non-zero, Equation 24 implies
that for all a ∈ Irr(A), ra = `ā. The equation rā = `a can be shown in
a similar way.

Let us finally prove that the permutation a 7→ ā leaves the set
Vac(A∗) invariant, and in fact for every e ∈ Vac(A∗), ē = e. Let us use
Equation 38 with a = b = d = e ∈ Vac(A∗). We obtain that

1 = N e
ee = N e

ēe,

and thus, as e ∈ Vac(A∗), using Equation 24, this latter fusion number
can only be non-zero if e = ē. �

Let us show now that in a cosemisimple WHA the matrices Za can
be expressed with the help of the fusion tensors and the unit of the
underlying WBA. Therefore, if in a cosemisimple WBA there exists
an antipode making it a WHA, this antipode is uniquely determined
by the WBA structure. This statement, in fact, is more general than
what we show here, and also holds in the non-cosemisimple case (see
e.g. [14]).

Let c ∈ Irr(A∗) and let us set ā = c̄, d = c and b = rc ∈ Vac(A∗) in
the left equation in Equation 37, and d = c̄, b = c̄ and a = rc ∈ Vac(A∗)
in the right equation in Equation 37 and use that ¯̄c = c. As N rc

c̄c = 1,
we obtain that there are non-zero complex numbers Cc

crc and Ĉ c̄
rcc̄ such

that

Cc
crc c

c̄
rc =

Zc

c
c

c̄

rc and Ĉ c̄
rcc̄

c̄

c
rc =

Z−1
c̄

c̄
rc

c̄
c

.

Taking the tensor product of these two equations, applying the vectors
describing brc(1) and using Equation 25, we conclude that there are
non-zero numbers wc such that

(39) Zc

c̄

c Z−1
c̄

c̄

c = wc c

c̄
rc

c̄

c
rc .

We have thus obtained that the matrices Zc can be expressed with the
help of the fusion tensors and the vectors describing the unit of the
WBA, and thus the antipode of a cosemisimple WHA is unique and
completely determined by the WBA structure.

Let us now define a linear functional that will play a central role
in the rest of the dissertation. Before the definition, note that while
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the number wc defined in Equation 39 depends on the concrete choice3

of the matrices Zc and Z−1
c̄ , the number wcwc̄ is independent from

this choice, and it is also independent from all the choices we have
made before (the fusion tensors and the vectors describing the unit of
the algebra). This is because all these objects appear in pairs in the
following equation:

Zc

c̄

c Z−1
c̄

c̄

c Zc̄

c

c̄ Z−1
c

c

c̄

= wcwc̄ c

c̄
rc

c̄

c
rc

c̄

c
rc̄

c

c̄
rc̄ .

Let da be complex numbers such that d2
a = wawā and da = dā. Later

we will prove that wawā > 0 and thus one can choose da to be positive.
Until then, da = dā is an arbitrary square root of wawā. Let us now
define the linear functional g ∈ A∗ through

(40)
g

aa =
da
wā ZāZ−1

a

aāa and
g−1

aa =
wā
da Z−1

ā Za

aāa ,

where we have used that for any matrix m of the form
⊕

ama, ma ∈
B(Va), one can find a linear functional f ∈ A∗ such that Ψa(f) =
ma. The linear functional g defined in this way is independent of all
previous choices that we have made, except for the choice of the square
root da = dā of d2

a. The importance of this linear functional is that
the conjugation by it describes the action of S2. Indeed, applying
Equation 31 twice, we obtain that

(41)
S2(f)

aa =
S(f) ZaZ−1

a

aāāa =
f Z−1

ā ZaZāZ−1
a

aāaaāa =
f g−1g

aaaa .

Let us now show a few additional properties of g. First, note that

wā
da

=
da
wa

=
dā
wa
,

and thus

g−1

āā =
g ZāZ−1

ā

āaaā =
S(g)

āā ,

i.e. g satisfies g−1 = S(g). Second, the traces of Ψa(g) and Ψa(g
−1)

evaluate to the following:

Tr(Ψa(g
−1)) =

da
wā

Za

ā

a Z−1
ā = da a

ā
ra ra = daεra(1),(42)

Tr(Ψa(g)) =
da
wa

Zā

a

ā Z−1
a = da ā

a
rā rā = daεrā(1),(43)

where εra ∈ A∗ is the irreducible representation projector onto the
sector ra and εrā ∈ A∗ is the irreducible representation projector onto
the sector rā.

3We could have chosen λZc to describe the antipode instead of Zc, for any
λ ∈ C. This is in fact the only freedom that we have in the choice of Zc.
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In the following we will encounter algebra elements of the form

x =
∑
a

(Id⊗ g) ◦∆(τa).

These algebra elements have the following MPO representation:

Φ⊗n ◦∆n−1(x) =
∑
a

λa g
. . .a a a a

.

The algebra elements are exactly those that satisfy ∆op(x) = (S−1 ⊗
Id) ◦∆(x). Indeed,

Φ⊗2 ◦∆op(x) =
∑
a

λa g

aa

=
∑
a

λa g g−1 g

aaaa
(44)

= Φ⊗2 ◦ (S−2 ⊗ Id) ◦∆(x).

One can easily see that all elements that satisfy the above cocommu-
tation relation are in fact of this form. Such algebra elements will be
called q-traces :

Definition 5.7. Let A be a WHA. The algebra element x ∈ A is called
a q-trace if

∆op(x) = (S−2 ⊗ Id) ◦∆(x).

In the following we will construct an algebra element that is not
only a q-trace, but it is also a left integral :

Definition 5.8. A left integral of a WHA A is an element Λ ∈ A such
that for all x ∈ A

(1⊗ x)∆(Λ) = (S(x)⊗ 1)∆(Λ).

The element Λ ∈ A is called a right integral if S(Λ) is a left integral.
An integral that is both left and right is a two-sided integral. A non-
degenerate (see Definition 3.7) integral Λ is normalized if Λ2 = Λ.
Finally, an integral is called a Haar integral if it is two-sided, non-
degenerate and normalized.

We will now prove the main result of this section: that in a co-
semisimple WHA there is a special integral that is non-degenerate,
normalized and a q-trace:
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Theorem 5.9. In a finite dimensional cosemisimple WHA A over
C the element Λ ∈ A defined4 by
(45)

Φ⊗n ◦∆n−1(Λ) =
∑

a∈Irr(A∗)

da∑
x: `x=`a

d2
x

g
. . .a a a a

,

is a non-degenerate normalized left integral that is also a q-trace.

In the proof of Theorem 5.9 we will use the following two lemmas
that we prove in Appendix A:

Lemma 5.10. Let A be a cosemisimple WHA, and g be the linear
functional defined in Equation 40. Then there exists an N c

ab × N c
ab

matrix Bc
ab such that the linear functional g ∈ A∗ satisfies

c

g−1

a
g

b

g µ

=
∑
ν

(Bc
ab)µν

c
a

b

ν

,(46a)

c

g−1

a
g

b

gν

=
∑
κ

(Bc
ab)κν

c
a

b

κ

.(46b)

Moreover, (Bc
ab)

2 = IdNc
ab

and the following equation holds as well:

∑
µ

wa

ZāZ−1
a

µ µ

āa

c
b b

ā a

c
=
∑
µ

wb̄

Zb̄Z−1
b

µ µ

b̄
b

c
a a

b̄
b

c

=
dadb
dc

∑
µ,ν

(Bc
ab)µν b

a
c

a

b
c

µ ν

.

Investigating the trace of Bc
ab we can prove that the numbers d2

a are
positive and thus that the denominator in the r.h.s. of Equation 45 is
non-zero. We postpone the proof of this lemma to Appendix A as well.

Lemma 5.11. For all a ∈ Irr(A∗), d2
a = wawā > 0. Let moreover T cab

be defined by T cab =
∑

µ (Bc
ab)µµ. Then the following equations hold:∑

b

T cabdb = daδ`a`cdc and
∑

x:`x=`a

d2
x =

∑
x:`x=ra

d2
x.

With these two lemmas in hand, we can proceed to the proof of
Theorem 5.9.

4Remember that Φ is w.l.o.g. injective and thus the value of Φ⊗n ◦ ∆n−1(Λ)
defines Λ uniquely.
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Proof of Theorem 5.9. Let us define L as

Φ⊗n ◦∆n−1(L) =
∑

a∈Irr(A∗)

da g
. . .a a a a

.

We will prove that L is a non-degenerate left integral that is related to
Λ as follows. Let us define N via

(47) Φ⊗n ◦∆n−1(N) =
∑

e∈Vac(A∗)

∑
x: `x=e

d2
x

. . . eeeee .

This algebra element N is central, as Nx is described by the MPO

Φ⊗n ◦∆n−1(Nx) =
∑

a∈Irr(A∗)

∑
x: `x=`a

d2
x b(x)

. . .a a a a
,

while xN is described by the MPO

Φ⊗n ◦∆n−1(xN) =
∑

a∈Irr(A∗)

∑
x: `x=ra

d2
x b(x)

. . .a a a a
,

and, by Lemma 5.11,
∑

x:`x=`a
d2
x =

∑
x:`x=ra

d2
x. Note as well that, as

d2
x > 0 for all x (see again Lemma 5.11), N is invertible with inverse

Φ⊗n ◦∆n−1(N−1) =
∑

e∈Vac(A∗)

1∑
x: `x=e d

2
x

. . . eeeee .

In fact, Λ = N−1L = LN−1. Therefore, in order to prove that Λ is a
normalized left integral, we only have to prove that L is a left integral,
and that L2 = NL. Note here that Λ is of the form Equation 44, and
thus it is a q-trace. It is also non-degenerate as g is invertible and the
normalization constant is non-zero.

Let us prove now that L is a left integral. Let us start with the
following simple corollary of Lemma 5.10:

∑
µ

dadb
dc

c c

g−1

c
b

g
b

a

g
a

b

a

µ µ

=
∑
µ

wb

Zb̄Z−1
b

µ µ

b̄b

c
a a

b̄ b

c
.

Let us rearrange this equation to obtain

∑
µ

da
c c

b

a

g

a

b

a

µ µ

=
∑
µ

dc
wb
db

Zb̄Z−1
b

µ µ

b̄b

c
a a

b̄ b
g−1

b

c

g

c

=
∑
µ

dc

ZbZ−1
b

µ µ

b̄b

c
a a

b̄ b

c

g

c
,
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where in the second equality we have used that

wb
db Zb̄ g

−1

bbb̄ =
Zb

bb̄ .

This implies that for all x ∈ A,

∑
a,b,c,µ

da
ga

bb(x)

µ µ

cc
=

∑
a,b,c,µ

dc

gc

Zb Z−1
bbb(x)

µ µ

aa
c c

b̄b̄
.

We can now use Equation 9 to obtain

∑
a,b

da
ga

bb(x)

=
∑
a,b

da
ga

Zb Z−1
bbb(x)

,

or equivalently, using that the representation Φ is w.l.o.g. injective, that
(1⊗x)∆(L) = (S(x)⊗1)∆(L), i.e. that L is a left integral. This integral
is automatically non-degenerate (see Chapter 3) as ba(L) = daΨa(g) is
invertible for all a ∈ Irr(A∗).

Let us now show that L2 = NL, and thus that Λ is a normal-
ized integral. The matrices bc(L

2) describing L2 are of the form (see
Equation 11)

bc(L
2) =

∑
a,b,µ

dadb
g

g

µ µ

bb

aa
cc

=
∑
a,b

daT
c
abdb

g

cc

=
∑

a: `a=`c

d2
a

gc

cc = bc(NL) ,

where in the second equality we have used the definition of T cab, and in
the third, the last point of Lemma 5.11. �

A few remarks are in place. First, it is known that every cosemisim-
ple WHA is finite dimensional (see [96] and Theorem 3.13 in [14]), and
thus the assumption on A being finite dimensional is redundant. Sec-
ond, the normalized integral Λ provides a separability element I ∈
A ⊗ A via I = (S−1 ⊗ Id) ◦ ∆(Λ) for the algebra A. Therefore A

is separable, and in particular, it is semisimple, i.e. we have obtained
Theorem 2.26 of [41]. Finally, let us note that Λ is closely related to

the canonical left integral L̂ defined in [96] (see also [14] and [41]). In
[96], the canonical left integral is defined as

L̂(f) =
∑
x∈B

x(fS2(δx)),
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where B is a basis of A and δx denotes the dual basis. In a finite
dimensional cosemisimple WHA, this expression can be re-expressed
using the matrix b(x):

L̂(f) =
∑
x∈B

∑
a∈Irr(A∗)

Tr(ba(x)Ψa(f)Ψa(S
2(δx)))

Using now Equation 41, we can also write

L̂(f) =
∑

a∈Irr(A∗)

∑
x∈B

Tr(ba(x)Ψa(f)Ψa(g)Ψa(δx)Ψa(g
−1))

As we sum over x, the matrix Ψa(δx) takes all possible values in B(Wa).
Conversely, iterating over elements of

⊕
a∈Irr(A∗) B(Va) defines a basis

in A∗ through the representation Ψ =
⊕

a Ψa. Let us fix a basis |ai〉
in each Wa, i = 1, . . . , dim(Wa), and choose the basis B such that
for all x, there is a ∈ Irr(A∗) and i, j = 1, . . . , dim(Wa) such that
Ψ(δx) = |ai〉〈aj|. It is easy to see that then ba(x) = |aj〉〈ai|. Therefore
one can also write

L̂(f) =
∑

a∈Irr(A∗)

∑
i,j

Tr(|aj〉〈ai|Ψa(fg)|ai〉〈aj|Ψa(g
−1))

=
∑

a∈Irr(A∗)

∑
i

〈ai|Ψa(fg)|ai〉
∑
j

〈aj|Ψa(g
−1)|aj〉.

Using the trace formula Equation 42, Tr(Ψa(g
−1)) = daεra(1), L̂(f) can

be further written as

L̂(f) =
∑

a∈Irr(A∗)

daεra(1) Tr(Ψa(gf)),

i.e. L̂ is described by the boundary εra(1)daΨa(g), or equivalently, the

MPO representation of L̂ is given by

Φ⊗n ◦∆n−1(L̂) =
∑

a∈Irr(A∗)

daεra(1)
g

. . .a a a a
.

3. Pivotal weak Hopf algebras

In certain WHAs one can define a special cocentral element using
the integral Λ defined in the previous section. This element satisfies an
equation reminiscent to the definition of an integral, but here, instead
of the antipode, another operation appears. The WHAs where the con-
struction works are called pivotal WHAs, and their defining property
is that the antipode is special: the square of the antipode is an inner
automorphism of the algebra realized by a group-like element (see the
definition below). While such a structure seems to be restrictive, it is
conjectured that any semisimple WHA is actually pivotal [41].
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Definition 5.12. Let A be a pre-bialgebra. G ∈ A is group-like if it
is invertible and

∆(G) = (G⊗G)∆(1) = ∆(1)(G⊗G).

Group-like elements of a WHA A form a group: if G,H ∈ A are
group-like, then GH is also group-like; 1 ∈ A is also group-like, and
finally, if G ∈ A, then G−1 is group-like as well. In a WHA

(48) S(G) = G−1

for any group-like G [14].
A∗ is a pre-bialgebra if and only if A is a pre-bialgebra; the unit

of A∗ is ε, and thus a linear functional k ∈ A∗ is group-like if it is
invertible and

∆(k) = (k ⊗ k)∆(ε) = ∆(ε)(k ⊗ k).

In a cosemisimple WHA A, group-like elements of A∗ have a nice char-
acterization using the graphical representation of the fusion tensors.
An element k ∈ A∗ is group-like if and only if it is invertible and∑

c,µ
k

cc
a

b

a

b

µ µ

=
∑
c,µ

c
a

k

a

b

k

b

a

b

µ µ

=
∑
c,µ

c
aa

k

a

bb

k

b

µ µ

.

Using now the orthogonality relations of the fusion tensors, we conclude
that k is group-like if and only if for all a, b, c ∈ Irr(A∗) and µ =
1, . . . , N c

ab,

c

k

c
a

b

µ

= c
a

k

a

b

k

b

µ

and c

k

c
a

b

µ

= c
a

k

a

b

k

b

µ

.

In the previous section (Lemma 5.11) we have seen a group-like element:
the element g2 ∈ A∗ is group-like, where g is defined by Equation 40.
Conjugation by this element describes S4. A pivotal WHA is one where
not only the fourth power, but also the square of the antipode is realized
as a conjugation by a group-like element:

Definition 5.13. A WHA A is pivotal if there is a group-like element
G such that for all x ∈ A,

S2(x) = GxG−1.

Such a group-like element G is called a pivotal element of A.

If a WHA A is such that A∗ is pivotal, then, as S2 is an inner
automorphism of A∗ described by the linear functional g defined in
Equation 40, all pivotal elements k of A∗ are of the form k = ξg for
some ξ ∈ A∗ central element. That is, there are numbers ξa such that
for all a,

(49) Ψa(k) = ξa
g

aa and Ψa(k
−1) =

1

ξa g−1

aa .

71



As S(g) = g−1 and S(k) = k−1, ξā = 1/ξa. As g2 is group-like (see
Lemma 5.10), the numbers ξa satisfy (ξaξb/ξc)

2 = 1 for all a, b, c such
that N c

ab 6= 0.
Let us consider a WHA A such that A∗ is pivotal and let us fix

the numbers ξa such that the element k ∈ A∗ defined by ka = ξaga is
pivotal. In this case, as

c

g−1

c
b
g
b

a

g

a

µ

=
ξc
ξaξb

c
b

a

µ

,

Lemma 5.10 takes the form

(50)
∑
µ

da
ξa

db
ξb

dc
ξc

c c
b

a

b

a

µ µ

=
∑
µ

wb

Zb̄Z−1
b

µ µ

b̄b

c
a a

b̄ b

c
.

Let us now notice that the matrix Bc
ab defined in Lemma 5.11 is pro-

portional to the identity, more precisely, Bc
ab = ξc/(ξaξb)IdNc

ab
, and thus

that T cab = N c
abξc/(ξaξb). We thus obtain that

(51)
∑
b

N c
ab

db
ξb

= δ`a`c
dā
ξā

dc
ξc
.

With these statements we can now prove the following theorem:

Theorem 5.14. Let A be a finite dimensional WHA over C such
that A∗ is semisimple and pivotal with pivotal element k ∈ A∗ such
that ka = ξaga. Then the element Ω ∈ A defined by

Φ⊗n ◦∆n−1(Ω) =
∑

a∈Irr(A∗)

1∑
x: `x=`a

d2
x

da
ξa

. . .a a a

is non-degenerate and cocommutative, it is a projector, and there exists
a linear map T ∈ B(A) such that

(1⊗ x)∆(Ω) = (T (x)⊗ 1)∆(Ω).

This5 map T moreover satisfies

∆ ◦ T = (T ⊗ k−1 ⊗ T ) ◦∆2
op.

The number da/ξa is the quantum dimension of the sector a. This
number depends on the concrete choice of k (equivalently, on the choice
of the numbers ξa). Before proceeding to the proof, note that Ω =
(g−1 ⊗ Id) ◦ ∆(Λ), where Λ is defined in Equation 45. From this,
using that g is group-like and the properties of Λ, simple (but tedious)
algebraic calculations show all the desired properties. In particular, one
can obtain that T = (S ⊗ g) ◦∆. Instead of this algebraic calculation,
below we provide a proof based on the graphical notation.

5As Ω is non-degenerate, T is uniquely defined, see Chapter 6.
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Proof of Theorem 5.14. By definition, Ω ∈ A is cocommuta-
tive and as for all a ∈ Irr(A∗), da 6= 0, it is also non-degenerate. Let us
now show that Ω is a projection. As in the proof of Theorem 5.9, note
that Ω can be written as N−1Ω̂ = Ω̂N−1, where Ω̂ is given by

(52) Ω̂ =
∑

a∈Irr(A∗)

da
ξa
τa,

and N is given by Equation 47. Then Ω is a projector if and only if Ω̂
satisfies Ω̂2 = NΩ̂. Let us calculate Ω̂2:

Ω̂2 =
∑
a,b

dadb
ξaξb

τaτb =
∑
a,b,c

dadb
ξaξb

N c
abτc =

∑
a,c

da
ξa

(∑
b

N c
ab

db
ξb

)
τc,

and thus using Equation 51, we obtain that

Ω̂2 =
∑
a,c

δ`a`c
dadā
ξaξā

dc
ξc
τc =

∑
c

( ∑
a:`a=`c

d2
a

)
dc
ξc
τc = NΩ̂,

where in the second equation we have used that ξā = ξ−1
a and that

da = dā. We have thus obtained that Ω = N−1Ω̂ is a projector.
Let us now check that (1⊗x)∆(Ω) = (T (x)⊗1)∆(Ω) holds. Similar

to the proof in Theorem 5.9, we start with Equation 50:

∑
µ

(da/ξa)(db/ξb)

dc/ξc

c c
b

a

b

a

µ µ

=
∑
µ

wb

Zb̄Z−1
b

µ µ

b̄b

c
a a

b̄ b

c
.

This implies that for all x ∈ A,

∑
a,b,c,µ

da
ξa

bb(x)

µ µ

cc
=

∑
a,b,c,µ

dc
ξc
ξb
wb
db

Zb̄ Z−1
bbb(x)

µ µ

aa
c c

b̄b̄
.

We can now use Equation 9 to obtain

∑
a,b

da
ξa

bb(x)

=
∑
a,b

da
ξa
ξb
wb
db

Zb̄ Z−1
b

bb(x) ,

or (1⊗ x)∆(Ω) = (T (x)⊗ 1)∆(Ω), where T is defined by the formula

(53) Φ(T (x)) =
∑
a

ξa
wa
da ba(x)Z−1

a Zā

āaaā
.

This means, in particular, that

bā(T (x))

āā = ξa
wa
da ba(x) ZāZ−1

a

aāāa
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and

ξa
wa
da Z−1

aZā

aāāa =
∑
x

(Φ ◦ T )(x)⊗Ψa(δx) .

Let us now consider the MPO representation of ∆ ◦ T (x) and, using
Equation 40, observe that∑

a

ξa
wa
da ba(x)Z−1

a Zā

āaaā ā

=
∑
a

(
ξa
wa
da

)2

ba(x) Zā Z−1
a k−1Zā Z−1

a

a ā ā a a ā āa
,

or, as Φ is w.l.o.g. injective (notice that on the r.h.s. the arrows on the
virtual index are reversed),

T ◦∆(x) = (T ⊗ k−1 ⊗ T ) ◦∆2
op(x).

�

Note that the graphical representation of the action of T , Equa-
tion 53, is very similar to that of S:

Φ(T (x)) =
∑
a

ξa
ba(x)Z−1

a Zā

āaaā

and

Φ(S(x)) =
∑
a

ba(x)Z−1
a Za

āaaā
.

The difference between T (x) and S(x) is that in T (x) the matrix ξaZā
appears instead of Za. As

ξa
Zā

aa = ξa
Za g

aāa =
Za k

aāa

we directly obtain that T (x) = (k−1 ⊗ Id) ◦∆(S(x)), or, by using that
S is an anti-homomorphism and that k−1 ◦ S = k, that

(54) T (x) = (S ⊗ k) ◦∆(x).

for all x ∈ A. The inverse of this relation, as it can be seen from
Equation 53, is S(x) = (k−1⊗Id)◦∆◦T (x), or S(x) = (T⊗k−1)◦∆(x).

4. Spherical weak Hopf algebras

In this section we define spherical weak Hopf algebras as pivotal
weak Hopf algebras satisfying an additional property. Then, semisim-
ple spherical weak Hopf algebras are such that their representation cat-
egory is a spherical multi-fusion category. We specialize Theorem 5.14
to the case where A is not only pivotal, but also spherical.
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Definition 5.15. A pivotal WHA A is called spherical if the following
two conditions hold. First, that for any sector δ from the vacuum,
ε(1δ) 6= 0, where 1δ is the projector onto the sector δ. Second, it has a
pivotal element G such that for all α ∈ Irr(A),

tα(G)

ε(1λα)
=
tα(G−1)

ε(1ρα)
,

where tα is the irreducible representation character of the sector α,
λα is the unique irreducible representation from the vacuum such that
tλαtα 6= 0, and ρα is the unique irreducible representation from the
vacuum such that tαtρα 6= 0. Such a pivotal element is called a spherical
element of A.

Let us now consider a WHA over C such that A∗ is semisimple and
spherical. Let k be a spherical element of A∗ with

Ψa(k) = ξa
ga

aa and Ψa(k
−1) =

1

ξa g−1
a

aa .

The traces of Ψa(k) and Ψa(k
−1) can be then evaluated using Equa-

tions 42 and 43:

τa(k
−1) = Tr(Ψa(k

−1)) =
1

ξa
Tr(Ψa(g

−1)) =
da
ξa
εra(1),

τa(k) = Tr(Ψa(k)) = ξa Tr(Ψa(g)) = ξadaεrā(1).

Sphericity of k implies that ξ2
a = 1 for all a ∈ Irr(A∗), i.e. that ξa = ±1.

Together with the fact that ξā = 1/ξa, this implies that ξa = ξā.
Let us define now Ω as in Theorem 5.14, assuming that the pivotal

element k ∈ A∗ is spherical. Then Ω, using that ξa = ξā, satisfies
additionally that

(T ⊗ k−1) ◦∆(Ω) = S(Ω) = Ω.

We have thus seen that

Theorem 5.16. Let A be a finite dimensional weak Hopf algebra
over C such that A∗ is semisimple and spherical with spherical element
k ∈ A∗ such that Ψa(k) = ξaΨa(g). Then the element Ω ∈ A defined
by

Φ⊗n ◦∆n−1(Ω) =
∑

a∈Irr(A∗)

1∑
x: `x=`a

d2
x

da
ξa

. . .a a a

is non-degenerate and cocommutative, it is a projector, and there exists
a linear map T ∈ B(A) such that

(1⊗ x)∆(Ω) = (T (x)⊗ 1)∆(Ω),

∆ ◦ T = (T ⊗ k−1 ⊗ T ) ◦∆2
op.

Moreover, Ω satisfies

(T ⊗ k−1) ◦∆(Ω) = S(Ω) = Ω.
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5. C*-weak Hopf algebras

In this section we define C*-weak Hopf algebras. We show how
the ∗-operation acts on the representing MPOs. We then show that a
C*-weak Hopf algebra is spherical, and thus Theorem 5.16 applies.

Definition 5.17. A finite dimensional pre-bialgebra A over C is a ∗-
pre-bialgebra if there is an anti-linear map ∗ : A→ A such that it is an
involution (i.e. x∗∗ = x), anti-homomorphism (i.e. (xy)∗ = y∗x∗) and
cohomomorphism (i.e. ∆ ◦ ∗ = (∗ ⊗ ∗) ◦ ∆). It is a C*-pre-bialgebra
if it is a ∗-pre-bialgebra and A has a faithful ∗-representation. A pre-
bialgebra A is a ∗-weak Hopf algebra (∗-WHA) if it is both a ∗-pre-
bialgebra and a WHA, and it is a C*-weak Hopf algebra (C*-WHA) if
it is both a C*-pre-bialgebra and a WHA.

An equivalent characterization of a finite dimensional C*-WHA is
that it is a semisimple ∗-WHA such that it has a complete set of ir-
reducible representations Φα (α ∈ Irr(A)) that are ∗-representations,
i.e. Φα(x∗) = Φα(x)†. The dual of a C*-WHA is also a C*-WHA with
∗-operation defined by [14]

(55) f ∗(x) := f ◦ ∗ ◦ S(x),

where λ denotes the complex conjugate of λ for all λ ∈ C. Moreover,
one can also check that [14]

(56) ∗ ◦S ◦ ∗ = S−1.

As it is a C*-WHA, A∗ also possesses a complete set of ∗-represen-
tations. In this section, Ψa, a ∈ Irr(A∗), will always denote such a
complete set of irreducible representations.

Definitions 5.18. Let A be a C*-WHA. Then,

AL := {x ∈ A : x(1) ⊗ x(2) = x1(1) ⊗ 1(2) = 1(1)x⊗ 1(2)},
AR := {y∈A : y(1) ⊗ y(2) = 1(1) ⊗ y1(2) = 1(1) ⊗ 1(2)y},

are two commuting ∗-subalgebras of A, known as the target and source
counital subalgebras of A, respectively. Moreover, Amin := ALAR ⊆ A

is the minimal C*-weak Hopf algebra contained in A containing the
unit element. A is said to be minimal if A = Amin and regular if the
squared antipode restricted to Amin is the identity, i.e. S2|Amin

= Id.

Let us now observe that the ∗-operation of A brings the character
of Ψa into the character of Ψā:

Proposition 5.19. Let A be a C*-WHA, and τa ∈ A (a ∈ Irr(A∗)) be
the irreducible representation characters of A∗. Then τ ∗a = τā for all a.

Proof. Let us evaluate τ ∗a on a linear functional f :

τ ∗a (f) = f(τ ∗a ) = f ∗(S−1(τa)) = f ∗(τā) = τā(f ∗),

76



where in the second equation we have used Equation 55 with x =
S−1(τa). Finally note that, as Ψa is a ∗-representation,

τā(f
∗) = Tr(Ψā(f

∗)) = Tr(Ψā(f)†) = Tr(Ψā(f)) = τā(f),

and thus for all f ∈ A∗, τ ∗a (f) = τā(f). �

As the MPO representation of τa is the TI MPO defined by the
injective block a of the MPO tensor representing the C*-WHA, this
proposition states that the injective MPO blocks are permuted under
the ∗-operation:(

. . .a a a

)†
= . . .ā ā ā

.

On the l.h.s. of this equation the dagger can be taken component-wise.
More precisely, let us define a gray MPO tensor as

aa =
∑
x

Φ(x∗)⊗Ψa(δ
∗
x) =

∑
x

Φ(x)† ⊗Ψa(δx)
†.

Notice that this MPO tensor is oriented in the opposite direction of
the original (black) MPO tensor. By construction, the MPO defined
by this MPO tensor is the Hermitian conjugate of the MPO describing
τa:

. . .a a a
=

(
. . .a a a

)†

= . . .ā ā ā
.

In fact, this equation holds with arbitrary boundary condition as well,
i.e. the MPO representation of x∗ can be written as∑
a

ba(x)†
. . .a a a a

=
∑
a

ba(x∗)
. . .a a a a

.

Let us finally note that the gray and the black tensors can be related
to each other using Equation 55. First note that there are two ways of
expressing y∗:∑

x

xδx(y
∗) = y∗ =

∑
x

x∗δx(y) =
∑
x

x∗δ∗x ◦ S−1(y∗),

where in the last equation we have used the fact that the conjugation
can be expressed with the ∗-operation of A and A∗ as follows:

f(x) = f ◦ ∗ ◦ S ◦ S−1 ◦ ∗(x) = f ∗ ◦ S−1(x∗).

As this equation holds for all y, we have obtained that∑
x

x∗ ⊗ δ∗x =
∑
x

x⊗ S(δx),
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or graphically,

aa =
Z−1
aZa

aāāa .

showing that the definition of the gray tensor considered here is the-
same as the one defined above in Equation 35. Note finally that then
b(x) and b(x∗) is also related:

bā(x∗)

āā =
ba(x)† ZaZ−1

a

āaaā .

Let us now prove the well-known result that a C*-WHA is pivotal,
and in fact, spherical [14, 41]:

Proposition 5.20. Let A be a C*-WHA. Then A∗ is also a C*-WHA,
it is spherical and the linear functional g ∈ A∗ defined in Equation 40
is a spherical element of it that is also positive.

Proof. As mentioned above, we can fix the irreducible represen-
tation representatives Ψa of A∗ to be ∗-representations. This implies,
as the ∗-operation of A∗ is a cohomomorphism, ∆ = (∗ ⊗ ∗) ◦ ∆ ◦ ∗,
that ∑

µ

(
a

b

a

b
c c

µµ )†
=
∑
µ

a

b

a

b
c c

µµ

.

This equation implies that for all a, b, c ∈ Irr(A∗) there exists a matrix
Acab such that the dagger of the fusion tensor, denoted by gray tensors,
can be expressed as

a

b
c

µ

=

(
a

b
c

µ )†
=
∑
ν

(Acab)µν

a

b
c

ν

a

b
c

µ

=

(
a

b
c

µ )†
=
∑
ν

[
(Acab)

−1]
νµ

a

b
c

ν

.

These matrices Acab are in fact positive, as using the orthogonality re-
lations, they are in the form

(Acab)µν =
1

Dc

a

b
c c

µ ν

=
∑
κ

(ocab)κµ(ocab)κν

=
∑
κ

((ocab)
†)µκ(o

c
ab)κν = ((ocab)

†ocab)µν .

Therefore changing the fusion tensors to

V̂ cµ
ab =

∑
κ

((ocab)
−1)µνV

cν
ab and (Ŵ c

ab)µν =
∑
κ

(ocab)µκ(V
c
ab)κν ,
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we obtain (V̂ cµ
ab )† = Ŵ cµ

ab . That is, w.l.o.g. we can assume that the
fusion tensors are the hermitian conjugates of each other,

(57)

(
a

b
c

µ )†
=

a

b
c

µ

and

(
a

b
c

µ )†
=

a

b
c

µ

.

Let us now investigate what restrictions the C*-structure of A∗

imposes on the representation of the unit of the algebra. The unit
1 ∈ A is invariant under both the ∗-operation and the action of the
antipode, therefore

1(f) = 1∗(f) = 1(S(f ∗)) = 1(f ∗).

Let us write |we〉 = e and 〈ve| = e , then this equation reads∑
e∈Vac(A∗)

〈ve|Ψe(f)|we〉 =
∑

e∈Vac(A∗)

〈ve|Ψe(f ∗)|we〉

=
∑

e∈Vac(A∗)

〈we|Ψe(f
∗)†|ve〉

=
∑

e∈Vac(A∗)

〈we|Ψe(f)|ve〉,

where in the last equation we have used that Ψe is a ∗-representation.
As this equation holds for all f , we have obtained that

(58)
(
e
)†

= e .

Using that the fusion tensors and the vectors representing the unit
are self-adjoint, we can now prove that the matrices Za can be chosen
such that (Z−1

ā )† = Za. To see that, let us first take the dagger of
Equation 39 using Equations 57 and 58:

(
Z−1
ā

)† ā

a Z†a

ā

a = w̄a a

ā
ra

ā

a
ra =

w̄a
wa

Za

ā

a Z−1
ā

ā

a .

This implies that there is λa ∈ C such that (Z−1
ā )† = λaZa and Z†a =

w̄a/(waλa)Z
−1
ā . Changing a to ā in the first equation, we obtain that

(Z−1
a )† = λāZā, or, after rearranging, (Z−1

ā )† = λāZa, and thus λa = λā.
This implies that if a is such that ā 6= a, then λa = µaµā can be solved,
e.g. by µa = λa and µā = 1. With this choice, λā = µāµa also holds. If
ā = a, one has to be more careful. In this case, λa = λā implies that
λa is real. To solve λa = µaµā = |µa|2, we have to show that λa is not
only real, but also positive. To show that, note that (Z−1

a )† = λaZa,
or Ida = λaZaZ

†
a. As both Ida, and ZaZ

†
a are positive, this implies

that λa is positive, and thus λa = µaµā can be solved as well. Let
Ẑa = µaZa, then (Ẑ−1

ā )† = Ẑa. This means that we can assume w.l.o.g.
that (Z−1

ā )† = Za.
Let us show now that the linear functional g ∈ A∗ defined in Equa-

tion 40 is a pivotal element that is positive and spherical. First, the
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equation
(
Z−1
ā

)†
= Za implies that both wa and Ψa(g) are positive, and

thus g is positive as well. Let us show now that the matrix Bc
ab defined

in Lemma 5.11 is positive as well. This matrix can be obtained by

(Bc
ab)µν gc = cc

a
g
a

b

g

b

µν

,

i.e. it is a positive matrix. As Bc
ab is positive and it squares to the

identity, it is the identity, and thus g is a (positive) pivotal element.
Note that it is spherical as well, because

Tr(Ψa(g)) = daεra(1) = daεrā(1) = Tr(Ψa(g
−1)).

We have thus derived the well-known result that in a C*-WHA there
is a positive spherical element. �

Let us now use this positive pivotal element in the construction in
Theorem 5.16. With this choice, the resulting element Ω has MPO
representation

Φ⊗n ◦∆n−1(Ω) =
∑

a∈Irr(A∗)

1∑
x: `x=`a

d2
x

da
ξa
da

. . .a a a
,

where all da are positive and da = dā. As da are positive, Ω is a positive
linear functional on A∗: for any positive f the representing matrix
Ψa(f) is positive, and thus Ω(f) =

∑
a da Tr(Ψa(f)) ≥ 0. Similarly,

da = dā implies that Ω∗ = Ω, and therefore, as Ω is also a projector, it
is a positive element of A.

We have thus seen that the following theorem holds.

Theorem 5.21. Let A be a finite dimensional C*-weak Hopf algebra
over C. Then A∗ is semisimple and spherical with positive spherical
element g ∈ A∗ defined in Equation 40. Then the element Ω ∈ A

defined by

Φ⊗n ◦∆n−1(Ω) =
∑

a∈Irr(A∗)

da∑
x: `x=`a

d2
x

. . .a a a

is a positive non-degenerate trace-like linear functional on A∗, it is an
orthogonal projector, and there exists a linear map T ∈ B(A) such that

(1⊗ x)∆(Ω) = (T (x)⊗ 1)∆(Ω),

∆ ◦ T = (T ⊗ g ⊗ T ) ◦∆2
op.

Moreover, Ω satisfies

(T ⊗ g−1) ◦∆(Ω) = S(Ω) = Ω.

If A is coconnected (see Definition 5.3), the element Ω ∈ A is
called the canonical regular element of A [41]. See Appendix C for
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more details. Let us note that the (positive) numbers da satisfy (see
Lemma 5.11) ∑

b

N c
abdb = δ`a`cdadc.

In particular, if A is coconnected, then δ`a`c is never zero and thus db
defines a positive eigenvector for the matrixNa defined by (Na)

c
b := N c

ab.
As Na is a non-negative matrix, this implies that the corresponding
eigenvalue, da, is the spectral radius of Na. This number is also called
the Frobenius-Perron dimension of a ∈ Irr(A∗). In this case,

D2 :=
∑
a

d2
a

is known as the total Frobenius-Perron dimension of A. If A is bicon-
nected (see Definition 5.3), then the total Frobenius-Perron dimensions
of A and A∗ coincide [41].

Note finally that if A is a C*-weak Hopf algebra, then A∗ is also a
C*-weak Hopf algebra. This allows us to define an element ω ∈ A∗ that
is a positive non-degenerate trace-like linear functional on A. Using this
ω then one can define a scalar product on A by

〈x | y 〉 = ω(x∗y).

6. C*-Hopf algebras

In this section we further particularize the results obtained in the
previous sections to C*-Hopf algebras. As a C*-Hopf algebra is a spe-
cial C*-WHA, Theorem 5.21 applies. We will show that the element
Ω obtained from this theorem is in fact the Haar integral of the Hopf
algebra.

Before stating the definition of a C*-Hopf algebra, note that for a
WHA A the following statements are all equivalent [14]:

(1) ∆A(1) = 1⊗ 1,
(2) ∆A∗(ε) = ε⊗ ε,
(3) S(x(1))x(2) = ε(x)1,
(4) x(1)S(x(2)) = ε(x)1.

Keeping this equivalence in mind, one can define Hopf algebras and
C*-Hopf algebras as follows:

Definition 5.22. A Hopf algebra (HA) is a weak Hopf algebra such
that ∆(1) = 1 ⊗ 1. A C*-Hopf algebra (C*-HA) is a C*-weak Hopf
algebra such that ∆(1) = 1⊗ 1.

Any C*-Hopf algebra A is semisimple, and thus, due to the Larson-
Radford theorem, S2 = Id [77, 78]. This implies that the (unique)
positive pivotal element of A∗ is ε, and thus the numbers Tr(Ψa(g)) =
da appearing in Theorem 5.23 are in fact da = Tr(Ψa(ε)) = Da, the
dimension of the sector a. Moreover, Ω in Theorem 5.21 and Λ in
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Theorem 5.9 coincide. In particular, as in a C*-Hopf algebra the unique
normalized integral is the Haar integral (Larson-Sweedler theorem), Ω
is the Haar integral of A. We have thus seen that

Theorem 5.23. Let A be a finite dimensional C*-Hopf algebra over
C. Then A∗ is semisimple and spherical and its positive spherical ele-
ment is ε ∈ A∗. The element Ω ∈ A defined by

Φ⊗n ◦∆n−1(Ω) =
∑

a∈Irr(A∗)

Da∑
x∈Irr(A∗)D

2
x

. . .a a a
,

where Da is the dimension of the sector a, is the Haar integral of A.

In particular, as g = ε, the map T = S and the equations

(1⊗ x)∆(Ω) = (T (x)⊗ 1)∆(Ω),

∆ ◦ T = (T ⊗ g ⊗ T ) ◦∆2
op.

simplify to the definition of the integral and to the fact that S is an
anti-cohomomorphism:

(1⊗ x)∆(Ω) = (S(x)⊗ 1)∆(Ω),

∆ ◦ S = (S ⊗ S) ◦∆op.

Let us finish the chapter with some well known illustrative examples
of C*-Hopf algebras and C*-weak Hopf algebras.

Example 5.24. The group C*-algebra CG of a finite group G is
endowed with the structure of a C*-HA by the linear extensions of
the maps given by the expressions ∆(g) := g ⊗ g, ε(g) := 1 and
S(g) := g∗ := g−1 for all elements g ∈ G.

Example 5.25. The dual vector space (CG)∗ is again a C*-algebra
endowed with the multiplication φψ(g) := φ(g)ψ(g), the unit element

g 7→ 1 and the ∗-operation given by φ∗(g) := φ(g), for all φ, ψ ∈ (CG)∗

and all elements g ∈ G. Moreover, it becomes a C*-HA too by virtue of
the comultiplication ∆(φ)(g⊗h) := φ(gh), the counit ε(φ) := φ(1), and
the antipode (S(φ))(g) := φ(g−1) for all φ ∈ (CG)∗ and all elements
g, h ∈ G.

The following example, due to G. I. Kac and V. G. Paljutkin, de-
scribes the smallest C*-HA which is neither cocommutative, i.e. a
group algebra, nor commutative, i.e. the dual of a group algebra.

Example 5.26 (see [66]). Let H8 be the C*-algebra generated by
three elements x, y and z subject to the relations x2 = 1, y2 = 1,
z2 = 2−1(1 + x + y − xy), xy = yx, zx = yz, zy = xz, x∗ = x,
y∗ = y and z∗ = z−1. It becomes a C*-HA by means of ∆(x) := x⊗ x,
∆(y) := y ⊗ y, ∆(z) := 2−1(z ⊗ z + yz ⊗ z + z ⊗ xz − yz ⊗ xz),
ε(x) = ε(y) = ε(z) = 1, S(x) := x, S(y) := y and S(z) := z.
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The following example is the smallest proper C*-WHA. It is known
as the Lee-Yang C*-WHA as it is reconstructed from the solutions of
the pentagon equation arising from the Lee-Yang fusion rules.

Example 5.27 (cf. [13]). Let ALY be the direct sum M2 ⊕ M3 of
full-matrix 2 × 2 and 3 × 3 C*-algebras with complex coefficients, re-
spectively. Let ζ ∈ R be the unique positive solution to z4 + z2− 1 = 0
and fix matrix units eij1 , i, j = 1, 2, in M2 and ek`2 , k, ` = 1, 2, 3, in M3.
Then, the comultiplication of ALY is defined by the expressions

∆(e11
1 ) := e11

1 ⊗ e11
1 + e11

2 ⊗ e22
2 ,

∆(e12
1 ) := e12

1 ⊗ e12
1 + ζ2e12

2 ⊗ e21
2 + ζe13

2 ⊗ e23
2 ,

∆(e22
1 ) := e22

1 ⊗ e22
1 + ζ4e22

2 ⊗ e11
2 +

ζ3e23
2 ⊗ e13

2 + ζ3e32
2 ⊗ e31

2 + ζ2e33
2 ⊗ e33

2 ,

∆(e11
2 ) := e11

1 ⊗ e11
2 + e11

2 ⊗ e22
1 + e11

2 ⊗ e33
2 ,

∆(e12
2 ) := e12

1 ⊗ e12
2 + e12

2 ⊗ e21
1 + e13

2 ⊗ e32
2 ,

∆(e13
2 ) := e12

1 ⊗ e13
2 + e11

2 ⊗ e22
1 + ζe12

2 ⊗ e31
2 − ζ2e13

2 ⊗ e33
2 ,

∆(e22
2 ) := e22

0 ⊗ e22
2 + e22

2 ⊗ e11
0 + e33

2 ⊗ e22
2 ,

∆(e23
2 ) := e22

1 ⊗ e23
2 + e23

2 ⊗ e21
1 + ζe32

2 ⊗ e21
2 − ζ2e33

2 ⊗ e23
2 ,

∆(e33
2 ) := e22

1 ⊗ e33
2 + e33

2 ⊗ e22
1 + ζ2e22

2 ⊗ e11
2 −

ζ3e23
2 ⊗ e13

2 − ζ3e32
2 ⊗ e31

2 + ζ4e33
2 ⊗ e33

2

and the counit ε ∈ (ALY)∗ and the antipode S ∈ B(ALY) are given by

ε(eij1 ) = 1, ε(ek`2 ) = 0, S(eij1 ) = eji1 and S(ek`2 ) = ζ`−ke
σ(`)σ(k)
2

for all i, j ∈ {1, 2} and k, ` ∈ {1, 2, 3}, where σ(1) := 2, σ(2) :=
1, σ(3) := 3, endowing ALY with the structure of a C*-WHA. This
specification has been slightly adapted from [13] as we will propose a
tensor network description in Example 8.5 consistent with its string-net
model definition.
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CHAPTER 6

Pulling-through algebras

In the previous chapter we have seen (Theorem 5.14, and its vari-
ants Theorem 5.16 and Theorem 5.21) that in a semisimple pivotal
WHA over C there is a special non-degenerate cocentral element Ω
that behaves almost like an integral. In this chapter we abstract this
notion and investigate the structure such an element provides, inde-
pendent from semisimplicity or weak Hopf algebras. The main reason
behind this abstraction is that this is exactly the structure we need to
use in order to define a PEPS with symmetries, see Chapter 7.

Definition 6.1. A finite dimensional pre-bialgebra over C is called a
pulling-through algebra if there is a cocentral, non-degenerate element
Ω ∈ A, a linear map T ∈ B(A) and a group-like linear functional
g ∈ A∗ such that for all x ∈ A,

(1⊗ x)∆(Ω) = (T (x)⊗ 1)∆(Ω),(59)

∆ ◦ T = (T ⊗ g ⊗ T ) ◦∆2
op.(60)

Equation 59 will be called pulling-through equation. The rationale
behind the name will become clear when we give a tensor network
description in Equation 62 below. In a pulling-through algebra, Ω
uniquely determines T : If there was another map T̂ ∈ B(A) also sat-
isfying Equation 59, then

(T (x)⊗ 1)∆(Ω) = (1⊗ x)∆(Ω) = (T̂ (x)⊗ 1)∆(Ω),

and thus by non-degeneracy of Ω, T̂ (x) = T (x). Using that ∆(Ω) =
∆op(Ω), one can show that T is an involution:

(1⊗ x)∆(Ω) = (T (x)⊗ 1)∆(Ω)

= (T (x)⊗ 1)∆op(Ω)

= (1⊗ T 2(x))∆op(Ω)

= (1⊗ T 2(x))∆(Ω),

where the third equation is the pulling-through equation for y = T (x).
As above, due to non-degeneracy of Ω, x = T 2(x), i.e. T is an invo-
lution. In particular, T is invertible, and thus there can be at most
one linear functional g ∈ A∗ satisfying Equation 60. Let us show now
that T is an anti-homomorphism by using the pulling-through equation
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Equation 59 twice:

(T (xy)⊗ 1)∆(Ω) = (1⊗ xy)∆(Ω)

= (T (y)⊗ x)∆(Ω)

= (T (y)T (x)⊗ 1)∆(Ω),

and thus non-degeneracy of Ω implies that T (xy) = T (y)T (x).
Let us note that in a pre-bialgebra A there might be several different

elements Ω that make it a pulling-through algebra. For example, it is
easy to check that given an element Ω ∈ A defining a pulling-through
structure on A and any central group-like element c ∈ A∗ (if there is

any), the element Ω̂ := (Id⊗ c) ◦∆(Ω) defines another pulling-though
structure. This is the case if in the construction of Theorem 5.14 we
use two different pivotal elements g and ĝ to arrive at the cocentral
elements Ω and Ω̂, respectively.

Let A be a pulling-through algebra. As A is a pre-bialgebra, it
has MPO representations: given any representation Φ of A and an
injective representation Ψ of A∗ on a vector space W , let us define an
MPO tensor by

:=
∑
x∈B

Φ(x)⊗Ψ(δx),

where B is a basis of A, and δx denotes the dual basis, i.e. δx(y) = δxy.
Given this MPO tensor, for all x ∈ A there is a matrix b(x) ∈ B(W )
such that

Φ⊗n ◦∆n−1(x) =
b(x)

. . . .

Notice that in this chapter we do not assume semisimplicity of A∗. The
MPOs, nevertheless, are still multiplicative,

b(y)

b(x)

. . .

. . .

=
b(xy)

. . . .

Let us introduce a new MPO tensor, denoted by white dot, as

:=
∑
x∈B

(Φ ◦ T )(x)⊗Ψ(δx).

Note that as T ∈ B(A) is an algebra anti-homomorphism, this tensor is
flipped upside down w.r.t. the tensor denoted by full dot, i.e. the input
index of Φ is on the top of the tensor, not on the bottom. T (x) ∈ A

can be expressed both with the original tensor and this new tensor:

Φ(T (x)) =
b(T (x))

=
b(x)

.
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Note that the orientation of the red lines in the second MPO is the
opposite of the orientation of the red lines in the first MPO. This is
because to be able to compare the tensor networks on the two sides of
the equation, the white tensor had to be rotated.

With the help of this new tensor, the identity

(xy)(1) ⊗ T ((xy)(2)) = x(1)y(1) ⊗ T (y(2))T (x(2))

has a particularly nice MPO representation:

b(xy)
=

b(y)

b(x)

.

Let small green dot denote the (representation of the) group-like el-
ement g; then the tensor network representation of the identity ∆ ◦
T (x) = (T ⊗ g ⊗ T ) ◦∆2

op(x) is

∆

(
b(x)

)
=

b(T (x))

=
b(x)

;

notice here that the third MPO is oriented in the opposite direction as
the second one. This is due to the fact that it is the MPO corresponding
to ∆op, and not to ∆. This equation describes the coproduct of the
white tensor:

(61) ∆ : 7→ .

We will denote the boundary corresponding to the pulling-through
element Ω by a small blue dot without label:

Φ⊗n ◦∆n−1(Ω) =
b(Ω)

. . .

= . . . .

As Ω is co-central, the corresponding MPO is translation invariant,
that is,

. . . = . . . .

Let us now explain how these MPO representations will be used
when depicting two-dimensional tensor networks in the next chapter.
Keeping in mind that the orientation of each MPO tensor has to be
kept, we can draw MPOs in arbitrary form such as on a circle. For
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example, the fact that Ω is cocentral can be represented by the equation

Φ⊗4 ◦∆3(Ω) = = .

The pulling through equation (1⊗ x)∆(Ω) = (T (x)⊗ 1)∆(Ω) is repre-
sented by the following tensor network notation:

b(x) = b(x) .

As this equation holds for all x ∈ A∗, it also holds with open indices:

(62) = .

Applying T ∈ B(A) on the left tensor component of this equation,

= .

This equation is in fact why (1 ⊗ x)∆(Ω) = (T (x) ⊗ 1)∆(Ω) is called
pulling-through equation: it states that the MPO described by the
black MPO tensors can be pulled through the circular MPO describing
(T ⊗ Id) ◦ ∆(Ω). Let us remark that this type of equation is the key
ingredient behind the notion of topological order in 2D is the break-
through insight of [108], built on the previous work [105].

To familiarize ourselves with the notation, we derive some equations
that we will use in the following chapter. Taking different coproducts
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of Equation 62, and using Equation 61, we arrive at, for example,

= or

= or

= .

Applying T ∈ B(A) on some of the tensor components reverses the
orientation of the lines corresponding to the physical indices of those
tensor components, and changes the black tensors into white ones and
vice versa, that is, for example, the following holds:

= and

= and

= .

These identities are obtained from the previous ones by applying T ∈
B(A) on the two tensor components on the bottom and on the right.

As g ∈ A∗ is group-like, applying g on the product of MPO tensors
is the same as applying it on the individual tensors. For example,
applying the linear functional g on the upper left tensor component of
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the equation

=

results in the equation

= .

Non-degeneracy of Ω means that the action of the linear functional
λ ∈ A∗ defined by (λ⊗ Id) ◦∆(Ω) = 1 removes closed loops:

b(λ)

= .

Finally note that the above equations also hold for non-translation
invariant MPO representations of the pulling-through algebra.

Let us finish this chapter by rewritting Theorem 5.14 at the light
of Definition 6.1:

Theorem 6.2. Every co-pivotal and cosemisimple weak Hopf alge-
bra is a pulling-through algebra.
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CHAPTER 7

MPO-injective PEPS

In this chapter we define projected entangled pair states that pos-
sess certain symmetries described by a pulling-through algebra A. Such
a PEPS will also be called A-injective PEPS or MPO-injective PEPS.
As the primary examples for pulling-through algebras are pivotal cose-
misimple weak Hopf algebras, and the representations of such algebras
form a pivotal fusion category, our definition can be translated into
a category theoretical language. In fact, when the pulling-through
algebra corresponds to a C*-WHA, we believe that our definition is
equivalent to the formalism presented in [85]. We expect that the
pulling-through structure is actually more general than cosemisim-
ple weak Hopf algebras; for example, certain non-semisimple pivotal
Hopf algebras will also admit a pulling-through structure. States cor-
responding to those models have unusual properties. We show that
MPO-injectivity is a topological property in the sense that it is invari-
ant under the blocking of tensors (and thus under renormalization);
in fact, our definition has been designed to satisfy this property. We
also show, in the special case where A is a C*-Hopf algebra, the rela-
tion between this PEPS and the generalization of Kitaev’s toric code
to C*-Hopf algebras [19]. Following [20], we then construct a set of
states that we call local excitations and that are states that differ only
locally from the PEPS. We also construct a set of local operators that
form a representation of the Drinfeld double D(A∗) of the Hopf algebra
A∗ and show that these local operators transform the local excitations
among each other. We identify the anyons of the model as the sectors
of the local excitations under the action of these local operators.

Let us first recall the definition of two dimensional PEPS. A 2D
PEPS is defined on a directed pseudo-graph1 G = (V,E) that can be
drawn on an orientable 2-manifold such that no edges intersect (like
in the case of a planar graph). The figure below shows a local part of
such a graph (locally it is a planar graph). For convenience we have
numbered the vertices and we have displayed a circular arrow around

1by pseudo-graph we mean a graph where multiple edges are allowed between
vertices
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vertex 5 depicting the orientation of the 2-manifold:

1
23

4

5

.

The areas enclosed by minimal (unoriented) cycles in the graph are
called plaquettes. Such a plaquette is denoted by light gray shading
between the vertices 1, 2 and 3. Let Eop denote the set of edges in E

with reversed orientation, and for any e ∈ E or e ∈ Eop let ē denote the
edge e with the opposite orientation.

To every edge e ∈ E we assign a finite dimensional complex vector
space, Ve. Let us also assign a vector space Vē to every oppositely
oriented edge ē ∈ Eop such that Vē = V ∗e . Note that this relation is
symmetric, i.e. Ve = V ∗ē = V¯̄e. To every vertex we assign a (finite
dimensional) Hilbert space, Hv. Finally, to each vertex v we assign a
tensor Av ∈ Hv ⊗

⊗
e∈Nv Ve, where Nv denotes the set of edges e ∈

E ∪ Eop that connect v with another vertex such that the orientation
of e points away from v. Given all these data, the state defined by the
PEPS is obtained by contracting

⊗
v Av along the edges of the graph;

note that this contraction is possible, because if e is an edge between
v and w, then the tensor component corresponding to e in the tensor
Av is Ve, while in the tensor Aw it is Vē = V ∗e . The state defined by
the PEPS can be represented, using the graphical notation of tensor
calculus, as

|ψ〉 =

A1

A2

A3

A4

A5 .

Let us now define MPO-injective PEPS. These are PEPS such that
the PEPS tensors are invariant under certain symmetry operations
acting on their virtual degrees of freedom, i.e. on the tensor compo-
nents

⊗
e∈Nv Ve of the tensor Av. More precisely, a PEPS tensor Av ∈

Hv⊗
⊗

e∈Nv Ve is called Ov-injective for an operator Ov ∈ B(
⊗

e∈Nv Ve),
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if there are tensors Bv and Cv such that

Av

=
Bv

and

Av

Cv

= ,

where the red circle denotes the operator Ov. Note that if Ov is a
projector, then one can choose Bv = Av. If, on the other hand, Ov is
nilpotent, Bv and Av are different. This is the case when the symme-
tries of the tensor form a non-semisimple algebra. In the following we
will define the symmetry operators Ov for each vertex v ∈ V. To do so,
we need the following additional data. First, a pulling-through algebra
(A,Ω, T, g), and second, representations Φe : A→ B(Ve) on the vector
spaces Ve such that Φē = Φ̄e, where Φ̄(x) = (Φ ◦ T (x))T for all x ∈ A.
Note that as T is idempotent, this relation is symmetric: if Φē = Φ̄e,
then Φe = Φ̄ē as well. Finally, for every plaquette in the graph, we will
choose a vertex from the ones surrounding the plaquette. Below we
denote such a choice by putting a black dot close to the vertex chosen
inside each plaquette:

1
2

3

4

5

.

The symmetry operator Ov around each vertex v is an MPO represen-
tation of the element Ω of the pulling-through algebra A. The concrete
form of the MPO is designed such that it is a generalization of G-
injective PEPS [112] and such that the PEPS remains MPO-injective
even after blocking. Let us explain through an example what this
MPO representation exactly is. The symmetry operator Ov, around
the vertex 3, takes the following form:

= .

As stated above, this MPO is an MPO representation of Ω. The blue
dot represents the boundary b(Ω); remember that as Ω is cocommuta-
tive, the placement of the boundary is not relevant. The orientation
of the virtual index of the MPO follows the orientation of the surface,
as the arrow on it shows. The MPO consists of two different MPO
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tensors. For an outgoing edge e, we use the MPO tensor denoted by
black dots given by

=
∑
x

Φe(x)⊗Ψ(δx),

where x runs over a basis of A and Ψ is a representation of A∗ on the
virtual vector space denoted by red indices. For an incoming edge e,
we use the white MPO tensor given by

=
∑
x

Φe ◦ T (x)⊗Ψ(δx) =
∑
x

Φē(x)T ⊗Ψ(δx).

Note that this white tensor is constructed the same way as the black
tensor, but for the construction we use the wrong representation: Φē

instead of Φe (in the formula transpose appears because on the l.h.s. we
read the tensor as a linear map from the bottom to the top). Changing
the orientation of the edge e (i.e. replacing it with ē) changes the black
tensors to white and white tensors to black. Finally, as the vertex 3
was selected for the plaquette surrounded by vertices 1, 2 and 3, we
insert the linear functional g between the edges connecting the vertex
3 to the vertices 1 and 2.

Using the above definition of an MPO-injective PEPS tensor, an
MPO-injective PEPS – after applying the inverse tensors Cv at each
vertex v – can be written as the following tensor network:

.

In general pulling-through algebras (such as a pulling-through algebra
that originates from a pivotal WHA that is not a C*-WHA) different
placements of the group-like elements g lead to different states. In a
pulling-through algebra that originates from a C*-WHA, however, all
these states are related to each other by local operations, and in fact,
one can define MPO-injective PEPS in a more translation invariant
way. To understand why, recall [14] that in a C*-WHA the positive
spherical element g ∈ A∗ can be written as g = gLg

−1
R = g−1

R gL such
that gR = S(gL) and such that there are algebra elements GL, GR ∈ A
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satisfying the following relations:

gL
=

GL

and
gL

=
GR

,

gR
=

GL

and
gR

=
GR

.

The equation GL = S(GR) also holds and it is easy to check that
GL = T (GR) holds as well. Applying thus T on the previous relations,
we obtain that the white tensors satisfy

gL
=

GR

and
gL

=
GL

,

gR
=

GR

and
gR

=
GL

.

Let us write now g = gLg
−1
R in the definition of the MPO-injective

PEPS. Using the relations above, we obtain then that g−1
R translates

to a local operator acting on the vertex which g belongs to, while gL is
delocalized around the plaquette. Let us illustrate this fact by depicting
one of the plaquettes of the previous PEPS:

gLg
−1
R =

G−1
R

gL =

G−1
R GR

=

G−1
R

gL

Applying thus GR on the appropriate tensor components, we obtain
that the state defined by

,

where the yellow dot now denotes gL instead of g = gLg
−1
R , is also

MPO-injective and in this state the yellow dots move freely around the
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plaquette:

= .

As we have seen above, the yellow dot does not even have to appear on
the virtual index of the MPO, it can be instead inserted between two
PEPS tensors anywhere around the plaquette.

1. Scale independence

In this section we introduce an operation on states that we call
blocking and show that an MPO-injective PEPS stays MPO-injective
even after blocking. Blocking is the basis of renormalization (there it is
followed by an isometry that gets rid of certain degrees of freedom) and
has a natural representation in tensor networks. Blocking simply means
that we treat certain neighboring particles together: for example, given
a three-partite state |ψ〉 ∈ H1 ⊗H2 ⊗H3, the blocking of particles 2
and 3 means that we reinterpret |ψ〉 as a two-partite state in H1⊗H23,
where H23 = H2 ⊗H3.

In PEPS, blocking is a partial contraction of the tensor network,
i.e. that in a given region we replace all tensors by one tensor that is
the result of the contraction of the tensors in that region. The blocked
tensor network is then another, coarser tensor network. For example,
in the tensor network below blocking of four tensors results in the
following new tensor network:

→ .

As the example above shows, sometimes two edges e and f that were
distinct edges in the original PEPS become a single double edge in the
blocked tensor network. We can block these two edges together, i.e.
consider Ve⊗Vf as a single vector space. Pictorially we express this as
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writing a single edge instead of the two distinct ones:

→ .

In fact, every blocking can be broken down into a series of simple steps:
in each step we either block two neighboring tensors that are connected
by a singe edge, possibly leading to double edges in the PEPS, or block
two edges together to remove a double edge from the PEPS. Note that
in the first case the number of plaquettes does not change (if there are
double edges after blocking, the area enclosed between the two edges
is considered as a plaquette), while in the second case the number of
plaquettes decreases by one.

In the following we will show that an MPO-injective PEPS stays
MPO-injective even after blocking. Let us consider a pulling-through
algebra A and an A-injective PEPS. We first show that blocking two
neighboring tensors in the A-injective PEPS results in another A-
injective PEPS, and then, that removing double edges does not change
the A-injectivity property either.

Let us now consider the blocking of two neighboring A-injective
PEPS tensors that are connected to each other with a single edge.
After applying the inverse tensors on the two PEPS tensors and using
the pulling-through property, we obtain

= .

Due to non-degeneracy, applying a suitable linear functional to the
inner two indices, the inner MPO disappears leading to a single MPO
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on the boundary:

=

= .

We have thus constructed an inverse tensor (the inverse tensors of the
individual PEPS tensors contracted with the matrix describing the
linear functional used above) for the blocked tensor, and showed that it
is MPO-injective. Let us note that in the process neither the “outgoing
arrow is black tensor, incoming arrow is white tensor” nor the “one
green dot per plaquette” property have changed, and thus not only the
blocked tensor is MPO-injective but the whole PEPS remains MPO-
injective as well.

Let us now consider the blocking of two neighboring edges e and f .
Assume that the edges are oriented in the opposite direction and that
the “one green dot per plaquette” is on the left vertex:

.

Here we did not indicate the other MPO tensors on the two vertices.
In order to block these two edges together, let us first reorient the
lower edge, f . The reorientation of the arrow implies that we change
the corresponding vector space Vf to Vf̄ and the representation Φf to
Φf̄ . This also changes the black and white tensors and thus the tensor
network notation becomes:

.

Blocking the edges e and f now simply means replacing the two in-
dividual A-modules Ve and Vf by their tensor product Vf � Ve. After
blocking, we obtain a single edge with two MPO tensors at the two
ends:

.

Here the black MPO tensor is built using the representation Φfe =
Φf � Φe, while the white MPO tensor is built using the transpose of
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the representation Φ̄fe,

Φfe ◦ T = (Φf ⊗ Φe) ◦∆ ◦ T = (Φf ◦ T ⊗ g ⊗ Φe ◦ T ) ◦∆2
op.

This equation shows that the single (blocked) white tensor is the con-
catenation of the two white tensors with the green dot in the middle.
The fact that the equation contains ∆op instead of ∆ simply reflects the
fact that as the orientation of the two circles are the same, the arrow
on the virtual index (red line) on the left is oriented in the opposite
direction as on the right.

As the blocking leaves the rest of the PEPS invariant, blocking two
edges keeps the PEPS MPO-injective. We have thus shown that MPO-
injectivity is invariant both under the blocking of neighboring vertices
and under the blocking of neighboring edges. As blocking any number
of tensors in a simply connected region can be decomposed into a series
of such simple blocking steps, we have proven that MPO-injectivity is
invariant under blocking.

2. Relation to the Kitaev model

The tensor networks defined above are strongly linked to the gen-
eralized Kitaev models defined in [19]. In this section we show the
concrete connection. First, let us consider an MPO-injective PEPS
constructed from a C*-Hopf algebra A. Based on the construction of
this PEPS, we can define another multi-partite state |ψ〉 where the
individual degrees of freedom are described on the Hilbert space A.
Second, we construct a parent Hamiltonian for |ψ〉 – the Kitaev Hamil-
tonian – that is the sum of commuting projectors. Finally, we define
the Drinfeld double D(B) of any Hopf algebra B and construct a set of
local operators that form a representation of D(A∗); we also construct
a set of local deformations of |ψ〉 and show that this set of states S
is invariant under the action of D(A∗). We identify the anyons of the
model as the sectors of S under the action of D(A∗).

Let us first show how the state |ψ〉 is defined. For that, consider
the PEPS defined by a C*-Hopf algebra. The construction of these
states is easier to understand than in the general case, because there
are no group-like elements g present in it (as g = ε). The PEPS, after
applying the inverse tensors, read as

|φ〉 = .
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This vector |φ〉 lives in the vector space
⊗

v∈V
(⊗

e∈Nv Ve
)
, because

at every vertex v the degrees of freedom are
⊗

e∈Nv Ve. Note that in
this tensor product every edge appears exactly twice, once with the
orientation defined by the graph and once with opposite orientation.
Let us now rearrange this tensor product and group together the de-
grees of freedom corresponding to the two orientations of each edge.
After this regrouping, we can interpret the previous vector space as⊗

e∈E (Ve ⊗ Vē). Finally note that as Vē = V ∗e and for every finite di-
mensional vector space V , the tensor product V ⊗ V ∗ is isomorphic to
B(V ), this vector space can also be interpreted as

⊗
e∈EB(Ve), i.e. one

can think of |φ〉 as

|φ〉 ∈
⊗
e∈E

B(Ve).

Note that, by construction, |φ〉 is not supported on the whole Hilbert
space

⊗
e∈EB(Ve), but instead only on the subspace

⊗
e∈E Φe(A); here

Φe is the representation of A used on the edge e. This implies that we
can define another vector, |ψ〉, as

|ψ〉 =

(⊗
e∈E

Φ−1
e

)
|φ〉 ∈

⊗
e∈E

A.

If A is a C*-Hopf algebra, there is a scalar product on A, and thus the
vector space

⊗
e∈EA is a finite dimensional Hilbert space. Therefore

|ψ〉 can be interpreted as a (possibly unnormalized) state. The maps
Φ−1
e act locally, therefore this state is again a PEPS – the virtual legs

of the PEPS tensor are the red lines in the figure above. This PEPS is
then the same (up to a choice of orientation of the arrows on both the
red and black lines) as the one described in [19].

2.1. The Kitaev Hamiltonian. Building on the results of [19],
in this section we explicitly construct the Kitaev parent Hamiltonian
for the state |ψ〉 defined in the previous section. To make the reading
easier, we will use a graphical language to depict the action of the
defined Hamiltonian. This graphical language is nothing but the tensor
network representation of the state using the representation

⊗
e∈E Φe.

For simplicity, let us restrict ourselves to a square lattice, and fix the
orientation of the lattice such that all vertical edges point from bottom
to top and all horizontal ones from right to left (i.e. the product of
two elements on the vertical edge reads from top to bottom and on the
horizontal edges from left to right).

The Kitaev Hamiltonian consists of two type of terms, the plaquette
terms Bp and vertex terms Av. The total Hamiltonian is the sum of
these terms,

H = −
∑

p∈plaquettes

Bp −
∑

v∈vertices

Av.
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Each plaquette term Bp acts on the edges surrounding the plaquette
p, while each vertex term Av act on the edges connected to the vertex
v. We will define Bp and Av such that they are orthogonal projectors
and any two such terms commute. The MPO-injective PEPS |ψ〉 is a
frustration-free ground state of this Hamiltonian.

Let us now define the operator Av for a given vertex v. As stated
above, this operator acts on the edges surrounding the vertex v. On
these four particles, its action is given by:

Av : x⊗ y ⊗ z ⊗ v 7→ xΩ(1) ⊗ S(Ω(2))y ⊗ S(Ω(3))z ⊗ vΩ(4),

where Ω is the Haar integral of A, x is the particle above the vertex,
y is the one on its right, z is the one below and v is the one on the
left. The concrete form of Av depends on the orientation of the lattice.
Using the graphical representation, it is easier to visualize the action
of Av:

Av :
y

x
v

z

7→
b(Ω)

y

x

v

z

,

i.e. it multiplies the four particles by the (translation invariant) MPO
∆3(Ω), each from the side that is closer to the vertex. As Ω is a projec-
tor, it is clear that Av is a projector as well. As both representations
x 7→ (y 7→ yx) and x 7→ (y 7→ S(x)y) of Aop are ∗-representations, Av
is also self-adjoint. Note that for any two different vertices v1 and v2

the Hamiltonian terms Av1 and Av2 clearly commute: if v1 and v2 are
not neighboring vertices, they act on different particles; if v1 and v2 are
neighboring, there is a single particle on which both of them acts, but
if Av1 acts from the left, then Av2 acts from the right of the particle.

Let us now define the operator Bp for a given plaquette p. As stated
above, this operator acts on the edges surrounding the plaquette. On
these four particles, its action is given by

Bp : x⊗ y ⊗ z ⊗ v 7→ ω(S(x(1))S(y(1)z(2)v(2)))x(2) ⊗ y(2) ⊗ z(1) ⊗ v(1),

where ω is the Haar integral of A∗ and x is the particle on the right
of the plaquette, y is the one on top, z is the one on the left and v is
the particle below the plaquette. Again, the action of Bp is easier to
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understand using the graphical representation:

Bp : x

y

z

v

=
b(x)

b(y)

b(z)

b(v)

7→
b(x)

b(y)

b(z)

b(v)

b(ω)

,

where the matrix b(ω) is the boundary describing the MPO represen-
tation of ω, see Equation 15. Similar to the vertex terms, the operators
Bp are projectors, and as the representations f 7→ (x 7→ x(1)f(x(2)))
and f 7→ (x 7→ f◦S(x(1))x(2)) are both ∗-representations of A∗, they are
also self-adjoint. If p1 and p2 are plaquettes that are not neighboring,
then Bp1 and Bp2 act on different particles, and thus they commute. If
p1 and p2 are neighboring, then there is one particle both act on. One
of the operators, however, acts from the right, the other from the left,
and thus even in this case, Bp1 and Bp2 commute.

Let us now show that the operators Av and Bp commute, i.e. that
the Kitaev Hamiltonian is indeed a sum of commuting orthogonal pro-
jectors. If the vertex v is not a vertex on the plaquette p, then Av and
Bp are acting on different particles and thus they trivially commute.
If the vertex v is one of the vertices around the plaquette, we first
calculate the graphical representation of the action of AvBp on the six
particles surrounding both the plaquette and the vertex:

AvBp :
x

y

z

vu

s

7→ b(x)

b(y)

b(z)

b(v)

b(ω)

u

s

b(Ω)
.
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Let us now calculate the action of BpAv:

BpAv :
x

y

z

vu

s

7→ b(x)

b(y)

b(z)

b(v)

b(ω)

u

s

b(Ω) .

The two tensors in the middle, closed by arbitrary boundary condition
b(w) on the virtual index and after straightening the physical index,
read as:

(63)

b(w)

= w(1)S(w(2)) = ε(w)1 =
b(w)

,

or equivalently,

= .

Using this identity in the expression for BpAv, we obtain that the
two loops, the virtual and physical one, can be untangled, and thus
BpAv = AvBp, i.e. the Hamiltonian terms Av and Bp commute.

Let us finally show that the state |ψ〉 is a ground state of the Hamil-
tonian H. First, as Ω is a projector, |ψ〉 is clearly invariant under each
term Av. Let us now show that it is also invariant under all Bp, then
this will mean that |ψ〉 is a frustration-free ground state of H. To see
that |ψ〉 is invariant under the action of Bp, note that the state, locally
around a plaquette, looks like
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The action of Bp is thus

7→

b(ω)

=

b(ω)

Where in the last equation we have used Equation 63 in each corner.
The result is therefore just a multiplication with the complex number
ω(1) = 1, i.e. the state |ψ〉 is invariant under Bp.

2.2. The Drinfeld double and anyons. In this section we define
the Drinfeld double D(A) of a finite dimensional Hopf algebra A and,
for each pair of plaquette p and neighboring vertex v, a set of local
operators including the Hamiltonian terms Av and Bp that forms a
representation of D(A∗). We also define a set of sates that differ only
locally from the state |ψ〉. The defined local operators transform these
states amongst each other, and thus these states form a D(A∗)-module.
We identify the anyons of the model as the subsets of states that form
irreducible D(A∗)-modules (see also [20]).

Let us first define the Drinfeld double of a Hopf algebra.

Definition 7.1. Let A be a finite dimensional Hopf algebra. The
Drinfeld double D(A) is a Hopf algebra constructed as follows. As a
vector space, it is A∗⊗A. Given f ∈ A∗ and x ∈ A we will write f ./ x
for their tensor product. The comultiplication in D(A) is given by

∆(f ./ x) = (f(2) ./ x(1))⊗ (f(1) ./ x(2)).

The multiplication in D(A) is given by

(64) (f ./ x)(g ./ y) = g(1) ◦ S−1(x(3))g(3)(x(1))fg(2) ./ x(2)y.

One can verify that the above multiplication and comultiplication
indeed define a Hopf algebra. The unit of D(A) is ε ./ 1. Linear
functionals on D(A) are of the form x ./ f (x ∈ A and f ∈ A∗) and in
particular, the counit is given by 1 ./ ε. Finally, the antipode in D(A)
is given by S(f ./ x) = S−1(f) ./ S(x). If A is a C*-Hopf algebra, then
D(A) is also a C*-Hopf algebra with ∗ operation f ./ x 7→ f ∗ ./ x∗.
Note that, as ε(1) ⊗ ε(2) ⊗ ε(3) = ε⊗ ε⊗ ε, the map

A→ D(A), x 7→ ε ./ x

is both a homomorphism and a cohomomorphism. Similarly, as 1(1) ⊗
1(2) ⊗ 1(3) = 1⊗ 1⊗ 1, the map

A∗ → D(A), f 7→ f ./ 1
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is a homomorphism and an anti-cohomomorphism. Using the images
of these maps, all elements in the Drinfeld double can be written as

f ./ x = (f ./ 1)(ε ./ x).

The elements (f ./ 1) and (ε ./ x) satisfy the following commutation
relation:

(ε ./ x)(f ./ 1) = f(1) ◦ S−1(x(3))f(3)(x(1))(f(2) ./ 1)(ε ./ x(2)).

Let A now be a finite dimensional Hopf algebra and A∗ be its dual
Hopf algebra. Let us now construct the Drinfeld double of A∗. As a
vector space, it is A⊗A∗, and thus (as a vector space) it is canonically
isomorphic to D(A). Let us make use of this isomorphism and write
the elements of D(A∗) as f ./ x instead of x ./ f . In this notation, the
comultiplication of the Drinfeld double D(A∗) is given by

∆(f ./ x) = (f(1) ./ x(2))⊗ (f(2) ./ x(1)),

and the multiplication is given by

(65) (f ./ x)(g ./ y) = f(3) ◦ S−1(y(1))f(1)(y(3))f(2)g ./ xy(2).

Again, the maps

A→ D(A∗) : x 7→ ε ./ x and A∗ → D(A∗) : f 7→ f ./ 1

are homomorphisms. Similar as above, every element of D(A∗) can be
written as

f ./ x = (ε ./ x)(f ./ 1).

The elements (ε ./ x) and (f ./ 1) of D(A∗) satisfy the commutation
relation

(66) (f ./ 1)(ε ./ x) = f(3) ◦ S−1(x(1))f(1)(x(3))(ε ./ x(2))(f(2) ./ 1).

Let us now define a set of local operators acting on an A-injective
PEPS and show that they form a representation of the Drinfeld double
D(A∗). All of these operators will act on the particles surrounding a
neighboring plaquette and vertex pair (p, v). We will define two types
of operators. The first type is denoted by Aw(p,v) for any w ∈ A, it acts
only on the particles surrounding the vertex and represents the element
ε ./ w ∈ D(A∗). The second type is denoted by Bf

(p,v) for any f ∈ A∗,

it acts only on the particles surrounding the plaquette and it represents
the element f ./ 1 ∈ D(A∗).

Let us first define the operators Aw(p,v) for a given plaquette p, vertex
v and algebra element w ∈ A. We define such an operator by its action
on the four particles around the vertex; this action is defined by the
graphical representation, using the injective representations Φ(v,w) on
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each edge. In the figure below, the plaquette p is in the upper right
corner of the vertex. The action of Aw(p,v) is given by

Aw(p,v) :
x

v
z

y

7→
b(w)

x

v

z

y

.

Note that the MPO representing this operator is oriented in the oppo-
site way as in the definition of the PEPS and in the definition of the
vertex term of the Hamiltonian. This expression reads as

Aw(p,v) : x⊗ y ⊗ z ⊗ v 7→ w(4)x⊗ w(3)y ⊗ zS(w(2))⊗ vS(w(1)) .

Here and in what follows we omit the representations Φ when trans-
lating between the figures and the algebraic formulas. It is easy to
check that the operators Aw(p,v) form a representation of A and that
this representation is a ∗-representation. Notice that the vertex term
Av is exactly AΩ

(p,v), because the Haar integral Ω is invariant under the
antipode S:

b(Ω)

=

b(S(Ω))

=

b(Ω)

,

where the last equation is Equation 36. The plaquette term Av is the
multiplication with the MPO on the left, while AΩ

(p,v) is multiplication
with the MPO on the right. As Ω is cocommutative, the particular
choice of the plaquette p does not matter, i.e. Av = AΩ

(p,v) holds for any
choice of the plaquette p next to the vertex v.

Let us now define the operator Bf
(p,v) for the plaquette p, vertex v

and linear functional f ∈ A∗. In the figure below, the vertex v is in the
lower left corner of the plaquette p. The action of Bf

(p,v) is given by

Bf
(p,v) : y

z

v

x

7→
b(y)

b(z)

b(v)

b(x)

b(f)

,

106



or equivalently, by

Bf
(p,v) : x⊗ y ⊗ z ⊗ v 7→ f(x(2)S(y(1))S(z(1))v(2))x(1) ⊗ y(2) ⊗ z(2) ⊗ v(1).

It is easy to check that these operators form a ∗-representation of A∗.
The plaquette term Bp of the Kitaev Hamiltonian is exactly the oper-
ator Bω

(p,v), where ω is the Haar integral of A∗. As ω is cocommutative,
the particular choice of v does not matter, i.e. Bp = Bω

(p,v) for any
vertex v around the plaquette p.

Let us now define a linear map D(A∗)→ B(A6) for a given pair of
plaquette p and vertex v by

(67) f ./ w 7→ Aw(p,v)B
f
(p,v),

for all f ∈ A∗ and w ∈ A, and by linear extension, on the whole D(A).
Below we show that this map defines a representation of the Drinfled
double D(A) (see also [19]). As the maps

f ./ ε 7→ Bf
(p,v) and ε ./ w 7→ Aw(p,v)

form representations of A∗ and A, respectively, and (f ./ w) = (ε ./
w)(f ./ 1), we only have to check that the commutation relation Equa-

tion 66 holds. Let us therefore compare the action of Aw(p,v)B
f
(p,v) and

the action of Bf
(p,v)A

w
(p,v). The graphical representation of the action of

the operator Aw(p,v)B
f
(p,v) is the following:

Aw(p1,v1)B
f
(p2,v2) :

x

y

z

vu

s

7→ b(x)

b(y)

b(z)

b(v)

b(f)

u

s

b(w)

,

where v is the vertex with all four edges drawn, and p is the plaquette
with all four bordering edges drawn. Let us now depict the action of
the operator Bf

(p,v)A
w
(p,v). To do that, note that as we act first with the

operator Aw(p,v), the coproduct in the operator Bf
(p,v) also applies to the

MPO representation of w. The graphical representation of this action
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is thus

Bf
(p,v)A

w
(p,v) :

x

y

z

vu

s

7→ b(x)

b(y)

b(z)

b(v)

b(f)

u

s

b(w) .

This operator describes the action of the operator

f(3) ◦ S(w(1))f(1)(w(3))A
w(2)

(p,v)B
f(2)

(p,v),

and thus, as this commutation relation is the same2 as Equation 66, the
map in Equation 67 describes a representation of the Drinfeld double
D(A∗).

Let us now construct a set of states that differ from |ψ〉 only on
a given pair of plaquette p and vertex v. The states, in the bulk, are
given by

,

i.e. at the position defined by the vertex and plaquette we insert a
rank-three tensor in W ⊗Ψ(A) ⊂ W ⊗B(W ), where W is the virtual
vector space of the MPO and Ψ is the corresponding representation
of A∗, and we continue with the MPO starting from the given point.
If the state is defined by open boundary, then the boundary has one
more index than the boundary describing the ground state |ψ〉 of the
PEPS. If the state is defined on closed boundary, then the string has
to terminate at some point; at this termination we will insert another
rank-three tensor the same way as above. That is, on closed boundary,
we do not define a state with a single defect in it, instead, only states
that differ from |ψ〉 at least in two different positions (note, however,
that one can construct periodic boundary states with an odd number
of defects).

2remember that A is a C*-Hopf algebra, and thus S−1 = S
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Both operators Bf
(p,v) and Aw(p,v) map a state with a defect at the pair

of plaquette p and vertex v to another state with a defect at the same
position, but this state might be described by a different rank-three
tensor. The action of the operators Bf

(p,v) and Aw(p,v) on the rank-three

tensor can be depicted as

Bf
(p,v) : 7→

b(f)

and Aw(p,v) : 7→
∑
µ

b(w)

µµ

Or, by formulas, if the tensor is given by |v〉 ⊗ b(x), then

Bf
(p,v) : |v〉 ⊗ b(x) 7→ Ψ(f(2))|v〉 ⊗ f(1)(x(1))f(3) ◦ S(x(3))b(x(2)),

Aw(p,v) : |v〉 ⊗ b(x) 7→ |v〉 ⊗ b(xw).

These states thus form a D(A∗)-module. We identify the anyons of the
model as the sectors of this module, i.e. an anyon is a set of states, each
of which locally differ from the ground state of the Hamiltonian and
such that the above defined local operators do not mix the different
anyons. Note that as the Hamiltonian, in general, is not in the center
of D(A∗), an anyon might not have a definite energy (i.e. the different
states in the anyonic sector might have different energies, see also [74]).
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CHAPTER 8

Renormalization Fixed Point MPDOs

In this chapter we define a distinguished family of MPOs starting
from a biconnected C*-WHA (see Definition 5.17 and Definition 5.3)
and show that they are Renormalization Fixed Point (RFP) MPDOs,
as defined in [31]. More concretely, we provide explicit expressions
for both local coarse-graining and local fine-graining quantum chan-
nels T and S for which the generating rank-four tensor is a fixed point
under the corresponding induced flows, very much in the spirit of stan-
dard renormalization. The generating tensor of the RFP MPDOs is
obtained here by appropiately weighting the tensor from the original
MPO algebra, described in the previous Chapters 3 to 5, obtaining:

S

T

.

This weighting is done by means of the element constructed in Theo-
rem 5.21 of the dual C*-WHA, known as the canonical regular element.
See Appendix C for a review on its description. To this end, let us ex-
amine first the properties of this linear functional, which formally plays
the role in C*-WHAs of the character of the usual left-regular repre-
sentation.

Lemma 8.1. Let A be a connected C*-WHA. Then, the canonical
regular element ω ∈ A∗ of the dual C*-WHA A∗ is the unique trace-
like, faithful, positive linear functional on A that is idempotent, i.e.
(ω ⊗ ω) ◦∆ = ω.

Proof. Recall Theorem 5.21 and Proposition 5.20. We have al-
ready seen that ω ∈ A∗ is a trace-like linear functional since it is a
cocentral element of A∗. Also, it is a faithful and positive linear func-
tional by construction. In addition, it satisfies the eigenvalue equation
τ̂α ·ω = ω · τ̂α = dαω for all sectors α ∈ Irr(A), where τ̂α stands for the
character of the sector α; see Section 2 from Chapter 5, Appendix C or
[43, Section 3]. We note that this implies, in particular, that ω ∈ A∗

is idempotent. Assume now that f ∈ A∗ is any linear functional sat-
isfying the properties above. Since it is trace-like, it can be expanded
in the form f =

∑
α fατ̂α for some numbers fα ∈ C, α ∈ Irr(A). By

evaluating f on the primitive central idempotents of A it is easy to
check that fα > 0 for all α ∈ Irr(A), since f is assumed to be also a
faithful positive linear functional. Define the |Irr(A)| × |Irr(A)| matrix
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Nf with complex coefficients (Nf )βγ :=
∑

α fαN
γ
αβ, which implements

the left-multiplication by f ∈ A∗ in the basis {τ̂α : α ∈ Irr(A)}, i.e.
it satisfies Nfψ = fψ for all ψ ∈ A∗. Then, Nff = f 2 = f and
Nfω = fω =

∑
α fαdαω ∝ ω, where the first equation holds since

f ∈ A∗ is idempotent by hypothesis and the second equation follows
from the eigenvalue equation. Since A is connected, the Grothendieck
ring (see Proposition 4.3) is, in particular, a transitive ring, and hence
Nf has strictly positive entries; see e.g. Section 5 from Chapter 5, [96]
and [43, Section 3]. By virtue of the Frobenius-Perron theorem, it has
only one eigenvector with strictly positive entries, up to a constant.
Therefore, f = ω, since both are positive idempotents. �

Now, given a faithful ∗-representation of the C*-WHA, we define
the appropiate weight extending the previous linear functional to the
representation space.

Remark 8.2. Let A be a connected C*-WHA and let (V,Φ) be a
faithful ∗-representation of A. Let b(f) denote the boundary weight
for the matrix product operators arising from the dual C*-WHA A∗,
for all f ∈ A∗. It turns out that b(ω) = Φ(cω) for some strictly positive
central element cω ∈ A. It provides an extension of ω ∈ A∗ to the
representation space B(V ) in the sense that

Tr(b(ω)Φ(x)) = Tr(Φ(cωx)) = ω(x)

for all elements x ∈ A.

Proof. For all sectors α ∈ Irr(A), let eα ∈ A be the corresponding
primitive central idempotent of A and let να ∈ C denote the multiplic-
ity of (Vα,Φα) within (V,Φ). Then, define the element

cω := D−2
∑
α

dαν
−1
α eα ∈ A.

Trivially, it is a central invertible positive element and satisfies

Tr(Φ(cωx)) = D−2
∑
α

ν−1
α dαTr(Φ(xeα))

= D−2
∑
α

ν−1
α dανατ̂α(x) = ω(x)

for all elements x ∈ A, as we wanted to prove. �

Let us now consider the tensor obtained by multiplying the MPO
tensor in Chapter 4 by b(ω) = Φ(cω) in the physical space:

b(ω) .
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Idempotence of ω ∈ A∗ implies that this tensor generates an MPO with
zero correlation length; see [31]:

= .

It is clear that computations of correlation functions using the MP-
DOs generated by the previous tensor will be length-independent. In
particular, it induces the following family of mixed states:

Theorem 8.3. Let A be a biconnected C*-WHA and let (V,Φ) be
a faithful ∗-representation of A. Then, the operators

ρ(x, n) := ω(x)−1b(ω)⊗nΦ⊗n(∆(n−1)(x)) ∈ B(V ⊗n)

are RFP MPDOs for all positive non-zero elements x ∈ A and all
n ∈ N. Specifically, there are quantum channels T : B(V )→ B(V ⊗V )
and S : B(V ⊗ V ) → B(V ), known as local fine-graining and coarse-
graining maps, respectively, such that

T(ρ(x, 1)) = ρ(x, 2) and S(ρ(x, 2)) = ρ(x, 1)

for all positive non-zero elements x ∈ A and all n ∈ N.

Let us illustrate the construction with an extremely modest exam-
ple.

Example 8.4. Let A := CZ2 be the C*-HA arising from the group
G := Z2 generated by g ∈ G; see Example 5.24. It posseses only
two sectors, namely the equivalence classes of the trivial representa-
tion and the sign representation, each one-dimensional. Consider that
both physical and virtual spaces are V := W := C2, with basis elements
|1〉, |2〉, and consider the faithful ∗-representation of A Φ : A→ B(C2)
defined by Φ(g) := σz, the usual Pauli-Z matrix. It is easy to see
that both Frobenius-Perron dimensions are 1 and hence the canoni-
cal regular elements of A and A∗ are given by Ω = 2−1(e + g) and
ω(x) = (x, e)V , for all x ∈ A, respectively. A tensor generating the
corresponding MPOs is specified by the non-zero coefficients

1 1

1

1

= 1 1

2

2

= 2 2

1

1

= − 2 2

2

2

= 1.

Moreover, in this case the weight is trivially given by cω = 2−1e and
thus

ρ(x, n) =
1

2n
(1⊗n +

(x, g)V
(x, e)V

σ⊗nz ),

are the induced RFP MPDOs, for all positive non-zero x ∈ A. In
particular, ρ(Ω, n) = 2−n(1⊗n +σ⊗nz ) is the boundary state of the toric
code; see [31].
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Example 8.5. Let ALY be the Lee-Yang C*-WHA from Example 5.27.
It possesses only two sectors, denoted 1 and τ , for which it is easy to
check that d1 = 1 and dτ = ζ−2 = 2−1(1 +

√
5), respectively. Consider

that both physical and virtual spaces are V := W := C5 and let Φ :
ALY → B(C5) be the faithful ∗-representation arising from the string-
net specification; see Appendix B and [20] for a derivation. A tensor
generating the corresponding MPOs is then specified by the non-zero
coefficients

1 1

1

1

= 1 2

3

3

= 2 1

4

4

= 2 2

2

2

= 2 2

5

5

=

3 3

2

1

= 3 4

4

3

= 3 5

5

3

= 4 4

1

2

= 5 4

4

5

= 5 5

2

2

= 1,

4 5

3

5

= 5 3

5

4

= ζ, 4 3

3

4

= − 5 5

5

5

= ζ2.

Finally, it is easy to check that Φ(cω) = 2(5 + 51/2)−112 ⊕ 5−1/213.

With the aim of giving explicit definitions of both quantum channels
and prove Theorem 8.3, we introduce the following auxiliary result.

Lemma 8.6. Let A be a biconnected C*-WHA. There exists a unique
element ξ ∈ A such that ω(ξT (Ω(1)))Ω(2) = 1. Furthermore, it satisfies
the following properties:

(1) it is strictly positive and ξ−1 = ω(Ω(1))Ω(2) = ω(T (Ω(1)))Ω(2);
(2) it is invariant under T ∈ B(A), i.e. T (ξ) = ξ;
(3) it satisfies T (x)∗ = ξT (x∗)ξ−1 for all elements x ∈ A;
(4) τ̂α(ξ−1) = dαω(Ω) for all sectors α ∈ Irr(A), where τ̂α stands

for the character of the sector α;
(5) it can be decomposed as ξ = ξLξR for two positive elements

ξL ∈ AL and ξR = S(ξL) = S−1(ξL) ∈ AR;

Dually, if we denote ξ̂ = ξ̂Lξ̂R ∈ A∗, then:

(6) x(1)ξ̂L(x(2)) = ξ−1
L x and x(1)ξ̂

−1
R (x(2)) = xξ−1

L for all x ∈ A.

Finally, if A is a C*-HA, then ξ2
L = ξ2

R = ξ = D2ε(1)1 = ω(Ω)−11.

See Appendix D for a proof. The fundamental property of the
definition of ξ ∈ A here, interpreted in terms of tensor networks, is
provided by the following result.

Lemma 8.7. Let A be a biconnected C*-WHA. Then,

b(ω)Φ(ξ)

b(Ω)

b

a

= δab a a

for all sectors a, b ∈ Irr(A), where δab stands for the Kronecker delta.
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Proof. Note that

f(Ω(1))ω(ξT (x)Ω(2)) = f(T (ξT (x))Ω(1))ω(Ω(2)) by Equation 59

= f(xξΩ(1))ω(Ω(2)) by Theorem 5.21

= f(xξξ−1) = f(x) by Lemma 8.6

for any two elements x ∈ A and f ∈ A∗. Pictorially:

b(ω)Φ(ξ)

b(f)

b(Ω)

b(x)

=

b
(
ω

)
Φ

(
ξ
)

b(f)

b(Ω)

b(x)

=

b(f)

b(1)

b(x)

=

b(f)

b(x)

=

b(x)

Ψ(f)

The results follows from the surjectivity of b and Ψ in each block. �

We are now in the position to partially prove that the MPOs gen-
erated by the MPO tensor presented above are RFP.

Proof of Theorem 8.3. Define T : B(V )→ B(V ⊗ V ) by

X 7→ Φ(ξ)
X

b(Ω)

.

Trivially, it has the property of duplicating the tensor defining the
MPDO:

T7−→ Φ(ξ)

b(Ω)

=

b(Ω)

= .

In the first equality we have used that the weight Φ(cω) ∈ B(V ) can
be freely moved along the physical indices since cω ∈ A is a central
element. The second equality follows from Lemma 8.7. We postpone
the proof of the fact that it is a quantum channel and the definition of
the quantum channel S to Appendix E. �
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CHAPTER 9

RFP MPDOs are boundary states of topological
2D RFP PEPS

In this chapter we show that RFP MPDOs ρ(Ω, n) defined in The-
orem 8.3 arise as boundary states of MPO-injective 2D PEPS with
certain properties, see Chapter 7. For simplicity, we will restrict here
to PEPS defined in a rectangular lattice. The boundary state asso-
ciated to a 2D PEPS is obtained by contracting the physical indices
of the 2D PEPS with open boundaries and its conjugate transpose.
Pictorially:

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

=

· · ·

· · ·

· · ·

· · ·

,

The boundary state is known to encode relevant properties of the 2D
PEPS, such as for instance the gap of its parent Hamiltonian [30,
67], making the Li-Haldane [81] bulk-boundary correspondence very
explicit in the context of PEPS. Let us prove the following theorem.

Theorem 9.1. For any regular biconnected C*-WHA A, RFP MP-
DOs defined in Theorem 8.3 are boundary states of A-injective 2D
PEPS fulfilling a renormalization fixed point property.

Proof. Fix a regular biconnected C*-WHA A and a faithful ∗-
representation (V,Φ). As commented in Chapters 3 and 4, the associate
MPO tensors are described in terms of another ∗-representation (W,Ψ)
of A∗ in the virtual level. Let us first construct the ansatz tensor
for the 2D PEPS whose boundary state is the given matrix product
density operator ρ(Ω, n). For the sake of simplicity, we will restrict to
underlying geometries described by square lattices, although the proof
works for any 2D PEPS defined on any directed pseudo-graph. In this
case, we will consider the 2D PEPS tensor depicted as follows:

(68) :=
b(Ω)

b(ω)
1
4

b(ω)
1
4 Φ(ξ)

1
2

Ψ(ξ̂L)

.
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Here, the physical space is given by the tensor product V ⊗V ⊗V ∗⊗V ∗
and there are four virtual indices, each of them corresponding to V or
V ∗. If read in clockwise direction starting from the virtual weight
b(Ω) ∈ B(W ), the tensor is algebraically described by the expresion

(b(ω)
1
4 )⊗4

(
Φ(Ω(1))⊗ Φ(Ω(2))⊗ ξ̂L(Ω(3))Φ(ξ

1
2T (Ω(4)))⊗ Φ(ξ

1
2T (Ω(5)))

)
as an operator from physical to virtual spaces. Recall that b(ω) ∈ B(V )
is an invertible positive central operator and hence it can be freely
moved along the physical indices. Also, it defines an A-injective PEPS
as constructed in Chapter 7; see Appendix D. Let us now show that
the boundary operator is the desired operator.

Step 1. Let us first simplify the transfer operator associated to the
previous 2D PEPS tensor, E = E(A, V,Φ) ∈ B(V ⊗ V ⊗ V ∗ ⊗ V ∗)
obtained by contracting the physical indices of the 2D PEPS tensor
and its corresponding conjugate transpose if regarded as an operator.
Algebraically, it is given by the expression

E = (b(ω)
1
2 )⊗4

(
Φ(Ω(1))Φ(Ω(1′))

† ⊗ Φ(Ω(2))Φ(Ω(2′))
†

⊗ ξ̂−1
L (Ω(3′))ξ̂

−1
L (Ω(3′))Φ(T (Ω(4′)))

†Φ(ξ)Φ(T (Ω(4)))

⊗ Φ(T (Ω(5′)))
†Φ(ξ)Φ(T (Ω(5)))

)
,

where we have employed that b(ω) ∈ B(V ) is positive and central and
Φ(ξ) ∈ B(V ) is positive, since Φ : A → B(V ) is a ∗-representation
and ξ ∈ A is positive. Note that the order of composition is reversed
for the terms associated to white tensors. In order to fully describe E
in terms of tensor networks, note that

ξ̂−1
L (x) = ((ξ̂−1

L )∗)(S(x)∗) = ξ̂−1
L (S(x)∗) = ξ̂−1

L (S−1(x∗)) = ξ̂−1
R (x∗)

for all x ∈ A, where the first equality is due to Equation 55, the second
equality follows from the positivity of ξ̂L ∈ A∗, the third equality is
due to Equation 56 and the fourth equality follows from the definition
of ξ̂R ∈ A∗, see Lemma 8.6. In addition, recall that Φ : A → B(V ) is
a ∗-representation and T (x)∗ξ = ξT (x∗) for all x ∈ A, see Lemma 8.6.
Therefore:

E = (b(ω)
1
2 )⊗4

(
Φ(Ω(1)Ω

∗
(1′))⊗ Φ(Ω(2)Ω

∗
(2′))

⊗ ξ̂−1
R (Ω∗(3′))ξ̂

−1
L (Ω(3))Φ(ξT (Ω∗(4′))T (Ω(4)))⊗ Φ(ξT (Ω∗(5′))T (Ω(5))).

)
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Hence, the transfer operator can be represented graphically as follows:

E =

b(Ω)

b(ω)
1
2

b(Ω∗)

Φ(ξ)

Ψ(ξ̂−1
L

)

Ψ(ξ̂−1
R

)

=

b(Ω)

b(Ω∗)

b(ω)
1
2 Φ(ξ)

Ψ(ξ̂−1
L

)

Ψ(ξ̂−1
R

)

On the other hand, Ψ(ξ̂−1
L ) and Ψ(ξ̂−1

R ) can be “moved” from the virtual
to the physical spaces using the following identities:

x(1)ξ̂
−1
L (x(2)) = ξ−1

L x and x(1)ξ̂
−1
R (x(2)) = xξ−1

L

for all elements x ∈ A; see Lemma 8.6. In graphical notation, the
previous formulas are rephrased in the following form:

(69) Ψ(ξ̂−1
L

) =
Φ(ξ−1

L
)

and Ψ(ξ̂−1
R

) =
Φ(ξ−1

L
)

.

By virtue of these identities, the fact that T ∈ B(A) is an algebra
anti-homomorphism and Ω∗ = Ω = Ω2 by Theorem 5.21, it follows
that

b(Ω)

b(ω)
1
2

b(Ω∗)

Φ(ξ)

Ψ(ξ̂−1
L

)

Ψ(ξ̂−1
R

)

=
b(Ω)

Φ(ξ−1
L

)

b(ω)
1
2

Φ(ξ−1
L

)b(ω)
1
2

b(Ω∗)

b(ω)Φ(ξ)

=
b(Ω) Φ(ξ−1

L
)

b(ω)
1
2

Φ(ξ−1
L

)b(ω)
1
2b(ω)

1
2 Φ(ξ)

.

Applying again Equation 69, we conclude that the transfer operator
takes the form:

E =

b(Ω) Φ(ξ−1
L

)

b(ω)
1
2

Φ(ξ−1
L

)b(ω)
1
2b(ω)

1
2 Φ(ξ)

=

b(Ω)

b(ω)
1
2

b(ω)
1
2b(ω)

1
2 Φ(ξ)

Ψ(ξ̂−1)

.

since Ψ ∈ B(A∗,B(W )) is a ∗-representation and ξ−1 = ξ−1
L ξ−1

R .

Step 2. Let us consider the concatenation of two transfer operators.
By virtue of the pulling-through identity Equation 59,

(70)
b(ω)

1
2 Φ(ξ)

b(ω)Φ(ξ)

= .
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Step 3. Let us consider the concatenation of four transfer operators
around the vertices of a plaquette. In particular, we prove that the
ansatz 2D PEPS tensors gives rise to a normalized PEPS and its bound-
ary state is the RFP MPDO defined in Theorem 8.3. Consider, from
a top view, the procedure of simplifying the concatenation of transfer
operators that form a whole plaquette:

Ψ(ξ̂−1)
b(Ω)

Ψ(ξ̂−1)
Φ(ξ)
b(ω)

b(ω)

= = · · · =

To close a plaquette, recall Lemma 8.7 and Lemma 8.6:

=
∑
a

aa

Ψ(ξ̂−1)

∝ b(Ω) .

Note that in the previous equations the inner circle representing τa(ξ̂
−1)

is not independent of the outer shape and hence it gives rise to possibly
different constant in each sector, as it is a sum over all sectors a ∈
Irr(A∗). As showed in Lemma 8.6, these are precisely the Frobenius-
Perron dimensions which define, in each sector, the canonical regular
element Ω ∈ A. Therefore we can rewrite it in terms of the weight
b(Ω) ∈ B(W ), as done in the last equality. Iterating this procedure
for each plaquette of the lattice proves that matrix product density
operators defined in the previous chapter arise naturally as boundary
states of topological 2D PEPS.

Note also that Equation 70 is nothing but a natural 2D generaliza-
tion of the renormalization fixed point condition for MPS defined in
[31]. In that sense, we can conclude that the RFP MPDOs considered
in Theorem 8.3 are boundary states of PEPS fulfilling this renormal-
ization fixed point property. �
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CHAPTER 10

Classification of RFP MPDOs via circuits of
quantum channels

In this chapter we prove that RFP MPDOs arising from C*-HAs
belong to the trivial phase. Namely, we provide explicit definitions of
depth-two circuits of finite-range quantum channels that map the max-
imally mixed state to these RFP MPDOs. Finally, we show that our
construction cannot be extended to arbitrary biconnected C*-WHAs,
which lead us to the conjecture that there are non-trivial phases in this
context.

1. An illustrative example

In order to deepen the intuition towards the general case of C*-HAs,
let us first examine the simplest non-trivial example.

Example 10.1. RFP MPDOs arising from the group C*-HA A :=
CZ2, introduced in Examples 5.24 and 8.4 are in the trivial phase.
Specifically, we build

ρ(Ω, n) = 1
2n

(1⊗n + σ⊗nz )

via a depth-two circuit of range-two quantum channels from the max-
imally mixed state Tr(1)−n1⊗n. We assume without loss of generality
that n ∈ N is even and propose the following procedure:

Step 1 (“initialization”). We first construct n/2 copies (ρ2)⊗n/2 of the
mixed state ρ2 between pairs of nearest neighbors by replacing the
product states separately. This is easily done by means of the quantum
channel N : X⊗Y 7→ Tr(X⊗Y )ρ2. In the Choi-Jamio lkowski picture,
this process can be depicted as follows:

N N N N· · ·
· · ·

=
ρ2 ρ2 ρ2 ρ2· · ·

· · ·

When the system size is an odd natural number simply replace three
of them with the mixed state ρ3, for example.

Step 2 (“gluing”). Now, we “glue” together all these copies of ρ2 in
order to obtain the target mixed state ρn. This is done inductively by
means of the following quantum channel, called from now on gluing
map:

(71) G : X ⊗ Y 7→ 1
22 (Tr(X ⊗ Y )1⊗ 1 + Tr(Xσz ⊗ Y σz)σz ⊗ σz)
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for all X, Y ∈ B(C2). It is easy to check that it is a quantum channel
and that

Id⊗G⊗ Id( 1
22 (1⊗2 + σ⊗2

z )⊗ 1
22 (1⊗2 + σ⊗2

z )) = 1
24 (1⊗4 + σ⊗4

z ).

By induction, it is clear that simultaneous applications of these quan-
tum channels lead to the mixed state ρn. Again, in the Choi-Jamio l-
kowski picture this procedure can be depicted as follows:

ρ2 ρ2 ρ2 ρ2

G G

· · ·

· · · =
ρn · · ·

· · ·

2. Phase classification of C*-Hopf algebras

The previous construction can be generalized to arbitrary C*-HAs
as follows. In the first place, the role of the previous element is replaced
by the RFP MPDO associated to the canonical regular element. In ad-
dition, we introduce a family of quantum channels that “glue” together
two RFP MPDOs associated to the canonical regular element Ω ∈ A

into a larger one, associated to any arbitrary positive non-zero element
of A.

Lemma 10.2. Let A be a C*-HA and let (V,Φ) be a faithful ∗-repre-
sentation of A. Then, for all positive non-zero elements x ∈ A there
exists a quantum channel Gx : B(V ⊗V )→ B(V ⊗V ), called “gluing”
map, such that

(72) (Id⊗m−1 ⊗Gx ⊗ Id⊗n−1)(ρ(Ω,m)⊗ ρ(Ω, n)) = ρ(x,m+ n)

for all m,n ∈ N.

See Appendix F for a proof, but let us propose now an explicit
expression for the gluing map and check using graphical notation that
Equation 72 holds. To this end, fix any positive non-zero element x ∈ A

and assume without loss of generality that m = n = 2. Define the map
Gx : B(V ⊗ V )→ B(V ⊗ V ) by the expression

X ⊗ Y 7→ 1
ω(x)

X Y
b(x)

.

for all X, Y ∈ B(V ). To prove that Equation 72 holds, recall first that
Φ(cω) ∈ B(V ) can be moved freely along the physical vector spaces.
By virtue of Lemma 8.7:

1
ω(x)

1
ω(Ω)2

b(x)

b(Ω) b(Ω)

= 1
ω(x)

1
ω(Ω) b(x)

b(Ω)

= 1
ω(x)

b(x)

,

122



since Φ(ξ) = ω(Ω)−11 by Lemma 8.6.
Similar to the construction described for the boundary state of the

toric code, the existence of such a quantum channel immediately in-
duces a finite-depth circuit of quantum channels manifesting the trivi-
ality of these states.

Theorem 10.3. Let A be a C*-HA and let (V,Φ) be a faithful ∗-re-
presentation of A. Then, for all positive non-zero elements x ∈ A and
all n ∈ N there exists a depth-two circuit of bounded-range quantum
channels that maps Tr(1)−n1⊗n into ρ(x, n). That is, the sequence
(ρ(x, n))∞n=1 is in the trivial phase.

Proof. Assume without loss of generality that n ∈ N is even. The
circuit consists of two layers, as presented above in Example 10.1. In
the first layer, we replace the maximally mixed state Tr(1)−n1⊗n with
the sequence of n/2 tensor products ρ(Ω, 2)⊗· · ·⊗ρ(Ω, 2) as previously
done. Now, by virtue of Lemma 10.2, let Id⊗GΩ⊗· · ·⊗GΩ⊗Gx⊗Id be
the second layer of quantum channels, where all subindices are Ω ∈ A

except for one, which is x ∈ A. This second layer of channels then
glues together all local MPDOs into the single MPDO ρ(x, n). �

3. Phase classification of C*-weak Hopf algebras

For general RFP MPDOs constructed from biconnected C*-WHAs
a straightforward generalization of the previous procedure is not pos-
sible anymore, since the comultiplication is no longer unit-preserving.

Remark 10.4. There are no trace-preserving gluing maps for general
biconnected C*-WHAs such that Equation 72 holds for all elements
x ∈ A.

See Appendix G for a proof. Unfortunately, the description of the
phases in this general case is still an open problem. Nevertheless, some
evidence indicates the existence of non-trivial phases, as we conjecture
here.

Conjecture 10.5. RFP MPDOs arising from the Lee-Yang C*-WHA
of Example 5.27 do not belong to the trivial phase.

However, these obstructions can be circumvented if one restricts to
the trivial sector. The following result establishes the existence of a
special gluing map, motivated by the characterization of simple RFP
MPDO tensors in [31].

Lemma 10.6. Let A be a biconnected C*-WHA and let (V,Φ) be a
faithful ∗-representation of A. There is a quantum channel G1 : B(V ⊗
V )→ B(V ⊗ V ), called “gluing” map, such that

(73) (Id⊗m−1 ⊗G1 ⊗ Id⊗n−1)(ρ(1,m)⊗ ρ(1, n)) = ρ(1,m+ n)

for all m,n ∈ N.
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A proof is given in Appendix G. As an immediate corollary, similar
to the case of C*-HAs, we obtain the following result.

Theorem 10.7. Let A be a biconnected C*-WHA and let (V,Φ)
be a faithful ∗-representation of A. Then, for all n ∈ N there exist
two depth-two circuits of bounded-range quantum channels that map
Tr(1)−n1⊗n into ρ(1, n) and ρ(τ1, n). That is, the sequences (ρ(1, n))∞n=1

and (ρ(τ1, n))∞n=1 are in the trivial phase.
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CHAPTER 11

Conclusion and discussion

In this thesis we have shown how Matrix Product Operators are
inextricably connected to the representation of different types of pre-
bialgebras, such as weak-Hopf algebras. As an application of the results
and techniques used to uncover such connection, we have obtained
new results in the context of topological phases of matter in 2D and,
very particularly, in 1D, where we analyze the phase diagram of open
quantum systems. However, many questions are still unanswered. In
this chapter we briefly discuss some of the most interesting projects
that we believe these questions open up in the immediate future.

First, we stated in Conjecture 10.5 that RFP MPDOs arising from
the Lee-Yang C*-weak Hopf algebra (or equivalently, the Fibonacci
fusion category) cannot be constructed via a finite-depth quantum cir-
cuit. There is some theoretical and numerical evidence that this is
indeed the case. The main challenge we face here is to find invariants
that are preserved under the considered notion of phase.

Second, it is interesting on its own to determine whether every rank-
four tensor generating RFP MPDOs, as regarded in Chapter 8, arises
by weighting the MPO tensor from the representation of a C*-weak
Hopf algebra. The RFP condition has already been characterized by
the “algebras” generated by these MPDOs in the vertical direction in
[31], and hence it is interesting to adapt our work to this structure
theorem to find out what algebraic structure underlies.

Additionally, in Chapter 9 we investigated RFP MPDOs construct-
ed from C*-weak Hopf algebras and proved that they arise as boundary
states of certain 2D MPO-injective PEPS satisfying a natural RFP
condition, up to minor technical details. This problem of proposing
compelling generalizations of the RFP condition to PEPS has already
been mentioned in e.g. [31, 33], although none of them match the
assumption needed in our work so far. Thus, it is also interesting to
relate this description to the ones existing.

Besides, we expect the tensor network description of MPO-injective
PEPS presented in Chapter 7 to be extremely useful to generalize the
results of [86] beyond the quantum double of a group (e.g. for weaker
structures such as C*-Hopf algebras), showing that these models ther-
malize quickly and thus they are useless as self-correcting quantum
memories.
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On the other hand, the bridge between tensor networks and pre-
bialgebras allows to tackle e.g. the classification of symmetries of Ma-
trix Product Unitaries (MPU) in [32]. For instance, in the case of
MPUs generated by time-reversal symmetric tensors, these are con-
nected to very simple pre-bialgebras after some twist. It is expected
that one can find invariants associated to the twists and the second
cohomology group, proving that these MPUs cannot be connected
through a smooth path of time-reversal symmetric MPUs.

Also, it would be interesting to explore whether the results and
techniques of this thesis allow to extend the construction of 1D and
2D topological models beyond the semisimple case. A first interesting
example to examine is the MPO-injective PEPS constructed using the
4-dimensional Sweedler’s Hopf algebra.

Finally, it seems there is a close connection between MPO algebras
and Jones theory of subfactors in operator algebras. This has been
uncovered by Y. Kawahigashi in the recent papers [68, 69, 70, 71].
This opens up the possibility of using tensor network techniques in
the core theory of operator algebras, something that deserves further
exploration in the future.
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J., Verstraete, F.: Anyons and matrix product operator algebras. Annals of
Physics. 378, 183-233 (2017). doi:10.1016/j.aop.2017.01.004

[21] Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error
correction via codes over GF(4). IEEE Trans. Inform. Theory. 44, 1369-1387
(1998). doi:10.1109/18.681315

[22] Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-
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APPENDIX A

Proof of Lemma 5.10 and of Lemma 5.11

Before proving Lemma 5.10, we need the following lemma:

Lemma A.1. In a cosemisimple WHA, the following holds for all
a, b, c ∈ Irr(A∗):

∑
µ

Zā

Z−1
c̄
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Zc

µ µ

āa
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c

c̄

c

ā a
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c
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c
a ,

where the constants wc and wa are defined in Equation 39.

Proof. Using Equation 39, one can write
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where in the second equality we have used that N rc
dc = Nd

rcc̄ (see Equa-
tion 38) and that rc = `c̄ (see Proposition 5.6), and thus that the sum
over µ on the r.h.s. runs from 1 to N rc

dc = Nd
rcc̄ = Nd

`c̄c̄
= δdc̄, i.e. it is

an empty sum if d 6= c̄ and it consists of a single term if d = c̄. Due to
associativity (Equation 7), the r.h.s. can be further rewritten as∑

d,µ,ν
µ µ

ν ν

d
c

b̄
d

c

b̄
ā

rcrc
= δrcra

∑
ν ν ν

a
c

b̄
a

c

b̄
ā

rara

= δrcra
1

wa

∑
µ

Z−1
āZa

µ µ

b̄

c
a

ā

a

ā

b̄

c
,

where in the first equation we have used that N e
ād = Nd

ae (see Equa-
tion 38), and that it is non-zero for e ∈ Vac(A∗) if and only if e = ra,
and in this case it is δda (see Equation 24); in the second equation we
have used again Equation 39. Finally note that N c̄

āb̄
= Na

b̄c
is non-zero

only if rc = ra, and thus one can drop the prefactor δrcra . Rearranging
the resulting equation leads to the desired result. �
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Let us now restate and prove Lemma 5.10:

Lemma A.2. Let A be a cosemisimple WHA, and g be the linear
functional defined in Equation 40. Then there exists an N c

ab × N c
ab

matrix Bc
ab such that the linear functional g ∈ A∗ satisfies

c

g−1

a
g

b

g µ

=
∑
ν

(Bc
ab)µν

c
a

b

ν

,(46a)

c

g−1

a
g

b

gν

=
∑
κ

(Bc
ab)κν

c
a

b

κ

.(46b)

Moreover, (Bc
ab)

2 = IdNc
ab

and the following equation holds as well:

∑
µ

wa

ZāZ−1
a

µ µ

āa

c
b b

ā a

c
=
∑
µ

wb̄

Zb̄Z−1
b

µ µ

b̄
b

c
a a

b̄
b

c

=
dadb
dc

∑
µ,ν

(Bc
ab)µν b

a
c

a

b
c

µ ν

.

Proof. Let us apply Equation 37 three times. The first application
yields

Zb̄

µ

c̄

b̄ b

ā =
∑
µ

(
C c̄
b̄ā

)
µν

ν

c̄

b
ā .

The second application yields

Zb̄

Z−1
c̄

µ

b̄ b

ā
c̄

c
=
∑
ν

(
C c̄
b̄ā

)
µν

Z−1
c̄

ν

b
ā

c̄

c

=
∑
ν,κ

(
C c̄
b̄ā

)
µν

(
Ĉ ā
bc̄

)
νκ

κ

c

ā
b .

Finally, the third application yields

Zb̄

Z−1
c̄

Zā

µ

c̄

c

b̄ b

ā

a

=
∑
ν,κ

(
C c̄
b̄ā

)
µν

(
Ĉ ā
bc̄

)
νκ

Zā

κ

c
b

ā a

=
∑
ν,κ,η

(
C c̄
b̄ā

)
µν

(
Ĉ ā
bc̄

)
νκ

(
Cb
āc

)
κη

η

b

a
c .
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We have obtained that there exists an invertible matrix Y c
ab such that

Zb̄

Z−1
c̄

Zā

µ

c̄

c

b̄ b

ā

a

=
∑
ν

(Y c
ab)µν

c
a

b

ν

,

and in fact, Y c
ab = C c̄

b̄ā
Ĉ ā
bc̄C

b
āc. Similarly, by three consecutive applica-

tions of the inverse relations of Proposition 5.5,

Z−1
a

µ

d
b

ā
a

=
∑
µ

[(
Cd
ab

)−1
]
µν

ν

d
b

a

,

Zb

µ
d

a
b̄

b
=
∑
µ

[(
Ĉd
ab

)−1
]
µν

ν
d

a

b ,

we conclude that there is an invertible matrix Xc
ab such that

Z−1
ā

Z−1
b̄

Zc̄

µ

a
ā

b

b̄

c

c̄

=
∑
ν

(Xc
ab)µν

c̄
b̄

ā

ν

.

In fact, Xc
ab = (Cb

āc)
−1(Ĉ ā

bc̄)
−1(C c̄

b̄ā
)−1, i.e. Xc

abY
c
ab = Id. Using similar

arguments, we conclude that there are invertible matrices X̂ and Ŷ
such that

Z−1
ā

Z−1
b̄

Zc̄
µ

ā
a

b̄

b

c̄

c

=
∑
ν

(X̂c
ab)µν

c
a

b

ν

and

Zb̄

Z−1
c̄

Zā

µ
c

c̄

b
b̄

a

a ā

=
∑
ν

(
Ŷ c
ab

)
µν

c̄
b̄

ā

ν

.

Just as above, X̂c
abŶ

c
ab = Id. Moreover, by orthogonality of the fusion

tensors, Ŷ c
ab = (Y c

ab)
T :

(Y c
ab)µν Zc̄

c̄c
=

Zb̄

Zā

µ

ν

c̄

c

b̄

b

ā

a

=
(
Ŷ c
ab

)
νµ Zc̄

c̄c
,

where in the first equality we have used the definition of Y c
ab and the

orthogonality of the fusion tensors, while in the second the definition
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of Ŷ c
ab and again the orthogonality of the fusion tensors. By a similar

argument, we obtain X̂c
ab = (Xc

ab)
T as well.

By definition of the linear functional g, we obtain that

c

g−1

c
a

g
a

b

g

b

µ

=
dadb
dc

wc̄
wāwb̄

c

Z−1
c̄

c̄

Zc

c
a

Zā
ā

Z−1
a

a

b

Zb̄

b̄

Z−1
b

b

µ

(74)

=
dadb
dc

wc̄
wāwb̄

∑
ν

(Ŷ c
abX

c̄
b̄ā)µν

c
a

b

ν

c

g−1

c
a
g
a

b

g

b

ν

=
dadb
dc

wc̄
wāwb̄

c

Zc

c̄

Z−1
c̄

c
a
Z−1
a
ā
Zā

a

b

Z−1
b

b̄

Zb̄

b

µ

(75)

=
dadb
dc

wc̄
wāwb̄

∑
ν

(
X̂ c̄
b̄āY

c
ab

)
µν

c
a

b

κ

.

We have thus obtained that Equation 46 holds with

(76) Bc
ab =

dadb
dc

wc̄
wāwb̄

Ŷ c
abX

c̄
b̄ā.

Combining the two equations in Equation 46, we obtain that

(77)
∑
µ

c

g−1

cc

g−1

c
a
g
a

b

g

b

a
g

a

b

g

b

µµ

=
∑
µ,ν

(
(Bc

ab)
2)
µν

c c
a a

b b

νµ

.

On the other hand, using Lemma A.1 three times, we obtain that

∑
µ

c

Z−1
c

c̄

Zc̄

cc

Zc̄

c̄

Z−1
c

c
a
Z−1
ā
ā
Za

a

b

Z−1
b̄

b̄

Zb

b

a
Za
ā

Z−1
ā

a

b

Zb

b̄

Z−1
b̄

b

µµ

=

∑
µ

wawb
wāwb̄

wc̄
wc

c c
a a

b b

µµ

,

or equivalently, as (da/wā)
2 = wa/wā, that

∑
µ

c

g

cc

g

c
a
g−1

a

b

g−1

b

a
g−1

a

b

g−1

b

µµ

=
∑
µ

c c
a a

b b

µµ

.

This equation can be rearranged as

∑
µ

c c
a a

b b

µµ

=
∑
µ

c

g−1

c

g−1

a
g

b

g

a
g

b

g µµ

,

and therefore, comparing this equation to Equation 77, we obtain that
(Bc

ab)
2 = Id. Finally, using Equation 76 and then Lemma A.1, we can
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write

∑
µ,ν

(Bc
ab)µν

cc
aa

bb

ν µ

=
∑
µ

dadb
dc

wc̄
wāwb̄

Zb̄

Z−1
c̄

Z−1
b

Z−1
a Zā

Zc

µ µ

b̄b

ā

a

c̄

c

c̄

c

b̄ b

ā

a

=
∑
µ

dc
db

da
wā

ZāZ−1
a

µ µ

ā
a

c
b b

ā
a

c
.

Part of the last statement follows using that da/wā = wa/da. Finally,
using again Lemma A.1, we conclude that

∑
µ

wa

ZāZ−1
a

µ µ

āa

c
b b

ā a

c
=
∑
µ

wb̄

Zb̄Z−1
b

µ µ

b̄
b

c
a a

b̄
b

c

=
dadb
dc

∑
µ,ν

(Bc
ab)µν b

a
c

a

b
c

µ ν

.

�

Let us restate and prove now Lemma 5.11:

Lemma A.3. For all a ∈ Irr(A∗), d2
a = wawā > 0. Let moreover T cab

be defined by T cab =
∑

µ (Bc
ab)µµ. Then the following equations hold:∑

b

T cabdb = daδ`a`cdc and
∑

x:`x=`a

d2
x =

∑
x:`x=ra

d2
x.

Proof. Using Proposition 5.5,

∑
κ

wa

Zā Z−1
a

κκ

āa

c
bb

ā a

c
= wa

∑
κ,µ,ν

(
Cb
āc

)
κµ

(
(Cc

ab)
−1)

κν

c c
a a

b b

νµ

.

Therefore, using Lemma 5.10, we obtain that Bc
ab can be expressed as

(78) Bc
ab = wa

dc
dadb

(
Cb
āc

)T
(Cc

ab)
−1 .

As Bc
ab squares to the identity, the eigenvalues of Bc

ab are ±1, and thus
T cab, the trace of Bc

ab, is an integer with |T cab| ≤ N c
ab. Note now that

Equation 78 can be used to obtain the following expression for Bb
āc:

Bb
āc = wā

db
dadc

(Cc
ab)

T (Cb
āc

)−1

= Cb
āc

[
(Bc

ab)
−1]T (Cb

āc

)−1

= Cb
āc (Bc

ab)
T (Cb

āc

)−1
,
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where in the first equation we have used that da = dā, in the second
equation we have used that wādb/(dadc) = (wadc/(dadb))

−1 and in the
third that Bc

ab squares to the identity. Taking the trace of the two sides
in this equation, we obtain that T bāc = T cab. By a similar argument, we
obtain that T cab = T a

cb̄
as well. The definition of T cab and Lemma 5.10

implies that

∑
b

T cabdbIdc =
∑
b,µ

db
cc

g−1

a
g

b

g µµ

=
∑
b,µ

dc
da
wa

ZāZ
−1
a

µµ

āa

c
b

ā

c
.

Using Equation 39, the fact that d2
a = wawā, and the counit axiom

Equation 27, the r.h.s. can be further written as

∑
b

T cabdbIdc =
∑
b,µ

dadc b
cc

`a `a
āā

a

µµ

= dadc
∑
b

b
cc

`a`a

=

{
dadcIdc, if `a = `c,

0 otherwise.

Therefore the equation
∑

b T
c
abdb = daδ`a`cdc holds.

Following the proof of Theorem 2.3 in [41] (see also [11]), we can
now prove that d2

a = wawā is a positive number. Notice first that the
matrix T Ta Ta = TāTa is positive semidefinite (as Ta is a real matrix),
and thus all of its eigenvalues are non-negative. Let us show that
d2
a = wawā is one of its eigenvalues, then, as neither wa nor wā is 0,

this implies the the positivity of d2
a. To see that it is an eigenvalue, we

can check that δra`bdb is the corresponding eigenvector:∑
b,c

T dācT
c
abδra`bdb =

∑
b,c

T dācT
c
abdb = da

∑
c

T dācδ`a`cdc

= da
∑
c

T dācdc = dadāδra`ddd,

where in the first equation we have used that T cab = 0 if δra`b = 0 (as
then N c

ab = 0 and |T cab| < N c
ab); the same relation is used in the third

equation, together with rā = `a. In the last equation we have used
ra = `ā. Finally note that dā = da and that the vector defined by
δra`bdb is non-zero.
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Finally, let us prove that
∑

x:`x=`a
d2
x =

∑
x:`x=ra

d2
x. For that, note

that T cab = T bāc = T ābc̄ = T c̄
b̄ā

, and thus

da
∑

x:`x=`a

d2
x =

∑
x,b

T axbdxdb =
∑
x,b

T āb̄x̄dxdb

=
∑
x̄b̄

T āb̄x̄dx̄db̄ = dā
∑
b̄:`b̄=`ā

d2
b̄ = da

∑
x:`x=ra

d2
x.

As da 6= 0, the statement follows. �
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APPENDIX B

String-net models

In the following we create WHAs from fusion categories that appear
in the construction of string-net models. For simplicity, we will restrict
to fusion categories where the fusion multiplicities are all 0 or 1, N c

ab ≤ 1
for all a, b, c. With this assumption, the pentagon equations for the F-
symbols simplify to the equation:

(79)
[
F e
fcd

]g
l

[F e
abl]

f
k =

∑
h

[F g
abc]

f
h [F e

ahd]
g
k

[
F k
bcd

]h
l
.

The MPO tensor used in the construction of the string-net models is
then defined as

ba′f ′

f
l
e′

e a k′
k
l′
b′

= [F e
abl]

f
k δaa′δbb′δll′δee′δff ′δkk′ ,

where the dotted lines serve as a visual reminder of the δ prefactors.
We will often make use of this visual reminder of the δ prefactors and
only write the non-zero components of the MPO tensor,

baf
f
l
e
e a k

k
l
b

= [F e
abl]

f
k .

Each line is labeled by the simple objects of the category, i.e. it is an
N -dimensional vector space (N is the number of simple objects in the
fusion category); thus the bond dimension of this tensor is N3. This
bond dimension can be reduced as the tensor is block diagonal and it
contains a zero block. The projectors reducing the tensor (those that
correspond to a non-zero block) are

(80)
Pb

a
b
c c′

b′
a′

= N c
abδbkδaa′δbb′δcc′ .

These are indeed projectors as N e
fl ∈ {0, 1} and it is easy to see that

they commute with the MPO tensor (the F -symbols satisfy [F e
abl]

f
k = 0

unless N e
fl 6= 0 and Nk

bl 6= 0). The bond dimension of each block is then
Dl =

∑
f,eN

e
fl. A similar decomposition holds for the vertical direction

as well. There the projectors that decompose the MPO tensor are

Pa
f a b

b′a′f ′

= N f
abδbkδaa′δbb′δcc′ .
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Starting from this MPO tensor, let us define a linear space A as

A =

 X
b
l
k

baf
f

l
c
c a k

k
l
b

∣∣∣∣∣∣∣∣X ∈
⊕
l

MDl

 .

This linear space A has a natural coalgebra structure, with the coprod-
uct given by

∆

 X
b
l
k

baf
f

l
c
c a k

k
l
b

 =
X

f ′

l
c′

baf f ′a′b
f

l
c
c a k k a′ c′

k
l
b

f ′
l
c′

.

As above, taking repeated coproducts of a coalgebra element is the
same as growing the size of the MPO. In particular, the operation
∆ defined by this equation is associative. Note that as the pentagon
equation Equation 79 can be rearranged as

[F e
ahd]

g
k

[
F k
bcd

]h
l

=
∑
f

[
F e
fcd

]g
l

[F e
abl]

f
k

[
(F g

abc)
−1
]h
f
,

the coproduct can also be expressed as

cbh

l
d
c

lbk

g
d
e
e a k

k
d
h

g a h

=
∑
f

cfg
g
d
e
e f l

l
d
c

eak kb l

cbhhag

,

where we have defined the fusion tensors of the physical level as

l′fe′

eak kb l

= [F e
abl]

f
k δff ′δgg′δee′ ,

g′fc′

cbhhag

=
[
(F g

abc)
−1
]h
f
δff ′δgg′δee′ .

As the construction is built on a fusion category, there is a unique
vacuum label that we denote by 1. The counit of this coalgebra is
given by

ε :
X

b
l
k

baf
f

l
c
c a k

k
l
b

7→
X

b
l
k

b
l
k =

X
b
l
k

baf
f

l
c
c a k

k
l
b

,
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where we have used that
[
F k

1bl

]b
k

= αb/αk is independent of l and we
have defined

f a b = α−1
b δfbδa1 and kac = αkδckδa1.

Let us now show that A is not only a coalgebra, but it also has a pre-
bialgebra structure. For that, we define fusion tensors corresponding
to this MPO tensor as

e
l
f

f ′

c
g

g′

d
e′

=
[
F e
fcd

]g
l
δff ′δgg′δee′ ,

e
l
f

f ′

c
g

g′

d
e′

=
[(
F e
fcd

)−1
]l
g
δff ′δgg′δee′ .

These tensors satisfy the associativity equations Equation 7, because
the equations

e
l
f e

k
af

c
g

a
b
f

g
d
e

=
∑
h

[
F k
bcd

]h
l

g
h
a

e
k
a

a
b
f

f
c
g g

d
e

,

e
l
fe

k
a f

c
g

a
b
f

g
d
e

=
∑
h

[(
F k
bcd

)−1
]l
h

g
h
a

e
k
a

a
b
f

f
c
gg

d
e

both follow from the pentagon equation Equation 79. More precisely,
the left equation is exactly Equation 79, while the right equation is its
inverse,[(

F e
fcd

)−1
]l
g

[
(F e

abl)
−1]k

f
=
∑
h

[
(F g

abc)
−1
]h
f

[
(F e

ahd)
−1]k

g

[(
F k
bcd

)−1
]l
h
.

We can now check for the key equation Equation 9. The r.h.s. of
Equation 9 is

baf
f
c
g
g a h

h
c
b

g
d
e
e a k

k
d
h

=
∑
l

baf
f
l
e
e a k

k
l
b

f
c
g

g
d
e

b
c
h

h
d
k

,
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where we have only written out the components that are not automat-
ically zero due to the delta functions. This equation is the pentagon
equation rearranged:

[F g
abc]

f
h [F e

ahd]
g
k =

∑
l

[
F e
fcd

]g
l

[F e
abl]

f
k

[(
F k
bcd

)−1
]l
h
.

Let us now check for the l.h.s. of Equation 9, i.e. the orthogonality of
the fusion tensors:

∑
f ′,g,g′,e′

e
l
f

f ′

c
g

g′

d
e′

e′′
l′′
f ′′

=
∑

f ′,g,g′,e′,c,d

[(
F e
fcd

)−1
]l′
g
δff ′δgg′δee′

[
F e
fcd

]g
l
δf ′f ′′δee′′

= δee′′δff ′′δll′′N
e
fl,

where again N e
fl is one or zero, which gives the r.h.s. of Equation 9.

We have thus checked that A admits a pre-bialgebra structure with the
usual multiplication, except that we have not shown that A has a unit.
For that, note that the unit is of the form

1 =

baf
f

l
c
c a k

k
l
b

,

where we have defined

c
b
a

= α−1
a δacδb1 and

c
b
a

= αaδacδb1.

As the unit is described by a rank-one boundary that is supported
only in the vacuum sector, the pre-bialgebra A automatically satisfies
the unit axiom. Dually, as the counit is also described by a rank-one
boundary that is supported only in the vacuum sector, A also satisfies
the counit axiom. Therefore A is a WBA.

Let us now show that A is a WHA as well. A cosemisimple WBA
is a WHA if and only if for every sector a there is another sector ā
such that the symmetries N c

ab = N b
āc and N c

ab = Na
cb̄

hold. In our
case, as the fusion multiplicities originate from a fusion category, these
symmetries trivially hold. Therefore A is a WHA. The matrices Zc
and Z−1

c describing the antipode can be expressed with the help of the
fusion tensors as Equation 39:

Zc =
a
1
a

a
c̄
f

f
c
a

and Z−1
c =

1

[F c̄
c̄cc̄]

1
1

f
1
f

f
c
a

a
c̄
f

.
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It is easy to see that these matrices are the inverses of each other. The
square of the antipode is realized by the matrices

g
f
c
a a

c
f =

1

[F c̄
c̄cc̄]

1
1

[
F f
fcc̄

]a
1

[(
F f
fcc̄

)−1
]1

a

,(81a)

g−1

f
c
a a

c
f =

1

[F c
cc̄c]

1
1

[F a
ac̄c]

f
1

[
(F a

ac̄c)
−1]1

f
.(81b)

1. Fibonacci anyons

The fusion rules are given by:

N1
11 = N τ

τ1 = N τ
1τ = N1

ττ = N1
ττ =1,

N τ
11 = N1

τ1 = N1
1τ =0.

The F-symbol
[
F e
fcd

]g
l

is proportional to N g
fcN

l
cdN

e
fgN

e
ld. Therefore the

following entries are the only non-zero ones and are given by[
F 1

111

]1
1

= [F τ
11τ ]

1
τ = [F τ

τ11]τ1 = [F τ
1τ1]ττ =

[
F 1

1ττ

]τ
1

= [F τ
1ττ ]

τ
τ =

[F τ
τ1τ ]

τ
τ =

[
F 1
τ1τ

]τ
τ

= [F τ
ττ1]ττ =

[
F 1
ττ1

]1
τ

=
[
F 1
τττ

]τ
τ

= 1

[F τ
τττ ]

1
1 = ϕ, . [F τ

τττ ]
τ
τ = −ϕ, [F τ

τττ ]
τ
1 = [F τ

τττ ]
1
τ =
√
ϕ,

where ϕ = (
√

5− 1)/2. We also have
((
F d
abc

)−1
)f
e

=
(
F d
abc

)e
f
.

1.1. The MPO tensor. The MPO tensor given in Equation 80
has bond- and physical dimension 8. It is block-diagonal both in the
horizontal and vertical direction, with the two blocks labeled by 1 and
τ . The block 1 corresponds to the subspace spanned by |111〉, |τ1τ〉
and the block τ to the subspace spanned by |1ττ〉, |ττ1〉, |τττ〉. The
two simple cocommutative elements are given by

a1 ≡
(

[F 1
111]

1
1 [F τ

111]1τ
[F 1

1τ1]
τ
1 [F τ

1τ1]ττ

)
⊕

0 0 0
0 0 0
0 0 [F τ

ττ1]ττ


=

(
1 0
0 1

)
⊕

0 0 0
0 0 0
0 0 1


aτ ≡

(
[F 1

11τ ]
1
1 [F τ

11τ ]
1
τ

[F 1
1ττ ]

τ
1 [F τ

1ττ ]
τ
τ

)
⊕

0 0 0
0 0 0
0 0 [F τ

τττ ]
τ
τ


=

(
0 1
1 1

)
⊕

0 0 0
0 0 0
0 0 −ϕ

 ,

147



where the basis is ordered as given above. The square of the antipode,
as given by Equation 81, is implemented by

g
f
c
a a

c
f =

(
1 0
0 1

)
⊕

ϕ−1 0 0
0 ϕ 0
0 0 1

 .
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APPENDIX C

The Canonical Regular Element

Here we review the description of the element Ω, known as the
canonical regular element in the particular case of biconnected C*-
WHAs (see Definition 5.17 and Definition 5.3), introduced in Theo-
rems 5.14 and 5.21 for more general WHAs. First, it is well-known
that in any C*-WHA A there exists a unique non-degenerate two-
sided normalized integral h ∈ A, known as the Haar integral of A; see
Definition 3.24 and Theorem 4.5 in [14]. In particular,

(82) h2 = h∗ = h = S(h).

By self-duality, let ĥ ∈ A∗ denote the Haar integral of the dual C*-
WHA. We also recall the existence of Λ ∈ A, known as the dual left-
integral of ĥ, such that

(83) ĥ(Λ(1))Λ(2) = 1 and S(Λ(1))⊗ Λ(2) = Λ(2) ⊗ Λ(1);

see e.g. Theorem 3.18 and Lemma 3.20 in [14]. Second, there is a
unique positive element g ∈ A implementing the antipode squared as
an inner automorphism, i.e.

(84) S2(x) = gxg−1

for all elements x ∈ A, among other properties, known as the canon-
ical group-like element of A; see Proposition 4.9 in [14]. As its name
implies, it is a group-like element, i.e. it satisfies the following property:

(85) g(1) ⊗ g(2) = g1(1) ⊗ g1(2) = 1(1)g ⊗ 1(2)g.

Moreover, it can be decomposed in the form g = gLg
−1
R for two elements

gL, gR > 0 given by

(86) gL := (ĥ(h(1))h(2))
1
2 ∈ AL and gR := S(gL) = S−1(gL) ∈ AR.

By self-duality, we denote by ĝ ∈ A∗ the canonical group-like element
of the dual C*-WHA. Finally, let us recall the following formula.

Proposition C.1. For any C*-WHA,

x(1)ĝ(x(2)) = gRxg
−1
R and ĝ(x(1))x(2) = gLxg

−1
L

for all elements x ∈ A. In particular,

1(1)ĝ(1(2)) = 1 = ĝ(1(1))1(2).

Proof. See Scholium 2.7 and Lemma 4.13 in [14] for a proof. �
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Proposition C.2 (see [96]). For any connected C*-WHA A,

τ̂α(g) = ε(1)dα

for all sectors α ∈ Irr(A), where τ̂α stands for the character of the
sector α.

Proposition C.3. In any connected C*-WHA

ω(x) = D−2ε(1)−1ĥ(g−1
L g−1

R x) = D−2ε(1)−1ĥ(xg−1
L g−1

R )

for all elements x ∈ A. Equivalently, for any coconnected C*-WHA,

Ω = D−2ε(1)−1Λ(1)ĝ
−1(Λ(2)) = D−2ε(1)−1ĝ−1(Λ(1))Λ(2).

Proof. Assume first that A is a connected C*-WHA. There exists
a well-known element, called the S-invariant trace of A, see [14], given
by the expression

∑
α τ̂α(g)τ̂α, where τ̂α stands for the character of the

sector α ∈ Irr(A). By virtue of Theorem 5.21 and Proposition C.2, one
easily checks that both elements are proportional. �

Remark C.4 (see Equation 54). The linear map T ∈ B(A) in Theo-
rem 5.21 is given by

T (x) = S(x(1))ĝ(x(2)) = ĝ(x(1))S
−1(x(2))

Remark C.5. In any coconnected C*-WHA, ω ◦ S = ω = ω ◦ T .

Proof. It trivially follows from the fact that ĥ is S-invariant, the
definition of both gL and gR in Equation 86 and Propositions C.1
and C.3 and Remark C.4. �

Finally, let us particularize the previous notions and results in the
context of C*-Hopf algebras. We refer the reader to [94] for more
details.

Proposition C.6. Let A be a C*-HA. Then:

(1) S2 = Id and the canonical grouplike element is g = 1;
(2) dα = dimC(Vα) for all sectors α ∈ Irr(A);

(3) the dual left integral of the Haar measure ĥ ∈ A∗ is t = D2Ω;
(4) the canonical regular element and the Haar integral coincide,

i.e. Ω = h;
(5) the map T ∈ B(A) coincides with the antipode S ∈ B(A);
(6) gL = gR = D−11.

Proof. (1) It is well-known that for any C*-HA it holds that
S2 = Id [77, 78]. Since the unit element 1 ∈ A satisfies the defin-
ing properties of the canonical group-like element too, which is unique,
we can conclude that g = 1. (2) Consider that ε(1) = 1 by Defini-
tion 5.22 and hence Proposition C.2 proves that dimC(Vα) = τ̂α(1) =
τ̂α(g) = ε(1)dα = dα for all sectors α ∈ Irr(A), where τ̂α stands for the
character of the sector α. (3) Since the axioms of C*-HAs are self-dual
ĝ = ε and hence Ω = D−2ε(1)−1t = D−2t, where the first expression
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follows from Proposition C.3. (4) Every C*-HA is unimodular, see [94],
i.e. every left integral is a two-sided integral, and the subspace of two-
sided integrals is one-dimensional. Hence t = ηh for some η ∈ C. Since
Ω2 = Ω and h2 = h, the only possibility left is η = D2. (5) This follows
trivially as a consequence of Remark C.4 since ĝ = ε. (6) Recall the
definition of gL and gR in Equation 86 and consider both steps (3) and
(4). �
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APPENDIX D

Proof of Lemma 8.6

Here we restate and prove the following result.

Lemma D.1. Let A be a biconnected C*-WHA. There exists a unique
element ξ ∈ A such that ω(ξT (Ω(1)))Ω(2) = 1. Furthermore, it satisfies
the following properties:

(1) it is strictly positive and ξ−1 = ω(Ω(1))Ω(2) = ω(T (Ω(1)))Ω(2);
(2) it is invariant under T ∈ B(A), i.e. T (ξ) = ξ;
(3) it satisfies T (x)∗ = ξT (x∗)ξ−1 for all elements x ∈ A;
(4) τ̂α(ξ−1) = dαω(Ω) for all sectors α ∈ Irr(A), where τ̂α stands

for the character of the sector α;
(5) it can be decomposed as ξ = ξLξR for two positive elements

ξL ∈ AL and ξR = S(ξL) = S−1(ξL) ∈ AR;

Dually, if we denote ξ̂ = ξ̂Lξ̂R ∈ A∗, then:

(6) x(1)ξ̂L(x(2)) = ξ−1
L x and x(1)ξ̂

−1
R (x(2)) = xξ−1

L for all x ∈ A.

Finally, if A is a C*-HA, then ξ2
L = ξ2

R = ξ = D2ε(1)1 = ω(Ω)−11.

Proof. Since Ω ∈ A is non-degenerate there exists a linear func-
tional f ∈ A∗ such that f(Ω(1))Ω(2) = 1; see Definition 3.7 and The-
orem 5.21. On the other hand, since ω ∈ A∗ is non-degenerate, there
exists an element ξ ∈ A such that ω(ξx) = (f ◦ T )(x) for all elements
x ∈ A. Therefore,

ω(ξT (Ω(1)))Ω(2) = (f ◦ T )(T (Ω(1)))Ω(2) = f(Ω(1))Ω(2) = 1,

where in the second equality we have used that T ∈ B(A) is involutive,
i.e. T ◦ T = Id. Recall that ω ∈ A∗ is cocentral, it is a trace-like
linear functional of A∗. It follows by the pulling-through identity in
Equation 59 that

1 = ω(ξT (Ω(1)))Ω(2) = ω(T (Ω(1))ξ)Ω(2) = ω(T (Ω(1)))ξΩ(2),

and hence ξ ∈ A is invertible. Its inverse is then trivially given by the
expression

ξ−1 = ω(T (Ω(1)))Ω(2) = ω(Ω(1))Ω(2).

where the last equality follows from Remark C.5. Let us prove now
(4). By virtue of Proposition C.3, it is easy to conclude by its defining
property ω(ξT (Ω(1)))Ω(2) = 1 that ξ ∈ A is necessarily given by the
expression

(87) ξ = D4ε(1)2gLgR.
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Consequently, a natural choice of positive elements ξL ∈ AL and ξR ∈
AR is

(88) ξL := D2ε(1)gL and ξR := D2ε(1)gR = S(ξL).

Since gL, gR > 0, ξ is strictly positive, as we wanted to prove. We now
prove (2), i.e. that T (ξ) = ξ, note by the previous expressions that it
turns out to be enough to check that T (gL) = gR and T (gR) = gL. We
refer to Equations 99a and 99b below for elementary proofs of these
facts. In addition, note that (4) is straightforward by the eigenvalue
equation Ω · τa = τa · Ω = daΩ. See Scholium 2.7 and Lemma 4.13
from [14] for a proof of (6). Let us now move to the proof of (3). For
simplicity, we prove the equivalent formula ξT (x)ξ−1 = T (x∗)∗ for all
x ∈ A. To this end, we recall first that

(89) ξyξ−1 = gLgRyg
−1
L g−1

R = ĝ(y(1))y(2)ĝ(y(3))

for all elements y ∈ A, see Proposition C.1. On the other hand, by
virtue of the the fact that S−1(ĝ) = ĝ−1 and the positivity of ĝ ∈ A∗,

(90) ĝ−1(y) = ĝ(S−1(y)) = ĝ∗(S−1(y)) = ĝ(S(S−1(y))∗) = ĝ(y∗)

for all elements y ∈ A. Thus,

ξT (x)ξ−1

= ξS(x(1))ξ
−1ĝ(x(2)) by Remark C.4

= ĝ(S(x(1))(1))S(x(1))(2)ĝ(S(x(1))(3))ĝ(x(2)) by Equation 89

= ĝ(S(x(3)))S(x(2))ĝ(S(x(1)))ĝ(x(4)) by Equation 48

= ĝ−1(x(1))S(x(2))ĝ
−1(x(3))ĝ(x(4)) by Equation 86

= ĝ−1(x(1))S(x(2))

= ĝ−1(x(1))S
−1(S2(x(2)))

= ĝ−1(x(1))ĝ(x(2))S
−1(x(3))ĝ

−1(x(4)) by Definition 5.13

= S−1(x(1))ĝ
−1(x(2))

= S−1(x(1))ĝ(x∗(2)) by Equation 90

= S(x∗(1))
∗ĝ(x∗(2))

= S((x∗)(1))
∗ĝ((x∗)(2)) by Definition 5.17

= T (x∗)∗, by Remark C.4

for all elements x ∈ A, as we wanted to prove. Finally, if A is a C*-HA,
it is already known by Proposition C.6 that gL = gR = D−11. This,
together with the definition of ξ ∈ A in Lemma 8.6 and the fact that
ε(1) = 1, leads to the expressions ξL = ξR = D1 and ξ = D21, as we
wanted to prove. �
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APPENDIX E

Proof of Theorem 8.3

We now provide algebraic explicit expressions for both local coarse-
graining and fine-graining quantum channels. We restate and prove
the following theorem now.

Theorem 8.3. Let A be a biconnected C*-WHA and let (V,Φ) be
a faithful ∗-representation of A. Then, the operators

ρ(x, n) := ω(x)−1b(ω)⊗nΦ⊗n(∆(n−1)(x)) ∈ B(V ⊗n)

are RFP MPDOs for all positive non-zero elements x ∈ A and all
n ∈ N. Specifically, there are quantum channels T : B(V )→ B(V ⊗V )
and S : B(V ⊗ V ) → B(V ), known as local fine-graining and coarse-
graining maps, respectively, such that

T(ρ(x, 1)) = ρ(x, 2) and S(ρ(x, 2)) = ρ(x, 1)

for all positive non-zero elements x ∈ A and all n ∈ N.

Proof. As previously done, let us define the local coarse-graining
quantum channel

(91) T(X) := Tr(Φ(ξT (Ω(1)))X)Φ(cωΩ(2))⊗ Φ(cωΩ(3))

for all X ∈ B(V ). First, let us check that T(ρ(x, 1)) = ρ(x, 2) for all
positive non-zero x ∈ A. Indeed,

T(ρ(x, 1))

= 1
ω(x)

Tr(Φ(ξT (Ω(1))cωx))Φ(cωΩ(2))⊗ Φ(cωΩ(3))

= 1
ω(x)

ω(ξT (Ω(1))x)Φ(cωΩ(2))⊗ Φ(cωΩ(3)) by Remark 8.2

= 1
ω(x)

ω(ξT (Ω(1)))Φ(cωx(1)Ω(2))⊗ Φ(cωx(2)Ω(3)) by Equation 59

= 1
ω(x)

Φ(cωx(1)1(1))⊗ Φ(cωx(2)1(2)) by Lemma 8.6

= 1
ω(x)

Φ(cωx(1))⊗ Φ(cωx(2)) = ρ(x, 2) by Definition 5.17

155



Second, this map is trace-preserving:

Tr(T(X))

= Tr(Φ(ξT (Ω(1)))X)Tr(Φ(cωΩ(2)))Tr(Φ(cωΩ(3)))

= Tr(Φ(ξT (Ω(1)))X)ω(Ω(2))ω(Ω(3)) by Remark 8.2

= Tr(Φ(ξT (Ω(1)))X)ω(Ω(2)) by Lemma 8.1

= Tr(Φ(ξT (ξ−1))X) by Lemma 8.6

= Tr(Φ(ξξ−1)X)Tr(X) by Lemma 8.6

Finally, since Ω = Ω2 = ΩΩ∗ (in fact, only positivity of Ω is needed),
we can rewrite the map in the following form:

T(X) = Tr(Φ(ξT (Ω(1)(Ω
∗)(1′))X)Φ⊗2(c⊗2

ω ∆(Ω(2)(Ω
∗)(2′)))

= Tr(Φ(ξT (Ω(1)(Ω
∗)(1′))X)Φ⊗2(c⊗2

ω ∆(Ω(2))∆((Ω∗)(2′)))

= Tr(Φ(ξT (Ω(1)Ω
∗
(1′))X)Φ⊗2(c⊗2

ω ∆(Ω(2))∆(Ω(2′))
∗)

= Tr(Φ(ξT (Ω∗(1′))T (Ω(1)))X)Φ⊗2(c⊗2
ω ∆(Ω(2))∆(Ω(2′))

∗)

= Tr(Φ(T (Ω(1′))
∗ξT (Ω(1)))X)Φ⊗2(c⊗2

ω ∆(Ω(2))∆(Ω(2′))
∗)

= Tr(Φ(T (Ω(1′))
∗ξ

1
2 ξ

1
2T (Ω(1)))X)

Φ⊗2((c
1
2
ω)⊗2∆(Ω(2))∆(Ω(2′))

∗(c
1
2
ω)⊗2)

= Tr(Φ(T (Ω(1′))
∗ξ

1
2 )Φ(ξ

1
2T (Ω(1)))X)

Φ⊗2((c
1
2
ω)⊗2∆(Ω(2)))Φ

⊗2(∆(Ω(2′))
∗(c

1
2
ω)⊗2)

= Tr(Φ(ξ
1
2T (Ω(1)))XΦ(ξ

1
2T (Ω(1′)))

†)

Φ⊗2((c
1
2
ω)⊗2∆(Ω(2)))Φ

⊗2((c
1
2
ω)⊗2∆(Ω(2′)))

†

= (Tr⊗ Id⊗ Id)(Q(X ⊗ 1⊗ 1)Q†)

where

Q := Φ⊗3(ξ
1
2T (Ω(1))⊗ c

1
2
ωΩ(2) ⊗ c

1
2
ωΩ(3))

Thus, T is completely positive. Now, let us define a local fine-graining
quantum channel S. Consider first the following hermitian projectors

(92) P := Φ⊗2(∆(1)), P⊥ := Φ⊗2(1⊗ 1−∆(1)), P +P⊥ = 1⊗ 1

and let ρ0 ∈ B(V ) be any mixed state. Define

(93) S(X) := Tr(Φ(∆(ξT (Ω(1))))X)Φ(cωΩ(2)) + Tr(P⊥X)ρ0

for all elements X ∈ B(V ⊗ V ). We first check that it satisfies
S(ρ(x, 2)) = ρ(x, 1) for all positive non-zero x ∈ A. Notice that the
second summand in the right-hand side of Equation 93 simply van-
ishes, i.e. P⊥ρ(x, 2) = 0, since ρ(x, 2) is supported on the orthogonal
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subspace P ·B(V ⊗2). Thus,

S(ρ(x, 2))

= 1
ω(x)

Tr(Φ⊗2(c⊗2
ω ∆(ξT (Ω(1))x)))Φ(cωΩ(2)) by Definition 5.17

= 1
ω(x)

(ω ⊗ ω)(∆(ξT (Ω(1))x))Φ(cωΩ(2)) by Remark 8.2

= 1
ω(x)

ω(ξT (Ω(1))x)Φ(cωΩ(2)) by Lemma 8.1

= 1
ω(x)

ω(ξT (Ω(1)))Φ(cωxΩ(2)) by Equation 59

= 1
ω(x)

Φ(cωx) = ρ(x, 1) by Lemma 8.6

for all positive non-zero elements x ∈ A, as we wanted to prove. Sec-
ondly, let us check that it is trace-preserving:

Tr(S(X))

= Tr(Φ⊗2(∆(ξT (Ω(1))))X)Tr(Φ(cωΩ(2))) + Tr(P⊥X)

= Tr(Φ⊗2(∆(ξT (Ω(1))))X)ω(Ω(2)) + Tr(P⊥X) by Remark 8.2

= Tr(Φ⊗2(∆(ξT (ξ−1)))X) + Tr(P⊥X) by Lemma 8.6

= Tr(Φ⊗2(∆(ξξ−1))X) + Tr(P⊥X) by Lemma 8.6

= Tr(PX) + Tr(P⊥X) = Tr((P + P⊥)X) = Tr(X) by Equation 92

for all X ∈ B(V ⊗ V ). That S is completely positive can be proved
analogously and we do not include it here: simply notice that the
second summand in Equation 93 is clearly a completely positive map,
and a similar argument to that for T applies to the first summand. �
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APPENDIX F

Proof of Lemma 10.2

In this appendix we derive a proof of Lemma 10.2. We first provide
the following auxiliary result, related to the trace-preserving condition
of the gluing map.

Lemma F.1. Let A be a C*-HA. Then,

x(1) ⊗ ω(x(2))x(3) = ω(x)1⊗ 1

for all elements x ∈ A.

Proof. Fix any x ∈ A. Since Ω ∈ A is non-degenerate, there
exists f ∈ A∗ such that

(94) x = Ω(1)f(Ω(2)).

As an immediate consequence,

(95) ω(x) = ω(Ω(1))f(Ω(2)) = D−2f(1),

where the last equality follows from Lemma 8.6. Then, it is easy to
conclude that

x(1)ω(x(2))⊗ x(3) = Ω(1) ⊗ ω(Ω(2))Ω(3)f(Ω(4)) by Equation 94

= Ω(4) ⊗ ω(Ω(1))Ω(2)f(Ω(3)) by Theorem 5.21

= D−21(3) ⊗ 1(1)f(1(2)) by Lemma 8.6

= D−2f(1)1⊗ 1 by Definition 5.22

= ω(x)1⊗ 1, by Equation 95

as we wanted to prove. �

Lemma F.2. Let A be a C*-HA and let (V,Φ) be a faithful ∗-repre-
sentation of A. Then, for all positive non-zero elements x ∈ A there
exists a quantum channel Gx : B(V ⊗V )→ B(V ⊗V ), called “gluing”
map, such that

(72) (Id⊗m−1 ⊗Gx ⊗ Id⊗n−1)(ρ(Ω,m)⊗ ρ(Ω, n)) = ρ(x,m+ n)

for all m,n ∈ N.

Proof. Fix any positive non-zero element x ∈ A. We recall first
the definition of the gluing map previously given in Chapter 10. For
simplicity, let Gx := T◦G for the linear map G ∈ B(B(V ⊗V ),B(V ))
defined by the expression

(96) G(X ⊗ Y ) := 1
ω(x)

Tr(Φ(S(x(1)))X)Φ(cωx(2))Tr(Φ(S(x(3)))Y )
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for all X, Y ∈ B(V ). Then, it is enough to check that G(ρ(Ω, 2) ⊗
ρ(Ω, 2)) = ρ(Ω, 3). To this end, let us recall that, in the case of C*-
HAs,

(97) ω(Ω(1))Ω(2) = 1
D2 1 = ω(Ω)1,

where the first equality is stated in Lemma 8.6 and the second equality
follows by applying the counit in the first one, since ε(1) = 1. Then,

(Id⊗G⊗ Id)(ρ(Ω, 2)⊗ ρ(Ω, 2)) =

= 1
ω(x)

1
ω(Ω)2 Φ(cωΩ(1))⊗ ω(S(x(1))Ω(2))Φ(cωx(2))

⊗ ω(S(x(3))Ω(1′))Φ(cωΩ(2′))

= 1
ω(x)

1
ω(Ω)2 Φ(cωx(1)Ω(1))⊗ ω(Ω(2))Φ(cωx(2))

⊗ ω(S(x(3))Ω(1′))Φ(cωΩ(2′))

= 1
ω(x)

1
ω(Ω)2 Φ(cωx(1)Ω(1))⊗ ω(Ω(2))Φ(cωx(2))ω(Ω(1′))⊗ Φ(cωx(3)Ω(2′))

= 1
ω(x)

Φ(cωx(1)1)⊗ Φ(cωx(2))⊗ Φ(cωx(3)1) = ρ(x, 3).

This calculation can be explained as follows. In the first place, we have
replaced the trace with the canonical regular element ω ∈ A∗ since by
Remark 8.2 the weight cω ∈ A, which is central, defines a linear exten-
sion of ω to the representation space. In the second and third steps we
have applied the pulling-through identity; see Equation 59. Finally, we
apply twice Equation 97 to get rid of Ω and the coefficients ω(Ω)−1.
As an aside, note that ω(Ω(1))Ω(2) = Ω(1)ω(Ω(2)) since Ω is cocentral;
see Theorem 5.21. Since T is a quantum channel it only remains to
prove that G is also a quantum channel. On the one hand, that G is
trace-preserving is a straightforward consequence of Lemma F.1:

Tr(G(X ⊗ Y ))

= 1
ω(x)

Tr(Φ(S(x(1)))X)ω(x(2))Tr(Φ(S(x(3)))Y ) by Remark 8.2

= 1
ω(x)

ω(x)Tr(Φ(S(1))X)Tr(Φ(S(1))Y ) by Lemma F.1

= Tr(X)Tr(Y ) = Tr(X ⊗ Y )

for all X, Y ∈ B(V ). On the other hand, in order to prove that G is
completely positive, let x = yy∗ for some element y ∈ A. Then, we can
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rewrite it as follows

G(X ⊗ Y ) =

= 1
ω(x)

Tr(Φ(S((yy∗)(1)))X)Φ(cω(yy∗)(2))Tr(Φ(S(yy∗)(3))Y )

= 1
ω(x)

Tr(Φ(S(y(1)y
∗
(1′)))X)Φ(cωy(2)y

∗
(2′))Tr(Φ(S(y(3)y

∗
(3′))Y )

= 1
ω(x)

Tr(Φ(S(y∗(1′))S(y(1)))X)Φ(cωy(2)y
∗
(2′))

Tr(Φ(S(y∗(3′))S(y(3)))Y )

= 1
ω(x)

Tr(Φ(S(y(1′))
∗S(y(1)))X)Φ(cωy(2)y

∗
(2′))

Tr(Φ(S(y(3′))
∗S(y(3)))Y )

= 1
ω(x)

Tr(Φ(S(y(1)))XΦ(S(y(1′))
∗))Φ(cωy(2)y

∗
(2′))

Tr(Φ(S(y(3)))Y Φ(S(y(3′))
∗))

= (Tr⊗ Id⊗ Tr)(Q(X ⊗ 1⊗ Y )Q†)

where we have defined

(98) Q := 1
ω(x)1/2 Φ⊗4(S(y(1))⊗ c

1
2
ωy(2) ⊗ S(y(3))).

Therefore, G is completely positive. Indeed, in the first step we have
applied that the comultiplication is multiplicative and the ∗-operation
is a coalgebra homomorphism. In the second and third steps we have
used that S ∈ B(A) is an algebra anti-homomorphism and the relation
between the antipode and the ∗-operation; see Section 5 from Chap-
ter 5. Note that, for C*-HAs, S = S−1; see Proposition C.6. The fourth
step is a simple consequence of the fact that Φ is a ∗-representation and
the cyclic property of the trace. Finally, the middle term can be rewrit-

ten in the form Φ(cωy(2)y
∗
(2′)) = Φ(c

1/2
ω y(2))Φ(c

1/2
ω y(2′))

† since cω ∈ A is
positive central element and Φ is a ∗-representation. �
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APPENDIX G

Proof of Lemma 10.6

In this appendix we prove Lemma 10.6. In order to perform an
analogous construction of this gluing map to the one given in the C*-
HA case, we first derive an appropiate version of the usual pulling-
through identity in Equation 59 to the trivial sector.

Lemma G.1. Let A be a biconnected C*-WHA. Then,

xLS(1(1))⊗ 1(2) ⊗ S(1(3))yR = S(1(1))⊗ yR1(2)xL ⊗ S(1(3))

for all elements xL ∈ AL and yR ∈ AR.

Proof. First, recall Equations 2.31a and 2.31b from [14]:

xLS(1(1))⊗ 1(2) = S(1(1))⊗ 1(2)xL,

yR1(1) ⊗ S(1(2)) = 1(1) ⊗ S(1(2))yR.

for all xL ∈ AL and yR ∈ AR. This, together with Definitions 5.18,
leads by taking coproducts accordingly to the following identities:

xLS(1(1))⊗ 1(2) ⊗ 1(3) = S(1(1))⊗ 1(2)xL ⊗ 1(3),

1(1) ⊗ yR1(2) ⊗ S(1(3)) = 1(1) ⊗ 1(2) ⊗ S(1(3))yR,

respectively, for all elements xL ∈ AL and yR ∈ AR. Finally, since AL

and AR commute, we conclude the result by combining both identities.
�

In addition, we adapt slightly Lemma 8.6 to the trivial sector, which
is a key property concerning complete positivity of the gluing map in
Lemma 10.6. The following result solves this problem.

Lemma G.2. Let A be a biconnected C*-WHA. Then,

ξRS(x∗L) = S(xL)∗ξR and S(yR)ξL = ξLS(y∗R)∗

for all elements xL ∈ AL and yR ∈ AR.

Proof. In the first place, note that T ∈ B(A) coincides with S
and S−1 restricted to AL and AR, respectively. Indeed, by virtue of
Remark C.4, Proposition C.1 and Section 5,

T (xL) = S(xL1(1))ĝ(1(2)) = S(xL),(99a)

T (yR) = ĝ(1(1))S
−1(1(2)yR) = S−1(yR) = S(y∗R)∗,(99b)
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for all xL ∈ AL and yR ∈ AR. Then, recall Lemma 8.6 to conclude that

S(x∗L) = T (x∗L) = ξ−1
L ξ−1

R T (xL)∗ξLξR

= ξ−1
L ξ−1

R S(xL)∗ξLξR = ξ−1
R S(xL)∗ξR,

where in the last step we have used that S(xL) ∈ AR and AL and AR

commute. The remaining identity is proved similarly. �

The following auxiliary results arise naturally in the course of the
derivation of the properties of the gluing map.

Lemma G.3. Let A be a bicoconnected C*-WHA. Then,

ĥ(Ω(1))Ω(2) =
1

D2ε(1)
1.

Proof. It is easy to check that

D2ε(1)ĥ(Ω(1))Ω(2) = ĥ(t(1))t(2)ĝ(t(3)) = 1(1)ĝ(1(2)) = 1,

where the first step is a consequence of the characterization of Ω ∈ A

in Proposition C.3, the second follows from the definition of dual left
integral in Equation 83 and the third equality is due to Proposition C.1.

�

Lemma G.4. Let A be a biconnected C*-WHA. Then,

(100) 1(1)ĥ(1(2))⊗ 1(3) =
1

ε(1)
1⊗ 1.

Proof. Equivalently, we will check that

(φĥψ)(1) =
1

ε(1)
φ(1)ψ(1)

for all φ, ψ ∈ A∗. Recall that ĥ ∈ A∗ is a one-dimensional projector
supported on the trivial sector [14, Lemma 4.8]. Hence,

(101) (φĥψĥ)(τ1) = (φĥ)(τ1)(ψĥ)(τ1) and (φĥ)(τa) = δa1

for all φ, ψ ∈ A∗ and all sectors a ∈ Irr(A∗). In particular

(102) (fĥ)(τ1) = (fĥ)(
∑
a

daτa) = D2(fĥ)(Ω) = ε(1)−1f(1)

for all f ∈ A∗. Thus, we conclude that:

1

ε(1)
(φĥψ)(1) = (φĥψĥ)(τ1) = (φĥ)(τ1)(ψĥ)(τ1) =

1

ε(1)2
φ(1)ψ(1),

where the first equality follows from Equation 102 using f := φĥψ, the
second equality is simply Equation 101 and the third equality follows
from Equation 102 considering f := φ, ψ. �

Lemma G.5. Let A be a biconnected C*-WHA. Then,

1(1) ⊗ ω(1(2))1(3) = D2ξ−1
R ⊗ ξ

−1
L .
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Proof. Note by the definition of AL and AR in Definitions 5.18
and the decomposition ξ−1 = ξ−1

L ξ−1
R in Lemma 8.6, that

(103) (ξ−1)(1) ⊗ (ξ−1)(2) ⊗ (ξ−1)(3) = ξ−1
L 1(1) ⊗ 1(2) ⊗ ξ−1

R 1(3)

Then, the statement follows from the following calculation:

1(1) ⊗ ω(1(2))1(3)

= D2ε(1)ĥ(Ω(1))Ω(2) ⊗ ω(Ω(3))Ω(4) by Lemma G.3

= D2ε(1)ĥ(Ω(3))Ω(4) ⊗ ω(Ω(1))Ω(2) by Theorem 5.21

= D2ε(1)ĥ((ξ−1)(2))(ξ
−1)(3) ⊗ (ξ−1)(1) by Lemma 8.6

= D2ε(1)ĥ(1(2))ξ
−1
R 1(3) ⊗ ξ−1

L 1(1) by Equation 103

= D2ξ−1
R ⊗ ξ

−1
L by Lemma G.4

as we wanted to prove. �

Lemma G.6. Let A be a biconnected C*-WHA. Then,

(104) ω(1(1))1(2)ω(1(3)) = D2ω(1)ξ−1.

Proof. First, it will be useful to compute the constant ω(1) in a
more operative way. The following calculation is a direct consequence
of Proposition C.3 and Equation 88:

(105) ω(1) = 1
D2ε(1)

ĥ(g−1
L g−1

R ) = D4ε(1)2

D2ε(1)
ĥ(ξ−1

L ξ−1
R ) = D2ε(1)ĥ(ξ−1

L ξ−1
R ).

Now, by an analogous reasoning as in the previous proof:

ω(1(1))1(2)ω(1(3))

= D2ε(1)ĥ(Ω(1))ω(Ω(2))Ω(3)ω(Ω(4)) by Lemma G.3

= D2ε(1)ĥ(Ω(4))ω(Ω(1))Ω(2)ω(Ω(3)) by Theorem 5.21

= D2ε(1)ĥ(ξ−1
R 1(3))ξ

−1
L 1(1)ω(1(2)) by Lemma 8.6

= D4ε(1)ĥ(ξ−1
R ξ−1

L )ξ−1
L ξ−1

R by Lemma G.5

= D2ω(1)ξ−1
L ξ−1

R = D2ω(1)ξ−1 by Equation 105

as we wanted to prove. �

Remark G.7. There are no trace-preserving gluing maps for general
biconnected C*-WHAs such that Equation 72 holds for all elements
x ∈ A.

Proof. Suppose by contradiction that there exists a trace-preserv-
ing linear map G ∈ B(B(V ⊗V )) that is a “gluing map”. In particular,

(Id⊗G⊗ Id)(ρ(Ω, 2)⊗ ρ(Ω, 2)) = ρ(Ω, 4).

On the one hand, after performing a partial trace on the second and
third subsystems, the left-hand side would be trivially given by the
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product state

(Id⊗ Tr⊗ Tr⊗ Id)(ρ(Ω, 2)⊗ ρ(Ω, 2))

= ω(Ω)−2Φ(cωΩ(1))ω(Ω(2))⊗ ω(Ω(1′))Φ(cωΩ(2′))

= ω(Ω)−2Φ(cωξ
−1)⊗ Φ(cωξ

−1)

by virtue of Remark 8.2 and Lemma 8.6. However, the right-hand side
would take the following form:

(Id⊗ Tr⊗ Tr⊗ Id)(ρ(Ω, 4))

= ω(Ω)−2Φ(cωΩ(1))⊗ ω(Ω(2))ω(Ω(3))Φ(cωΩ(4)) by Remark 8.2

= ω(Ω)−2Φ(cωΩ(1))⊗ ω(Ω(2))Φ(cωΩ(3)) by Lemma 8.1

= ω(Ω)−2Φ(cωΩ(2))⊗ ω(Ω(3))Φ(cωΩ(1)) by Theorem 5.21

= ω(Ω)−2Φ(cωξ
−1
R 1(2))⊗ Φ(cωξ

−1
L 1(1)) by Lemma 8.6

which is not a product state. This contradicts the previous equation.
�

Lemma G.8. Let A be a biconnected C*-WHA and let (V,Φ) be a
faithful ∗-representation of A. There is a quantum channel G1 : B(V ⊗
V )→ B(V ⊗ V ), called “gluing” map, such that

(73) (Id⊗m−1 ⊗G1 ⊗ Id⊗n−1)(ρ(1,m)⊗ ρ(1, n)) = ρ(1,m+ n)

for all m,n ∈ N.

Proof. For simplicity, let G1 := T ◦ G, where T : B(V ) →
B(V ⊗ V ) stands for the local coarse-graining quantum channel from
Chapter 8 and G : B(V ⊗ V )→ B(V ) is given by

G(X ⊗ Y ) := 1
D2 Tr(Φ(S(1(1))ξL)X)Φ(cω1(2))Tr(Φ(ξRS(1(3)))Y )

for all X, Y ∈ B(V ). First, assume that m = n = 2 without loss of
generality and let us check that it fulfills G(ρ(1, 2)⊗ ρ(1, 2)) = ρ(1, 3).
To this end, it turns out to be enough to prove:

(106) G(Φ(cωxL)⊗ Φ(cωxR)) = ω(1)Φ(cωxLxR)

for all xL ∈ AL and xR ∈ AR. Indeed, in that case,

(Id⊗G⊗ Id)(ρ(1, 2)⊗2)

= 1
ω(1)2 Φ(cω1(1))⊗G(Φ(cω1(2))⊗ Φ(cω1(1′)))⊗ Φ(cω1(2′))

= 1
ω(1)

Φ(cω1(1))⊗ Φ(cω1(2)1(1′))⊗ Φ(cω1(2′))

= 1
ω(1)

Φ(cω1(1))⊗ Φ(cω1(2))⊗ Φ(cω1(3)) = ρ(1, 3).

by the weak comultiplicativity of the counit and the fact that 1(1) ⊗
1(2) ∈ AR ⊗AL; see Definition 5.17 and [14]. Thus, let us move to the
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proof of Equation 106:

G(Φ(cωxL)⊗ Φ(cωxR))

= 1
D2ω(S(1(1))ξLxL)Φ(cω1(2))ω(ξRS(1(3))xR) by Remark 8.2

= 1
D2ω(ξLxLS(1(1)))Φ(cω1(2))ω(S(1(3))xRξR)

= 1
D2ω(S(1(1)))Φ(cωxRξR1(2)ξLxL)ω(S(1(3))) by Lemma G.1

= 1
D2ω(1(1))Φ(cωxRξR1(2)ξLxL)ω(1(3)) by Remark C.5

= ω(1)Φ(cωxRξRξ
−1
R ξ−1

L ξLxL) by Equation 104

= ω(1)Φ(cωxRxL)

as we wanted to prove. Additionally, G is trace-preserving as an im-
mediate consequence of Lemma G.5:

Tr(G(X ⊗ Y ))

= 1
D2 Tr(Φ(S(1(1))ξL)X)ω(1(2))Tr(Φ(ξRS(1(3)))Y ) by Remark 8.2

= Tr(Φ(S(ξ−1
R )ξL)X)Tr(Φ(ξRS(ξ−1

L ))Y ) by Lemma G.5

= Tr(Φ(ξ−1
L ξL)X)Tr(Φ(ξRξ

−1
R )Y ) by Equation 88

= Tr(X)Tr(Y ) = Tr(X ⊗ Y ).

Finally, in order to check that G is a completely positive linear map,
let us first consider the following two calculations:

Tr(Φ(S(xRy
∗
R)ξL)X)

= Tr(Φ(S(y∗R)S(xR)ξL)X)

= Tr(Φ(S(y∗R)ξLS(x∗R)∗)X) by Lemma G.2

= Tr(Φ(S(y∗R)ξ
1
2
Lξ

1
2
LS(x∗R)∗)X) by Equation 88

= Tr(Φ(S(y∗R)ξ
1
2
L)Φ(ξ

1
2
LS(x∗R)∗)X)

= Tr(Φ(ξ
1
2
LS(x∗R)∗)XΦ(S(y∗R)ξ

1
2
L))

= Tr(Φ(ξ
1
2
LS(x∗R)∗)XΦ((ξ

1
2
LS(y∗R))∗)) by Equation 88

= Tr(Φ(ξ
1
2
LS(x∗R)∗)XΦ(ξ

1
2
LS(y∗R)∗)†)
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for all xR, yR ∈ AR and, analogously,

Tr(Φ(ξRS(xLy
∗
L))Y )

= Tr(Φ(ξRS(y∗L)S(xL))Y )

= Tr(Φ(S(yL)∗ξRS(xL))Y ) by Lemma G.2

= Tr(Φ(S(yL)∗ξ
1
2
Rξ

1
2
RS(xL))Y ) by Equation 88

= Tr(Φ(S(yL)∗ξ
1
2
R)Φ(ξ

1
2
RS(xL))Y )

= Tr(Φ(ξ
1
2
RS(xL))Y Φ(S(yL)∗ξ

1
2
R))

= Tr(Φ(ξ
1
2
RS(xL))Y Φ((ξ

1
2
RS(yL))∗)) by Equation 88

= Tr(Φ(ξ
1
2
RS(xL))Y Φ(ξ

1
2
RS(yL))†)

for all xL, yL ∈ AL. Now, recall that 1(1) ⊗ 1(2) ⊗ 1(3) ∈ AR ⊗A⊗AL;
see [14]. This allows us to rewrite G in the following form:

G(X ⊗ Y )

= 1
D2 Tr(Φ(S((1·1∗)(1))ξL)X)Φ(cω(1·1∗)(2))

Tr(Φ(ξRS((1·1∗)(3)))Y )

= 1
D2 Tr(Φ(S(1(1)(1

∗)(1′))ξL)X)Φ(cω1(2)(1
∗)(2′))

Tr(Φ(ξRS(1(3)1(3′)))Y )

= 1
D2 Tr(Φ(S(1(1)1

∗
(1′))ξL)X)Φ(cω1(2)1

∗
(2′))

Tr(Φ(ξRS(1(3)1
∗
(3′)))Y )

= (Tr⊗ Id⊗ Tr)(Q(X ⊗ 1⊗ Y )Q†)

where the last step follows from the previous calculations, and we have
defined

(107) Q := 1
D

Φ⊗3(ξ
1
2
LS(1∗(1))⊗ c

1
2
ω1(2) ⊗ ξ

1
2
RS(1(3))).

This concludes the proof. �
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