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Abstract. We study the problem of ensemble equivalence in spin systems with

short-range interactions under the existence of a first-order phase transition. The

spherical model with nonlinear nearest-neighbour interactions is solved exactly both

for canonical and microcanonical ensembles. The result reveals apparent ensemble

inequivalence at the first-order transition point in the sense that the microcanonical

entropy is non-concave as a function of the energy and consequently the specific heat is

negative. In order to resolve the paradox, we show that an unconventional saddle point

should be chosen in the microcanonical calculation that represents a phase separation.

The XY model with non-linear interactions is also studied by microcanonical Monte

Carlo simulations in two dimensions to see how this model behaves in comparison with

the spherical model.
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1. Introduction

In statistical mechanics, we prepare an ensemble of macroscopic systems and calculate

thermodynamic quantities by taking the average over the ensemble. When the system

is isolated from the environment, the total energy is kept constant and the principle

of equal weights leads to the microcanonical ensemble. On the other hand, when we

consider a heat bath attached to the system to allow an energy exchange, we have

the canonical ensemble characterized by temperature. These ensembles are generally

considered equivalent and their thermodynamic potentials are related by the Legendre

transformation.

Equivalence of ensembles has been proven rigorously for systems with short-range

interactions [1]. For systems with long-range interactions, there is no guarantee that

two ensembles produce the same results in the thermodynamic limit. Typical examples

include gravitational systems [2]-[7] and fully-connected mean-field spin models [8]-

[20]. For a review, see [21]. In the latter models, in particular, the interplay of long-

range interactions and first-order phase transitions is now known to lead to ensemble

inequivalence, typically as negative specific heat in the microcanonical ensemble.

In systems with short-range interactions, by contrast, ensembles are equivalent in

the thermodynamic limit and there should exist no anomalous effects except in finite-

size systems [22]. In the present paper, we solve the multi-component spin model with

nonlinear interactions in two and three dimensions exactly for the spherical model and

numerically for the XY model. These models have been known to have first-order phase

transitions in two and three dimensions [23]-[27]. We show that ensemble equivalence

should be taken with special caution in these systems.

The organization of this paper is as follows. In section 2, we define the model. The

spherical (many-component) limit is solved exactly in section 3. The results for the

canonical and microcanonical ensembles are compared. To study the system with finite

component spins we use microcanonical Monte Carlo simulations in section 4. The last

section is devoted to summary and conclusion.

2. n-vector model with nonlinear interactions

We study the generalized n-vector model (O(n)-symmetric model)

H = −Jn
∑

〈ij〉

V (Si · Sj/n) (1)

on a d-dimensional hypercubic lattice. The spin variable Si at site i is an n-component

vector with the constraint S2
i =

∑n
a=1(S

a
i )

2 = n. The sum in the Hamiltonian is taken

over nearest-neighbour pairs. The number of spins is N = Ld, where L is the linear

size of the system. In the standard n-vector model with linear interactions, the function

V (x) is equal to x. Here, following [24, 25], we consider the form

V (x) =
1

2p−1p
[(1 + x)p − 1] . (2)
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The linear interaction is recovered if we choose p = 1.

The linear model in the limit n → ∞ is the ordinary spherical model and can be

solved exactly. We shall call the nonlinear model also the spherical model for simplicity.

The canonical analysis of the linear case is found in standard textbooks [28, 29]. The

microcanonical analysis was performed in [30] and [31]. We generalize their calculations

to the nonlinear case.

3. Spherical limit

In the canonical ensemble, the generalized n-vector model (1) can be solved exactly

in the spherical limit n → ∞ [25]. The problem is reduced to solving a saddle-point

equation for auxiliary variables. We solve the nonlinear model in the microcanonical

ensemble and compare the results with those for the canonical ensemble.

3.1. Saddle point equations

First, we briefly review how the problem is solved in the canonical ensemble

following [25]. The partition function is written as

Z = Tr







exp



βJn
∑

〈ij〉

V (Si · Sj/n)





N
∏

i=1

δ
(

S
2
i − n

)







, (3)

where β is the inverse temperature and the trace denotes integrations over the spin

variables. In order to carry out the integrations, the δ function is expressed by a Fourier

integral over the auxiliary variable zi. We also introduce two kinds of variables ρij
(= Si · Sj/n) and λij (to impose the constraint ρij = Si · Sj/n) and write

Z =
∫ N
∏

i=1

dzi
∏

〈ij〉

dλijdρij Tr exp



βJn
∑

〈ij〉

V (ρij)−
∑

i

zi(S
2
i − n)

−
∑

〈ij〉

λij (nρij − Si · Sj)





=
∫ N
∏

i=1

dzi
∏

〈ij〉

dλijdρij exp



βJn
∑

〈ij〉

V (ρij) + n
∑

i

zi − n
∑

〈ij〉

λijρij

+n lnTr exp



−
∑

i

ziS
2
i +

∑

〈ij〉

λijSiSj







 . (4)

The spin trace is just a Gaussian integral over unconstrained scalars {Si} and can be

evaluated using the lattice Green function [28, 29]. In the limit n → ∞, auxiliary

variables are determined from the saddle-point equations. Following the conventional

procedure used for the spherical model with linear interactions, we neglect the subscript

dependence of the variables, λ = λi, z = zi, ρ = ρij (∀i, j). Then, we can write

Z = exp

[

NndβJV (ρ) +Nnz −Nndλρ+
n

2

∑

k

lnG(k, z̃)
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−
Nn

2
lnλ+

Nn

2
ln π

]

, (5)

where z̃ = z/λ. The lattice Green function in the momentum space is given by

G(k, z̃) =
1

z̃ −
∑d

µ=1 cos kµ
. (6)

If we take the thermodynamic limit, the sum over k is replaced by an integral as

1

N

∑

k

→
∫

ddk

(2π)d
. (7)

From the expression (5), we determine the state of the system by a set of saddle-

point equations,

λ = βJV ′(ρ), 2λ = g(z̃), dρ = z̃ −
1

2λ
, (8)

where

g(z̃) =
∫

ddk

(2π)d
1

z̃ −
∑d

µ=1 cos kµ
. (9)

The auxiliary variables λ and ρ are eliminated to obtain

βJ =
g(z̃)

2V ′

(

z̃

d
−

1

dg(z̃)

) . (10)

For a given βJ , z̃ is determined from this equation. Then, the free energy density

f = F/Nn is given by

− βf = dβJV

(

z̃

d
−

1

dg(z̃)

)

−
1

2
ln g(z̃) +

1

2

∫

ddk

(2π)d
lnG(k, z̃)

+
1

2
(1 + ln 2π). (11)

Thus, by solving the simple saddle-point equation (10) for z̃, we can calculate the free

energy as a function of β.

Next, we derive the equations in the microcanonical ensemble. If we compare (11)

with the relation −βF = −βE+S, we may guess that the energy and entropy are given

as

− ǫ = dV

(

z̃

d
−

1

dg(z̃)

)

, (12)

s = −
1

2
ln g(z̃) +

1

2

∫

ddk

(2π)d
lnG(k, z̃) +

1

2
(1 + ln 2π), (13)

where ǫ = E/NnJ and s = S/Nn. Here, z̃ is obtained as a function of ǫ by (12)

to determine the entropy s = s(ǫ). These expressions (12) and (13) for the energy

and entropy can indeed be derived directly from the microcanonical number of states

Ω = eS = Tr δ(E−H) using the integral representation of the delta function. Following
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the same procedure as in the canonical case, we find

Ω(ǫ) =
∫

dt

2π
exp

[

iNnJt {ǫ+ dV (ρ)}+Nnz −Nndλρ

+ n ln Tr exp

(

−
N
∑

i=1

zS2
i +

∑

〈ij〉

λSiSj

)]

. (14)

Then, we impose the saddle-point conditions for the auxiliary variables to obtain the

above result (12) and (13) as described in more detail in Appendix A.

We are ready to study the ensemble dependence of system properties by comparing

the canonical result (10), (11) and the microcanonical (12), (13). In the following, we

focus ourselves on the cases of d = 2 and d = 3.

3.2. d = 2

Figure 1. Saddle-point equation

(10) in the canonical ensemble at

d = 2. The function diverges

logarithmically at the origin.

Figure 2. Saddle-point equation

(12) in the microcanonical ensem-

ble at d = 2. The function is finite

at the origin.

Let us first write the lattice Green function (6) as, using the variable m2 = 2(z̃−d),

G(k, z̃) =
2

m2 +
∑

µ (2 sin(kµ/2))
2 . (15)

This is a decreasing function of m and the value at the origin m = 0 determines

the infrared behaviour. When d = 2, g(z̃) defined in (9) diverges logarithmically at

m = 0 (z̃ = 2).

We plot the right-hand sides of (10) and (12) in figures 1 and 2, respectively,

for several values of p. In the canonical case, the right-hand side of (10) diverges at

z̃ = d = 2 (m = 0) and is monotonically decreasing when p ≤ 4. Therefore, in this

case, for a given β, z̃ is determined uniquely. When p > 4, in a certain range of β,

three solutions exist and m is not determined uniquely. This is understood as the

emergence of a first-order transition [25]. On the other hand, the function in (12) for

the microcanonical ensemble is finite at the origin (m = 0) and is a decreasing function
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for arbitrary p. Since the functional value at the origin corresponds to the ground-state

energy, the solution is determined uniquely for a given ǫ larger than or equal to the

ground-state energy. Nothing singular happens in this case.

Figure 3. Free energy density

f(T ) in the canonical ensemble for

d = 2, p = 1.

Figure 4. f(T ) in the canonical

ensemble for d = 2, p =

5. The dotted line denotes

the thermodynamically irrelevant

(unstable or metastable) saddle-

point solutions.

Figure 5. Entropy density s(ǫ)

and inverse temperature β(ǫ) =

ds(ǫ)/dǫ in the microcanonical

ensemble for d = 2, p = 1.

Figure 6. s(ǫ) and β(ǫ) in the

microcanonical ensemble for d =

2, p = 5. s(ǫ) is non-concave

and correspondingly β(ǫ) is non-

monotonic. The dotted parts

correspond to the metastable and

unstable branches in the canonical

ensemble in figure 4.

From the obtained saddle-point solution in the canonical ensemble, we plot the

free-energy density f for p = 1 and 5 in figures 3 and 4, respectively. We see that

a first-order transition occurs when p = 5. We also plot the entropy density s and

the inverse temperature β = ds/dǫ in the microcanonical ensemble for p = 1 and 5 in
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figures 5 and 6, respectively. For p = 5 in figure 6, we see that β is non-monotonic

(the entropy is non-concave) for −0.21 < ǫ < −0.07 and consequently the specific

heat is negative. In this sense, ensembles may seem inequivalent. This behaviour is

similar to the case of systems with long-range interactions, where the mean-field picture

applies. A remarkable fact is that this mean-field-like behaviour has been found by

exact calculations for the two-dimensional system with short-range interactions.

3.3. Phase separation

Ensemble equivalence is recovered in the present system if we choose a proper saddle-

point solution which represents a phase-separated state. We have assumed in (13) that

the auxiliary variables are independent of the subscripts i and j. It implies that the

phase is uniform in space. In order to describe the situation with phase separation, we

divide the system into two parts with N1 and N2 spins, respectively. The particular

shape of the two sub-regions is not important, as far as they are geometrically compact

objects, with a surface-to-volume ratio that vanishes in the thermodynamic limit (for

instance, a cubic lattice may be divided into two slabs). We set auxiliary variables in

each subsystem as z(1), ρ(1), λ(1) and z(2), ρ(2), λ(2), respectively. In the thermodynamic

limit, we expect that the interface terms between two subsystems are irrelevant due to

the short-range nature of the system. We prove it rigorously in Appendix B. Then, the

number of states Ω is written as the sum of contributions from two subsystems as

Ω(ǫ) =
∫

dt

2π
exp

[

iNnJt
{

ǫ+
N1

N
dV (ρ(1)) +

N2

N
dV (ρ(2))

}

+Nn
(

N1

N
z(1) +

N2

N
z(2)

)

−Nn
(

N1

N
dλ(1)ρ(1) +

N2

N
dλ(2)ρ(2)

)

+ n ln Tr exp

(

−
N1
∑

i=1

z(1)(S
(1)
i )2 +

∑

〈ij〉

λ(1)S
(1)
i S

(1)
j

)

+ n ln Tr exp

(

−
N2
∑

i=1

z(2)(S
(2)
i )2 +

∑

〈ij〉

λ(2)S
(2)
i S

(2)
j

)]

, (16)

where S
(1)
i (S

(2)
i ) represents the spin variable in subsystem 1 (2). The saddle-point

equations are written as

ǫ =
N1

N
ǫ1 +

N2

N
ǫ2, (17)

ǫi = −dV

(

z̃(i)

d
−

1

dg(z̃(i))

)

(i = 1, 2), (18)

where z̃1 = z(1)/λ(1) and z̃2 = z(2)/λ(2). Then, the entropy density is expressed as

s =
N1

N
s1 +

N2

N
s2, (19)

si = −
1

2
ln g(z̃(i))−

1

2

∫

ddk

(2π)d
ln



z̃(i) −
d
∑

µ=1

cos kµ



+
1

2
+

1

2
ln 2π. (20)
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Figure 7. Comparison of the entropies obtained from the uniform and phase-

separated solutions. The entropy from the phase-separated solution is represented

by the straight lines. (a) When the entropy for the uniform solution is concave, the

phase-separated solution is irrelevant because it has a smaller value of the entropy

s′
a
than the true sa. (b) When the entropy is non-concave, a first-order transition

occurs and a phase-separated state is realized between ǫ1 and ǫ2 because it has a

larger entropy.

A notable fact is that these expressions hold for any ratio of the separated phases,

c = N1/N, 1 − c = N2/N as well as for any choice of ǫ1,2 and s1,2. Thus, we should

discuss what values of these parameters are actually chosen for a given fixed value of the

energy ǫ = ǫa. First, if the total entropy is concave, the hypothetical phase separation

means that the value of the entropy would be s′a = cs1 + (1− c)s2, which is lower than

the true entropy sa as can be understood from figure 7(a). Thus, there is no phase

separation in the stable state. Technically, this means that the exponent of the integral

for the number of states Ω = eS becomes largest at the saddle point representing the

uniform state, not at the point corresponding to the phase-separated state.

On the other hand, the situation is different when the total entropy is non-concave

as we show in figure 7(b). At ǫ = ǫa, the state with the entropy s = sa = cs1+(1− c)s2
is more stable than that with s′a and is realized as the phase-separated state in the usual

sense. Technically, the saddle point corresponding to this former state has the largest

contribution to the integral. Thus, we can obtain the phase-separated state by relaxing

the uniformity condition of the saddle-point solution. It should be noticed that only the

microcanonical solution needs this non-uniform prescription of the saddle-point values.

The uniform solution for the canonical case (8) shows no inconsistencies.

3.4. d = 3

Let us next consider the three-dimensional system, in which case g(z̃) is finite at

m = 0 (g(z̃ = 3) ≈ 0.505) and is monotonically decreasing. As shown in figures 8

and 9, the saddle-point equation has no solution at low temperature or low energy. To

avoid this difficulty, the zero mode k = 0 in (9) should be separated from the integral,
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Figure 8. Saddle-point equation

(10) in the canonical ensemble at

d = 3.

Figure 9. Saddle-point equation

(12) in the microcanonical ensem-

ble at d = 3. The value at the ori-

gin is not equal to the ground state

energy.

Figure 10. Zero-mode part of

the saddle-point equation in the

canonical ensemble at d = 3.

Figure 11. Zero-mode part of

the saddle-point equation in the

microcanonical ensemble at d = 3.

similarly to the Bose-Einstein condensation, as

g(z̃) → g̃(k = 0, z̃) + g(z̃) =
1

N

1

z̃ − 3
+
∫

d3k

(2π)3
1

z̃ −
∑3

µ=1 cos kµ
. (21)

The parameter z̃ approaches 3 in the thermodynamic limit so that the first term gives

a finite contribution g0 in this limit. Then, we can find the solution of the saddle-point

equation by the replacement

g(z̃) → g0 + g(3). (22)

As depicted in figures 10 and 11, g0 can be fixed from the saddle-point equation for a

given β (or ǫ) below (or above) the values achievable in figure 8 (or figure 9). Hence,

there exists a solution for any β or ǫ, the latter being larger than or equal to the

ground-state energy.

We plot the free energy in the canonical ensemble in figures 12 and 13 for p = 1

and p = 5, respectively. A continuous transition to the zero-mode condensed phase
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Figure 12. f(T ) in the canonical

ensemble for d = 3, p = 1. The dot

denotes the transition point, where

g0 starts to be finite.

Figure 13. f(T ) in the canonical

ensemble for d = 3, p = 5.

Figure 14. s(ǫ) and β(ǫ) in the

microcanonical ensemble for d =

3, p = 1. The dot denotes the

transition point.

Figure 15. s(ǫ) and β(ǫ) in the

microcanonical ensemble for d =

3, p = 5. The putative continuous

transition point denoted by the

dot is hidden by a first-order

transition. The dotted parts

correspond to those in figure 13.

is observed for p = 1. It is replaced by a discontinuous transition for p = 5. From

the microcanonical analysis, we plot s and β in figures 14 and 15 for p = 1 and

p = 5, respectively. As can be understood from these figures, transitions between

the condensed and non-condensed phases exist in both ensembles in three dimensions.

It is discontinuous for p = 5. Similarly to the d = 2 case, the apparent ensemble

inequivalence (negative specific heat in the microcanonical ensemble) can be avoided by

the proper choice of the saddle-point solution.

4. Monte Carlo analysis

In order to check if the results of the previous section is specific to the spherical model, we

study the n = 2 model, the XY model, in two dimensions by Monte Carlo simulations.

A canonical Monte Carlo analysis of the present model has already been carried out

in [23], and the microcanonical case has been done in [33]. However, these previous
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studies are not sufficient to clarify the problem of ensemble equivalence, and we analyze

the same model here from our own point of view. We refer the reader to [34] for a

related study, where the ensemble equivalence was examined in a mean-field model on

random graphs.

The original XY model with linear interactions in two dimensions exhibits the

Kosterlitz-Thouless transition [35]. In [36], a detailed study is reported on how the

transition can be changed in nonlinearly-interacting systems. Since our aim is not to

study this topological transition, only the caloric curve has been calculated in our Monte

Carlo analysis.

Figure 16. β(ǫ) from the micro-

canonical Monte Carlo calculation

for n = 2, d = 2 and p = 1. The er-

ror bars are smaller than the sym-

bol size.

Figure 17. β(ǫ) for n = 2, d = 2

and p = 40. The error bars are

smaller than the symbol size.

Figure 18. β(ǫ) for n = 2, d = 2,

p = 40, and L = 50 near the non-

monotonic region. We have taken

the average over 20 independent

runs.

Figure 19. Energy histogram

in the phase coexistence region

from the canonical Monte Carlo

calculation. We have chosen n = 2,

d = 2, p = 40, L = 50, and

β = 19.35.
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Several system sizes have been analyzed, L = 20, 40, 50 and larger in some cases.

To study the microcanonical ensemble, we exploit the demon algorithm by Creutz [32].

In this algorithm, for a given energy ǫ, the demon energy ED is calculated so that the

sum of the system and demon energies is kept constant. Then, the inverse temperature is

obtained from the probability distribution Prob(ED) ∼ exp(−βED). We have performed

106 Monte Carlo steps per spin for each run.

In figures 16 and 17, we plot the energy dependence of the inverse temperature

for p = 1 and p = 40, respectively. For p = 1, we see that β is a monotonically

decreasing function of ǫ. It is different for p = 40, where the function shows a non-

monotonic behaviour. Figure 18 highlights this property for L = 50. For a given β, ǫ

is not determined uniquely in a narrow region, which suggests the existence of negative

specific heat. We have performed canonical Monte Carlo calculations using the simple

Metropolis algorithm to see the energy histogram, and the result is depicted in figure 19,

which clearly shows that a first-order transition exists in the form of phase coexistence.

We have confirmed that the non-monotonic region of the caloric curve remains up to

the size L = 100 in the microcanonical simulations. An extrapolation suggests that

it would persist to the thermodynamic limit. Thus, the negative specific heat seems

to exist in the microcanonical ensemble also in the two-component system as in the

spherical model.

We speculate that a reason for the apparent ensemble inequivalence for p = 40

in Monte Carlo simulations may be that a phase separation, as discussed above for

the spherical model, has not been realized in our simulations because of a very long

relaxation time: The system has to spontaneously break up into two spatially separated

regions with different macroscopic states, which could take a very long time to be realized

in the microcanonical simulations.

5. Summary and conclusion

We have studied the n-vector model (O(n)-symmetric model) with nonlinear short-

range interactions in two and three dimensions. The exact solution of the spherical

model shows ostensible inequivalence of canonical and microcanonical ensembles through

negative specific heat in the latter ensemble. We have argued that this paradox can

be resolved by explicitly taking into account a phase separation, which increases the

entropy (thus increases the thermodynamic stability) in the microcanonical ensemble.

It is noticed that the proper choice of the saddle-point solution is required in the

microcanonical ensemble to represent the state with phase separation. Such a solution

must be considered when the uniform ansatz of the saddle-point solution gives a non-

concave entropy. We note that this procedure is needed only in the microcanonical

ensemble. In the canonical ensemble, the uniform solution is sufficient to represent the

stable state of the system. Another interesting aspect is that the exact solution of the

spherical model is similar to the mean-field solutions applicable to long-range interacting

models in the sense that the calculations of the (canonical) partition function and
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the (microcanonical) entropy reduced to steepest descent integrations. The difference

between the short- and long-range systems is apparent when we consider the phase-

separated state. The interface term cannot be neglected in the long-range system, which

can be understood as an important source of ensemble inequivalence. Our analysis has

succeeded to highlight this difference in an exactly solvable example.

The XY model with nonlinear interactions has been shown to behave similarly by

Monte Carlo simulations in two dimensions. Discrepancies between ensembles may in

this case be due to the long relaxation time to the fully-stable phase-separated state in

the microcanonical simulation. We expect that a more elaborate method such as the

one developed in [37] may resolve this problem.

The n-vector models with nonlinear short-range interactions have been known to

have the unusual property of the existence of first-order phase transitions even in two

(and higher) dimensions [23]-[27]. We have identified an additional highly non-trivial

property of apparent ensemble inequivalence, which we expect to stimulate further

studies of this very unusual class of models.

Appendix A. Derivation of the entropy in the microcanonical ensemble

We consider the number of states for a given energy E

Ω = Tr δ(E −H) =
∫ dt

2π
Tr ei(E−H)t. (A.1)

This expression has a similar form to the partition function in the canonical ensemble

except for the integral over t and the factor eiEt. We may thus replace β in the partition

function by it. Therefore, the calculation goes along the same line as in the canonical

case and we can write

Ω =
∫

dt

2π

∫

∏

i

dzi
∏

〈ij〉

dλijdρij exp



it

(

E + Jn
∑

〈ij〉

V (ρij)

)

+ n
N
∑

i=1

zi

−n
∑

〈ij〉

λijρij + n ln Tr exp



−
N
∑

i=1

ziS
2
i +

∑

〈ij〉

λijSiSj







 . (A.2)

Then, we impose the uniform ansatz for zi, ρij and λij and obtain the number of states

as

Ω = exp

[

it
(

E +NndJV (ρ)
)

+Nnz −Nndλρ

+ n lnTr exp

(

−
N
∑

i=1

zS2
i +

∑

〈ij〉

λSiSj

)]

, (A.3)

and the saddle-point conditions

ǫ+ dV (ρ) = 0, λ = itJV ′(ρ), 2λ = g(z̃), dρ = z̃ −
1

2λ
, (A.4)

where ǫ = E/NnJ . Combining these results, we finally obtain (12) and (14).
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Appendix B. Bounds on interface effects in the free energy of the Gaussian

model

In order to rigorously justify the calculations using only the two phase-separated regions

without interface terms, let us estimate the order of magnitude of the effects that the

interface terms have on the free energy of the Gaussian model. We define the free energy

of the Gaussian model as

h(x) = lnTr exp



−z
∑

i

S2
i + λ

(1)
∑

〈ij〉

SiSj + λx
(2)
∑

〈ij〉

SiSj



 , (B.1)

where the summation with superscript (1) runs over all interactions within the two

independent (phase-separated) subsystems and the summation with superscript (2) is

for interactions across the interface. The parameter λ will be assumed to be positive

without losing generality on a bipartite lattice. Notice that we have assumed that the

interactions have common values in the two subsystems. We will show later that this

restriction can be removed. The boundary conditions are assumed to be free in the x

direction and periodic otherwise. Here the term ‘interface’ stands for the region in the

middle of the system that runs perpendicular to the x axis and separates two subsystems,

whereas the ‘boundary’ is for the outmost sites of the total system. Equation (B.1)

indicates that the interface interactions have the strength λx and all other interactions

have λ.

Our goal is to prove that

|h(1)− h(0)| ≤ cNb, (B.2)

where Nb is the number of interactions across the interface and c is a quantity

asymptotically independent of Nb and N (total number of sites). This inequality (B.2)

shows that the presence and absence of boundary interactions affect the free energy only

by a term proportional to Nb and thus can be neglected in the thermodynamic limit

where the leading term is of order N .

Let us first notice that the derivative of h(x) is non-negative, the first Griffiths

inequality,

h′(x) = λ
Tr
∑(2)

〈ij〉 SiSje
−H(x)

Tr e−H(x)
≥ 0, (B.3)

where −H(x) is the effective Hamiltonian appearing in the exponent of (B.1). The

denominator of (B.3) is positive. The numerator is also non-negative for 0 ≤ x ≤ 1:

Each term of the expansion of the numerator

Tr
(2)
∑

〈ij〉

SiSj

∞
∑

n=0

λn

n!





(1)
∑

〈ij〉

SiSj + x
(2)
∑

〈ij〉

SiSj





n

e−z
∑

i
S2

i (B.4)

is composed of integrals of the form

TrSa
i S

b
jS

c
k e

−z
∑

S2

i , (B.5)
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which is zero (if any one of a, b, c, · · · is odd) or positive (otherwise). The second

derivative is also non-negative:

h′′(x) = λ2







〈





(2)
∑

〈ij〉

SiSj





2〉

G

−





〈 (2)
∑

〈ij〉

SiSj

〉

G





2




 ≥ 0, (B.6)

where 〈· · ·〉G stands for the average by the weight e−H(x). Thus h′(x) is non-decreasing

and is bounded by h′(1)(≥ 0) for 0 ≤ x ≤ 1. Therefore

|h(1)− h(0)| =

∣

∣

∣

∣

∣

∫ 1

0
dx

dh

dx

∣

∣

∣

∣

∣

≤
∫ 1

0
dx

∣

∣

∣

∣

∣

dh

dx

∣

∣

∣

∣

∣

≤ h′(1). (B.7)

Our task is to upper-bound h′(1). From the definition of h(x), this derivative is expressed

as

h′(1) = λNb〈SiSj〉G(x = 1), (B.8)

where 〈ij〉 is a bond across the interface. According to (B.7), if we are able to prove

that 〈SiSj〉G(x = 1) is finite in the thermodynamic limit (N → ∞, Nb → ∞), we will

have finished the proof that h(1) and h(0) are no more different than a quantity of order

Nb. This implies that the contribution of the interface interactions can be neglected in

the computation of the bulk free energy.

Finiteness of r(y = 0) ≡ 〈SiSj〉G(x = 1) can be shown as follows. The argument y of

r(y) stands for the strength of interactions connecting the left-most sites and right-most

sites along the x direction. In other words, y = 1 corresponds to the periodic boundary

and y = 0 is for free boundary in the x direction (Remember that x = 1 ensures that

the interactions across the interface exist). All other directions have periodic boundary

conditions. The Hamiltonian is modified as

−H(x = 1, y) = −z
∑

i

S2
i j + λ

(1)
∑

〈ij〉

SiSj + λ
(2)
∑

〈ij〉

SiSj + yλ
(3)
∑

〈ij〉

SiSj , (B.9)

where the final sum with superscript (3) runs over the boundary bonds. Let us assume

for the moment that we have proved the following inequality,

0 ≤ r(y = 0) ≤ r(y = 1). (B.10)

Since r(1) is the single-bond correlation for fully-periodic boundary conditions, we can

calculate it explicitly by taking the derivative of the free energy with respect to λ and

diving the result by the total number of bonds. The explicit form is available for this

quantity in (5) and it is easy to see that r(1) is positive and finite provided that z > d.

This ends the proof that r(0) is finite.

To prove (B.10), we first notice r(0) ≥ 0, the first Griffiths inequality, which can

be proved as we did above. Next we take the derivative of r(y),

r′(y) = λ
(3)
∑

〈lm〉

(〈SiSjSlSm〉G − 〈SiSj〉G〈SlSm〉G) . (B.11)



Ensemble equivalence in spin systems with short-range interactions 16

The definition of 〈· · ·〉G is slightly modified in that the Hamiltonian −H(x = 1, y) is

now used. Since the integral defining 〈· · ·〉G is Gaussian, Wick’s theorem applies,

〈SiSjSlSm〉G − 〈SiSj〉G〈SlSm〉G

= 〈SiSl〉G〈SjSm〉G + 〈SiSm〉G〈SjSl〉G ≥ 0, (B.12)

due to the first Griffiths inequality. The proof of (B.10) thus completes.

Finally, we show that the result applies also to the case where the two subsystems

have different values of λ. Let us replace λ by uλ (0 < u ≤ 1) for one of the two

subsystems. The other subsystem keeps the original value of λ. Then, r is a function

of y and u. The derivative of r(y, u) with respect to u has an expression very similar

to (B.11), which can be shown to be positive as before. Thus, r(y, u) ≤ r(y, 1) for

0 < u ≤ 1. Since u = 1 is for the system already treated above, we know that r(1, 1)

is finite. It then follows that r(0, u)(≤ r(0, 1) ≤ r(1, 1)) is finite. All other parts of the

proof can trivially be generalized to accommodate 0 < u ≤ 1. Q.E.D.

The condition of the outer boundary (free or periodic) along the x axis can also be

shown to be irrelevant in the thermodynamic limit. To outline the process, let us define

j(y) = lnTr e−H(x=1,y). (B.13)

The goal is to prove

|j(1)− j(0)| ≤ cNb, (B.14)

where c is a quantity that converges to a finite value in the thermodynamic limit and

Nb is the number of bonds appearing in the summation with superscript (3). To show

this, according to our experience above, we should prove the relations

j′(1) = cNb, j′(y) ≥ 0. (B.15)

These can be proved in the same manner as before.
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