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Abstract  

This review article sheds useful insight in the use of Janus nanoparticles for (bio)sensing in 

connection with optical and electrochemical transduction. After a brief introduction of the 

main properties, types and fabrication strategies of Janus nanoparticles, selected applications 

for their use in electrochemical and optical biosensing are critically discussed. Highlighted 

examples illustrate the great versatility and interesting possibilities offered by these smart 

multifunctional nanoparticles for (bio)sensing of relevant analytes operating both in static and 

dynamic modes. Progress made so far demonstrate their suitability for designing single- or 

multiplexed (bio)sensing strategies for target analytes of different nature (organic and 

inorganic compounds, proteins, cells and oligomers) with relevance in clinical (H2O2, 

glucose, cholesterol, CEA, human IgG, propranolol, bacterial and tumor cells) and 

environmental (lead and organophosphorous nerve agents) fields. Key future challenges and 

envisioned opportunities of the use of Janus nanoparticles in the (bio)sensing field are also 

discussed. 
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1. Introduction  

Janus particles are the simplest case of patchy or non-centrosymmetric particles [1]. These 

particles, whose name derives from the two-faced Roman God Janus, possess two or more 

spatial regions that have different surface makeups, structures or material properties [2]. The 

concept of Janus particles was first raised by P. G. de Gennes in his Nobel Prize address in 

1991 [3]. Unlike conventional particles used in material and analytical sciences, two-faced 

Janus particles provide asymmetry and directionality, and can combine different or even 

incompatible properties within a single particle, which makes them a unique category of 

materials in contrast to other particles [4]. The surface anisotropy of these particles spatially 

decouples analytical functions (e.g. targeting and sensing) that would otherwise be difficult to 

combine within single particles, giving them interesting properties and functions not possible 

for particles of uniform composition and opening up opportunities for novel multimodal 

analytical methods. Specifically, the ease of functional modification on the distinct surface, 

which is the key step for the utilization of nanosystems in the field of (bio)sensing and other 

bionanotechnology, renders Janus nanoparticles truly multifunctional entities [5].  

The asymmetry of the particle surface, known as the Janus balance (quantified as the ratio 

of surface area devoted to different surface types on the two sides of the particle), can vary 

from interspersed small patches to half-and-half hemispheres. The structural asymmetry of 

Janus particles that contain compartments with different chemical, optical, electrical, or 

magnetic properties enables to perform many functions such as dual-targeting, molecular 

sensing, and in vivo imaging, which are incompatible when they are combined on the same 

surface, in a single structural unit [5,6]. Although individual components coexist together in 

Janus particles, however the intrinsic optical, magnetic, and electronic properties of each 

component are not often altered, interfered with, or lost [7] thereby exhibiting improved 

physical/chemical properties [8] and great potential in numerous applications [9]. This 
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exceptionality makes Janus particles a unique category of materials in contrast to other 

particles. In addition to combining imaging and targeting functions, these asymmetric 

particles have also been employed in (bio)sensing and, to date, various types of Janus 

nanoparticles have been reported as synthesized for such applications. 

As a result of the simultaneous presence of two different regions, which can be designed to 

have different hydrophobicity and thereby mimic the behavior of surfactants, they can form 

stable clusters with defined size, and substantially reduce the interfacial tension between two 

different phases. Additionally, these particles can bring together different materials in a 

segregated manner at the nanoscale, thus combining widely different properties in a single 

entity, as in the case of heterodimers [10-15]. Furthermore, Janus nanocomposites with 

spatially separated functionalities, uniform size, tunable composition, and efficient stimuli-

responsive features have been synthesized whose properties usually rely on the composition, 

size and shape of the particles, as well as their appropriate surface modification. Such 

asymmetric architectures are composed of two incompatible hemispheres with different 

chemistry, polarity, or other physicochemical properties on opposite sides [11,16]. Due to 

these intrinsic characteristics, Janus particles have been found to exhibit diverse potential 

applications in materials science, biomedicine and in the field of highly specific biosensors 

[15,17]. 

The properties and applications of Janus particles have been reviewed in various articles 

[1,6,9,15,17,18]. However, the use of these particles in the (bio)sensing field has been little 

emphasized. Although the number of examples is still relatively scarce, this review article 

attempts to draw attention to the wide possibilities offered by of Janus nano- and 

microparticles for the sensing of species of interest using different types of strategies and 

modes of detection ranging from electrochemistry to optical techniques such as fluorimetry or 

Raman spectroscopy. 



5 
 

 

2. Types of Janus nanoparticles and fabrication strategies 

Janus nanoparticles can be prepared with different morphologies and shapes (Fig. 1A) and 

can be classified mainly according to the three different preparation strategies: self-assembly, 

masking and phase separation (Fig. 1B) [6,15].  

 

Fig. 1. Schematic diagrams illustrating Janus particles of different morphologies and shapes 

(A) and the three main strategies used for the preparation of Janus nanoparticles: masking, 

phase separation and self-assembly (B). Reprinted from [6] (A) and [15] (B) with permission.  

 

Janus nanoparticles can be prepared through self-assembly of their components, typically 

block copolymers and mixtures of ligands [15].  The block copolymers self-assembly is a 

flexible strategy applied to many different types of polymers and allows the preparation of 

block copolymers with well-defined architecture, composition and narrow molecular weight 

distribution. However, the preparation of Janus nanoparticles using this approach requires a 

good knowledge of the polymers mixture thermodynamics as well as the effect of all 

parameters affecting the self-assembly process (temperature, and pH and ionic strength in the 



6 
 

case of polyelectrolytes). Moreover, this approach has a limited scalability since assembly of 

block copolymers at high concentrations is not always a well-controlled process.  

Another group of Janus nanoparticles is that prepared using a masking step in which one 

portion of a nanoparticle surface is temporarily made inaccessible to some reagent usually by 

contact with another surface, so that a chemical reaction, a polymerization or a 

functionalization step, can be carried out exclusively on the other portion of the nanoparticle 

surface. Although this is the most straightforward method for fabricating Janus particles 

several requirements must be fulfilled to be adequately performed. The solid support used, 

preferably with a high surface area to maximize the number of NPs that can be supported, 

must hold the nanoparticles throughout the process, be inert to the chemicals that react with 

nanoparticles and be either removed by filtration, disaggregated then washed off, or 

preferably recycled for further reuse [19]. This method typically involves three to four steps 

as follows: (a) the particles are immobilized at an interface (spherical or planar) via reversible 

physical or chemical means; (b) metal vapor is then applied directionally and sequentially to 

the solvent-exposed surface to create Janus particles with thin metal caps (from a few to 

hundreds of nanometers of thickness) controlled by the deposition time; (c) the modified JPs 

are removed from the surface and separated; and (d) an optional modification of the 

previously masked site can be performed [6,9]. Using this protocol, Janus nanoparticles are 

fabricated commonly by catalytic metallic (e.g., Ir, Au, Pt or Ti) thin films deposition (by 

electron-beam evaporation, atomic layer deposition or sputtering processes) or polymeric 

coating onto the surface of nano- or micro-beads of different materials (e.g., SiO2, 

polystyrene, Mg) uniformly distributed on glass slides or silicon wafers. The thickness of the 

metal cap is controlled by the deposition time and can range from a few to hundreds of 

nanometers. This fabrication method is excellent for the control of the amount of area 

functionalized and particle-to-particle reproducibility, and it is applicable for a variety of 
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particle materials, such as silica and polymer, as long as the particles can form a monolayer 

on a surface. The main limitation of this approach is the generally low yield due to the limits 

of surface area, especially for NPs smaller than a few hundred of nanometers, which tend to 

be “bridged” by the metal coating [1].  

The third group comprises Janus nanoparticles formed by a phase separation of two 

different polymers, a phase segregation of an inorganic material inside or outside a polymer 

matrix, or the phase separation of two inorganic components, such as to form nanocrystalline 

heterodimers [15]. 

In summary Janus particles are typically synthesized using either surface functionalization 

of homogeneous particles or via phase separation methods. However, surface 

functionalization techniques produce limited quantities of Janus particles because they are 

required to be stabilized in monolayers to perform spatially selective chemical or physical 

modification. Phase separation mechanisms require unique synthesis conditions since the final 

particle composition and morphology is highly dependent on the interaction energies between 

precursors [20]. In order to overcome the limitations of these conventional methods, click 

chemistry has been recently used also for the fabrication of Janus particles with diverse 

chemical compositions. [5,20,21]. Click chemistry allows both tailoring the surface chemistry 

and surface charge of Janus particles, and controlling the extent of modification [20]. 

 

3. Janus particles for electrochemical (bio)sensing 

The design and fabrication of electrochemical biosensors with improved analytical 

performance by exploring new concepts and sensor platforms where the interactions between 

biomaterials and nanoscale structures play key roles is a burgeoning area of research [22]. In 

this context, Biji et al. [22] reported the use of Janus monolayer gold nanoclusters-modified 

with tetraoctylammonium ion (TOA+) and tryptophan onto glassy carbon electrodes (GCE) to 
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develop effective electrochemical sensors for dopamine (DA). A remarkable enhancement in 

the differential pulse voltammetric peak current value, a noticeable lowering in the LOD 

value (0.5 vs 6,400 nM), and better antifouling was found working with the Janus 

nanoparticle-modified electrode compared to the bare GCE. The improved analytical 

performance was attributed to the electro-oxidation of DA by the Janus gold nanocluster 

favored by the H-bonding interaction between L-tryptophan and DA, which made the 

tryptophan at the peripheral Janus cluster hemisphere acted as a DA pre-concentrating layer 

(Fig. 2). 

                           

Fig. 2. Schematic illustration of the Janus gold nanocluster modified GCE for the 

electrocatalytic oxidation of DA. Reprinted from [22] with permission.  

 

Although Janus nanoparticles offer the advantage for biosensing of two different faces 

with different chemical compositions allowing toposelective immobilization of 

complementary bioreceptors on these faces by using different specific ligands and different 

linking strategies [23], Pingarrón´s group was the first to explore the use of these 

nanoparticles for the development of electrochemical biosensors.  



9 
 

Sánchez et al. [24] used Janus Au-mesoporous silica nanoparticles (Au-MS JNP) as 

scaffolds to design an integrated electrochemical biorecognition-signaling system. They 

demonstrated the concept by covalent immobilization of HRP on the mesoporous silica face 

as enzymatic signaling element, and modification of the Au face with streptavidin (Stv) and 

polyethylenglycol (PEG) chains as biorecognition and solubilizing agents, respectively (Au-

MS JNPHRP-Stv-PEG). To achieve these goals, the mesoporous silica face of Au-MS JNP 

was first enriched with primary amino groups by treatment with (3-

aminopropyl)triethoxysilane (APTES). After activation of the amino groups with 

glutaraldehyde, the covalent immobilization of HRP on the mesoporous silica face was 

accomplished. On the other hand, streptavidin was reacted with 3,3´-dithiobis 

(sulfosuccinimidylpropionate) (DTSSP) and further treated with NaBH4 to provide the protein 

surface with reactive thiol groups, allowing the protein immobilization on the gold face of 

Au-MS JNP through a chemisorption process. Results presented demonstrated that Au-MS 

JNPHRP-Stv-PEG particles have the ability to both specifically biorecognize biotin residues 

on an Au surface and to produce an enzyme-mediated electroanalytical signal by cyclic 

voltammetry upon addition of H2O2.  

Same group proposed the deposition of Au–mesoporous silica Janus nanoparticles on 

GCEs coated with single-walled carbon nanotubes for the preparation of a bienzyme 

amperometric biosensor for D-glucose through toposelective immobilization of glucose 

oxidase (GOx) and horseradish peroxidase (HRP) on the Au and mesoporous silica faces, 

respectively (Fig. 3) [23]. The developed biosensor (GOx–HRP–JNP/CNT/GCE) 

demonstrated an excellent electroanalytical performance with a wide linear range of 490 nM–

600 μM, a high sensitivity of 4.3 mA M-1, and a low LOD (360 nM) for glucose, and 

successful applicability to the determination of D-glucose in commercial soft drink samples. 
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Fig. 3. Schematic display of the steps involved in the assembly of the GOx–HRP–

JNP/CNT/GCE bienzyme biosensor (A) and amperometric response obtained for glucose (B). 

Reprinted and adapted from [23] with permission.  

 

Various metals catalyze electrochemical reactions that generate gases, such as the 

decomposition of H2O2 catalyzed by platinum. When such metals are incorporated into one or 
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more building blocks of a Janus particle, the particle becomes a chemically powered motor 

that exhibits autonomous bubble propulsion enabled by the particle surface asymmetry [25] in 

the presence of the appropriate chemical fuel and even in microfluidic channels [26]. A 

couple of electrochemical biosensing strategies have been reported based on such self-

propelled Janus motors. For example, Mg microspheres efficiently propel in the presence of 

water and chloride because the Mg surface is readily oxidized, by combination of galvanic 

and pitting corrosion processes, which results in the generation of hydrogen microbubbles and 

hydroxyl ions [27]. These self-propelled Janus particles, also known as Janus microengines, 

have been exploited also as “autonomous stirrers” which is especially relevant in connection 

to the use of screen-printed electrodes limited to quiescent solutions and hence solely to 

diffusion transport for electrochemical sensing [28]. In comparison with other types of 

motors, Janus particles offer interesting advantages for biosensing applications such as the 

distinct chemical or physical properties of their surface which allow their easy functional 

modification [28,29] and their large surface to capture/adsorb more (bio)chemicals [30]. 

Moreover, the use of non-catalytic Janus micromotors driven by light [31,32] or 

biocompatible fluids such acid [33,34] or water [35,36] avoids the interference of H2O2 in 

some (bio)sensing approaches and greatly expand the scope of practical and biomedical 

applications impeded by the requirement of H2O2 [29,37]. The composition of the motor and 

the fuel makes Janus micromotors highly biocompatible and environmentally friendly 

compared to others. Indeed they can be easily made of transient self-destroyed materials and 

they can perform biosensing while autonomously disappeared in the media leaving non-toxic 

residues [38]. 

The first example of the remarkable capabilities offered by Janus micromotors in 

electrochemical sensing was reported by Wang´s group [39] by using water driven magnetic 

Au-Ni-Mg Janus micromotors, confined onto the surface of printable sensor strips. Janus Mg-
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microengines served as artificial enzymes toward the alkaline and selective hydrolysis of non-

detectable pesticide paraoxon into the electroactive and non-hazardous p-nitrophenol (see 

mechanism and reactions involved in Fig. 4A). Results demonstrated the improved 

amperometric detection accomplished by fixing the micromotors onto the strip surface 

through an intermediate Ni layer which prevented their movement to the electrode area 

avoiding interference during the electrochemical measurements. Moreover, the presence of 

bubble-generating magnesium Janus microengines led to a 15-fold increase in the sensitivity 

towards paraoxon detection compared to a bare screen-printed electrode, results attributed to 

the enhanced mixing induced by the motion of self-propelled Janus particles [40]. 

 

Fig. 4. Mechanism and reactions involved in the paraoxon OP nerve agents degradation to p-

nitrophenol (A) and diphenyl phthalate (DPP) to phenol at Janus nanoparticles-modified 

sensor trips (B). Reprinted from [39] (A) and [27] (B). 

 

A similar approach was developed by Rojas et al. [27] for the degradation of the non-

electroactive diphenyl phthalate (DPP) into phenol directly measured by difference pulse 
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voltammetry at Mg/Au Janus micromotors-modified disposable screen-printed electrodes 

(Fig. 4B). In this case, the use of propelled Mg/Au micromotors provided a ∼20 times 

improvement in sensitivity compared with that achieved under static conditions. This Janus 

micromotors-based electrochemical sensor demonstrated applicability for the determination of 

DPP in spiked water, milk, whiskey, and raw human serum samples without sample 

pretreatment and in just 5 min. 

 

4. Janus particles for optical (bio)sensing 

Wang´s group was pioneer in using non-spherical Janus particles for optical (bio)sensing. 

In particular, they took advantage on selective acceleration of chemically-powered Pt–Au bi-

segmented nanowires (Fig. 5A) in the presence of chemical stimuli for developing new 

motion-based sensing [41] and biosensing [42] strategies which relied on the use of an optical 

microscope for tracking changes in the speed/distance of nanowire motors in the presence of 

the target analytes. Directed magnetic alignment accomplished by incorporating a 

ferromagnetic nickel segment into the nanowire motors provided a convenient and attractive 

method to quantify target analytes based on straight-line distance signals of ‘racing 

nanomotors’. 

The idea of motion as a new transduction principle was introduced in connection with the 

detection of silver ions which led to a specific and dramatic acceleration of catalytic Pt-Au 

nanowires, attributed to the increase in the electrocatalytic activity of the Pt segment for H2O2 

oxidation after underpotential deposition of silver (Fig. 5B) [41]. Such nanomotor-based 

silver sensing allowed the construction of a calibration graph by plotting the speed vs. silver 

ion concentration over the 10-9 to 10-4 M range. This motion-driven analytical readout was 

utilized also for the detection of nucleic acids and bacteria (Escherichia coli, E. coli) in a 

typical sandwich hybridization assay involving the incubation of the target nucleic acid 
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(synthetic DNA and E. coli 16S rRNA) with a surface-bound oligonucleotide probe, followed 

by the capture of a silver nanoparticle-tagged detector probe (Fig. 5C) [42]. The silver 

nanoparticles were then rapidly dissolved by adding the hydrogen peroxide fuel and the entire 

solution was added to the nanomotors. Silver-induced changes in the nanomotor speed led to 

a well-defined dependence of the speed signal on the concentration of the nucleic-acid target 

allowing LODs of 40 amol (synthetic DNA) and 2,000 colony forming units (cfus) L-1 E. 

coli. These motion-driven (bio)sensing approaches represented a paradigmatic shift in 

bioanalysis, proposing for the first time speed and distance as analytical readouts. These 

concepts opened a new avenue for the detection of a broad range of target biomolecules in 

connection with other biomolecular interactions and motion transduction principles.    

 

Fig. 5. Pt–Au bisegment nanowires (A). Bar chart comparing the average speed of 20 

nanomotors in 100 μM solutions of each of the specified ions and the calibration curve 

obtained for Ag+ determination (insert) (B). Basis of the methodology developed for nucleic 

acid determination and visual detection of the movement of catalytic nanomotors in the 
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resulting Ag+ enriched H2O2 solutions after hybridization with the complementary nucleic 

acid (C). Reprinted and adapted from [41] (a, b) and [42] (c) with permission.  

 

More recently, the excellent ability of Janus particles to reinforce the optical properties of 

different materials, as well as the possibility of designing multitarget detection schemes has 

aroused the interest of using these particles for the optical sensing of diverse species. In fact, 

Janus particles can allow an independent biochemical conjugation with the possibility of 

optical detection based on dyes or contrast agents located within the two sides in absence of 

interferences [43]. Techniques such as fluorescence, SERS, or visible spectrophotometry have 

been used so far. However, despite the many potential advantages envisaged, the number of 

sensors and biosensors developed until now is still very low, and so, many more are likely to 

be developed in the coming years.  

Polydiacetylenes (PDA) have been utilized in numerous colorimetric sensing systems due 

to their convenient spontaneous color change and fluorescent emission development under 

various external stimuli [44]. PDA-based sensors are commonly prepared by self-assembly of 

rationally designed PDA monomers into liposomes. Immobilization of PDA liposomes on a 

solid substrate or in microparticles and fibers have some important advantages related to 

stability and sensitivity. Lee and Kim [45] prepared multiphasic sensing alginate-based Janus 

particles with PDA liposomes (Fig. 6). Alginate, an anionic polysaccharide constituent of the 

algae cell membrane characterized by its biocompatibility, porosity, and gelation property 

with multivalent cations, such as Ca2+ ions, has been widely used for the encapsulation of 

various chemicals and drugs. This approach took advantage of the gelation and porous nature 

of the cross-linked alginate microparticles for the encapsulation of PDA liposomes able to 

produce a sensing signal as result of freely access of analytes to them. Biphasic Janus 

particles containing two different PDA liposomes, biotin- 10,12-pentacosadiynoic acid 
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(PCDA) and 2-(2-(2-bromoethoxy)ethoxy)-ethyl pentacosa-10,12-diynoate (PCDA-EG-

CA)/PCDA (9/1), selectively interacted with avidin-fluorescein isothiocyanate (FITC) and 

melamine, respectively, the latter through cyanuric acid (CA). Hemispherical green/red 

fluorescence originated for each interaction observed by fluorescence microscopy confirmed 

that each liposome component of the biphasic alginate detected selectively the corresponding 

target without interference from the other. The developed system was found to be selective 

and sensitive for the detection of melamine down to 50 ppb level in aqueous solution. 

 

Fig. 6. Chemical structures of the investigated PDA molecules to form self-assembled PDA 

liposomes (A); fluorescence microscope image of biphasic Janus alginate microparticles with 

two different PDA liposomes (PCDAEG-CA/PCDA (9/1) and PCDA/PCDA-EDEA/PCDA-

biotin (6/1/3)) after incubation in melamine solution (B); green fluorescence emission after 

incubation in an avidin-FITC solution (C); overlay of the two fluorescence images 

representing the biphasic property of the Janus alginate particles (D); triphasic image of PDA 
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liposomes loaded with alginate particles after incubation with avidin-FITC (E); subsequently 

with melamine solution (F). Reprinted and adapted from [45] with permission. 

 

Janus-compartmental microbeads composed of two divided phases with sensing PDA 

liposomes and magnetic nanoparticles were prepared for the selective detection of lead. The 

Janus microbeads were fabricated by cross-linking alginate solutions containing sensing PDA 

liposomes and magnetic nanoparticles, respectively, with calcium ions as shown in Fig. 7. 

PDA liposomes were prepared with the lipid 10,12-pentacosadiynoic acid and 1,2-

dipalmitoyl-sn-glycero-3-galloyl (DPGG) which is known to form phenolic metal complexes 

with lead (II). Integration of sensing PDA and efficient alginate absorption into the magnetic 

Janus microbeads permitted the sensitive detection of the metal ion.  In this way, PDA-DPGG 

liposome in the Janus microbeads showed sharp color change and red fluorescence upon 

exposure to lead(II) ions (Fig. 7D). A good correlation between the fluorescence signal 

intensity and the analyte concentration was found between 0.1 and 1.0 mM, with a LOD of 

0.1 mM Pb(II) [44].  
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Fig. 7. Schematic illustration of Janus magnetic microbeads in solutions (A); scheme of the 

fabrication procedure of the Janus-compartmental microbeads with sensing PDA liposomes 

and magnetic nanoparticles (B); colorimetric detection of target lead(II) ions (C); optical 

images of PDA-DPGG liposomes (0.66 mM) after 1 h incubation with different metal ions 

(0.26 mM) (D), and corresponding UV−vis (E) and photoluminescence (F) spectra. Reprinted 

and adapted from [44] with permission. 

 

Hematite−silica hybrid (γ-Fe2O3/SiO2) Janus nanoparticles were prepared to construct a 

multifunctional biosensing platform for sensitive colorimetric detection of H2O2 and glucose. 
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The prepared nanoparticles exhibited an intrinsic peroxidase-like catalytic activity, could be 

used over a wider range of pH and temperatures and were more stable over time than the 

natural enzyme. Importantly, the asymmetric properties of the Janus particles enabled them 

for multiple functional utilities and various biosensing applications, including the ease of 

surface modification without deactivation of catalytic activity and reusability by magnetic 

separation [46]. Glucose oxidase was conjugated onto the silica side of nanoparticles for the 

glucose conversion whereas the Fe2O3 side catalyzed the oxidation of 3,3′,5,5′-

tetramethylbenzidine (TMB) by H2O2 into a blue product. In addition, the magnetic property 

of this hemisphere enabled easy separation and recycling of the nanoparticles. A linear range 

between 1 and 100 μM and a LOD value of 10.6 nM were achieved for the determination of 

H2O2, while a linear response between 0 and 20 mM, with a LOD of 3.2 mM was found for 

glucose.  

Recently, a method for the determination of glucose and cholesterol was developed based 

on the distinct hemispheres of Janus particles. Single-phase and Janus hydrogel microparticles 

were fabricated using a centrifugal microfluidic chip. Concanavalin A and FITC-labeled 

dextran were used for competitive binding assay and were encapsulated in alginate particles, 

whose fluorescence was positively correlated with glucose concentration (Fig. 8).  Regarding 

cholesterol detection, microparticles were embedded with γ-Fe2O3 NPs used as catalyst for the 

oxidation of TMB by the H2O2 generated by enzymatic hydrolysis of cholesterol. 

Advantageously, the color transition was demonstrated to be more sensitive in the 

microparticles than in solution. Apart from the possibility of manipulation by an external 

magnetic field, another advantage was that multitarget sensing of glucose and cholesterol 

could be performed in the two hemispheres without obvious interference. Application to the 

analysis in human serum confirmed the potential utility of these microparticles in real sample 

detection [47].  
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Fig. 8. Upper: Schematic diagrams of sensing mechanisms for glucose (A) and cholesterol 

(B) within the Janus microparticles (JMPs). Down: bright field image of JMPs (C), 

fluorescence image of JMPs after addition of 400 mg dL-1 glucose sample (B) and bright field 

image of JMPs after subsequent addition of 0.3 mM cholesterol sample (C). Scale bars 

represent 500 μm. Reprinted and adapted from [47] with permission. 

 

Metal nanoparticles that improve molecular spectral information with techniques such as 

surface-enhanced Raman spectroscopy (SERS) are promising since the read-out signal is 

intrinsic to molecules in proximity to the nanoprobe surface. This molecular fingerprint then 

offers the potential for providing label-free multichannel information of local biochemical 

composition. Wu et al. reported the first study that simultaneously employed Janus particles 

for targeting and SERS sensing of tumor cells [48]. A stand-alone cellular probe called 

nanocoral, which combined cellular specific targeting with biomolecular sensing, was 

developed. This consisted on Janus particles (100–800 nm in diameter) with a roughened gold 

coating on one side and polystyrene on the other. After roughening the polystyrene particles 

using oxygen plasma etching, a thin layer of gold was coated on one hemisphere. By 

selectively functionalizing the exposed polystyrene surface with anti-HER-2 antibodies, the 
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Janus particles were shown to be selectively attached to the breast cancer cells. The 

combination of cell-targeting ligands on the polystyrene hemisphere and high SERS signal 

from roughened gold surface could potentially be used to map the distribution of 

biomolecules at the cell surface.  

Using an equivalent strategy, Hsieh et al. prepared dual-faced and tri-functional 

nanoparticles for sequentially recognizing tumor cells, drug delivery and real-time monitoring 

of biological responses. Similar to the previous work, the Janus particles consisted on 

fluorescent polystyrene beads tailored by oxygen plasma process into a corrugated upper 

hemisphere. Simultaneously, the entire surface was modified with carboxylic groups, and 

gold was further deposited onto the corrugated surface for SERS. Nanoparticles were 

functionalized with sulfo-NHS-SS-biotin disulfide linkers and anti-CD44 antibodies used for 

the detection of glycoproteins CD44 on the surface of cancer cells and for the release of their 

loads (strep-QDs, Qdot 585 streptavidin, were used as model) in the cytoplasm via the 

cleavage of disulfide bonds [49]. 

Anisotropic polymeric microparticles modified with maleimide or acetylene were 

developed to spatio-selectively conjugate two different antibodies into each compartment for 

fluorescence multiplexed biosensing of carcinoembryonic antigen (CEA) and human IgG 

using two different fluorescent dyes. The antibodies were immobilized through separate 

maleimide-thiol coupling reaction and Huisgen 1,3-dipolar cycloaddition ("click" chemistry) 

resulting in antibodies ordered orientation due to the spatio-specific molecular interaction. As 

Fig. 9 shows, sandwich-type immunoassays were performed by biofunctionalization of 

specific antibodies onto poly(dimethylsiloxane) (PDMS) glass substrates after 

immunocomplexation with the respective antigen [50]. 
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Fig. 9. Schematic illustration of spatio-selective bioconjugation on each compartment of 

anisotropic polymer microparticles with anti-CEA via maleimide-thiol coupling, and anti-IgG 

via copper (I)-catalyzed Huisgen 1,3-dipolar cycloaddition (A); sandwich-type 

immunocomplex formation for fluorescence-based, multiplexing detection of CEA and IgG 

antigens (B). Reprinted from [50] with permission. 

 

Janus particles have also been designed to combine sensing and barcoding functions for 

multiplexed bioanalysis. For example, Janus disks composed of a fluorescent, graphically 

encoded region and a probe-loaded region were used to sensitively detect DNA oligomers 

[51]. Acrylate-modified oligonucleotide probes were designed to specifically detect DNA 

sequences. The Janus disks equipped with multiple probes were scanned in a flow through 

device, thus a high throughput analysis was achieved. Furthermore, DNA oligomers at 500 

attomolar level could be detected without need for biotin-avidin-aided signal amplification.

 This concept was also used in the capture and labelling of protein targets and the rapid 

microfluidic scanning of disk Janus particles for multiplexed detection [52]. Multifunctional 
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hydrogel particles made from poly(ethylene glycol) were prepared. These particles contained 

spatially segregated regions with a graphical barcode consisting of unpolymerized holes in the 

wafer structure of the gel particle, and one or more separate probe strips for multiplexed 

quantification of targets. The code served to identify the antibody probe covalently 

incorporated throughout a separate probe region of the particle. Hydrogel particles allowed 

the bulk immobilization of capture probes, thereby providing enhanced binding capacity over 

surface-functionalization techniques. By using this methodology, single- or multiple-probe 

particles can be reproducibly synthesized and used in customizable multiplexed panels to 

measure protein targets over a three-log range and at concentrations as low as 1 pg mL-1. 

Molecularly imprinted microcarriers based on Janus microparticles with specific molecular 

recognition ability, have been also developed. The resulting materials could be used not only 

as sensing systems but also as autonomous carriers for controlled drug delivery. Molecular 

imprinting is a well-known synthetic technology, which allows the preparation of 

homogeneous polymeric matrices with specific binding cavities. The main advantages of 

molecularly imprinted polymers (MIPs) are their high selectivity and affinity to the template 

molecules used in the imprinting procedure. MIP concept has found many practical 

applications including sensing and separation of diverse target analytes, offering great 

promise for biomedical and environmental applications [53]. In this context, Janus particles 

with specific molecular recognition ability towards propanolol were prepared. Monodisperse 

MIP particles containing amino groups were synthesized via a wax-water Pickering emulsion 

as it is illustrated in Fig. 10.  Imprinted sites for the drug were introduced by crosslinking 

polymerization. Moreover, when the Janus MIP particles were exposed to the UV light in the 

presence of H2O2, an ion gradient was formed due to the production of Ag+ and HOO- ions in 

the solution, and the Janus MIP particles moved in the self-generated ion gradient along their 

axis with the Ag particle leading [54].  
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Fig. 10. Schematic representation of the synthesis of monodisperse MIP–NH2 microspheres 

(A): 1) generation of propranolol-imprinted sites by cross-linking polymerization; 2) grafting 

amine groups by copolymerization. Fabrication of Janus colloidal particles (B). Displacement 

of radioligand binding to 0.5 mg of Janus MIP particles with increasing amount of atenolol 

(full squares) and propranolol (empty squares). Bound0 and bound are the amount of [3H]-(S)-

propranolol bound by Janus MIP particles in the absence and presence of the competing 

compounds, respectively (C).  Reprinted and adapted from [54] with permission. 
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As in the case of electrochemical detection, micro- and nanomotors based on Janus 

particles exhibiting useful optical properties have also been explored for monitoring target 

compounds and delivery applications. As an example, a highly efficient magnetocatalytic 

hybrid Janus micromotor was constructed by encapsulating graphene quantum dots (GQDs) 

modified with phenylboronic acid (PABA) for application as an ultrafast sensor for the 

detection of deadly bacteria endotoxins. An oil-in-water emulsion containing GQDs, PtNPs 

and Fe3O4 NPs was used to synthesize the asymmetric particles where PABA tags acted as 

highly specific recognition sites to detect endotoxin released from E coli bacteria 

(LPS0111:B4) showing fluorescence quenching upon the interaction of GQDs with the target 

lipopolysaccharides (LPS). Furthermore, in the presence of H2O2 or under a magnetic field, 

the two active differentiated regions in the particle enabled efficient propulsion. Importantly, 

continuous mixing induced by the motion of multiple micromotors across a contaminated 

sample resulted in greatly enhanced mass transport to increase the reaction rate between the 

LPS-contaminated solution and microparticles as compared to the use of static devices. 

Moreover, authors demonstrated the capabilities of GQDs-based micromachines for the 

screening of complex urine and human serum samples with high selectivity [55]. 

Sarin and soman are a particularly dangerous class of organophosphorous nerve agents. 

Janus microparticles were prepared for their detection by impregnation of fluoresceinamine 

(FLA) into silica microparticles followed by asymmetric deposition of Pt by sputtering. As 

illustrated in Fig. 11, the resulting FLA/silica-NH2/Pt particles acted as a self-propelled 

micromotor-based fluorescent ‘‘On–Off’’ sensor of nerve agents. The approach, with inherent 

efficient solution mixing, resulted in the dramatic quenching of FLA fluorescence upon 

encountering nerve agents in solution [56]. The practical usefulness of the micromotor in 

environmental samples was evaluated in water without buffer using diethyl chlorophosphate 

(DCP) as a nerve agent simulant, as well as in sea, pool and lake waters. The specificity of the 
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developed micromotor was also confirmed by monitoring the fluorescence with non-reactive 

phosphonates, such as dimethyl methyl phosphonate (DMMP), which did not show 

fluorescence change at a 10-3 M concentration.  

 

Fig. 11. Schematic representation of the micromotor based ‘on-the-fly’ fluorescent ‘‘On–

Off’’ detection of nerve agent (A); reaction mechanism showing the reaction of FLA coated 

micromotor with DCP (B); comparison of fluorescent quenching with micromotor and static 

FLA-coated silica with 10-4 M DCP. Reaction conditions: H2O2 (2%), SDS (1%), ex = 490 

nm; em = 510 nm (C). Reprinted and adapted from [56] with permission.  

 

Very recently Zhang et al. [32] have highly efficient photocatalytic Au-WO3@C Janus 

micromotors which display efficient propulsion in pure water. In the presence of UV light, 

Au-WO3@C Janus micromotors move towards to Au coated side through a dominative 
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diffusiophoretic mechanism. The acceleration of the propulsion of the Janus micromotors due 

to enhanced diffusiophoretic effects by photocatalytic degradation of dyes such as sodium-

2,6-dichloroindophenol (DCIP) and Rhodamine B (RhB) was exploited for monitoring of 

dyes rapid degradation in water. This dye-induced acceleration behavior offers the Janus 

micromotor a great potential for environmental applications such as photodegradation and 

detection at very low levels of dye pollutants (510-13 for RhB and 510-9 DCIP %) in water. 

 

5. General conclusions, challenges and perspectives  

The works highlighted in this article show as multi-faced, engineered Janus nanoparticles 

can be employed to open new possibilities for the design of advanced and tailor-made 

biofunctionalized nanomaterials for electrochemical and optical (bio)sensing purposes. 

Although scarcely used so far in electrochemical biosensing, Janus nanoparticles have been 

employed mainly as tailored supports for the co-immobilization of two complementary 

enzymes. Also, self-propelled particles have been integrated within electrochemical strip 

platforms for built-in mixing ultra-small samples while eliminating the need for additional 

stimuli, instrument or external stirrer. In this context, Janus micromotors have been mainly 

applied to the determination of non-electrochemically active hazardous compounds through 

their efficient degradation into electrochemically active non-hazardous substances. 

Nevertheless, Janus micromotors can be used in connection to thick-film and thin-film planar 

sensor strips for a wide variety of practical applications. Despite these attractive features, the 

relatively short lifetime of Janus nanomotors, which dissolves after 5 min movement in the 

sample, limits the possibility to increase further the sensitivity of pollutants determination 

through the generation of more readily detectable compound (i.e., higher degradation yield). 

Regarding the applicability of Janus particles in optical (bio)sensing, they have 

demonstrated to offer very interesting alternative strategies for single or dual fluorescence 
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determination of relevant analytes such as melamine, lead, H2O2, glucose and cholesterol. 

Specific SERS biosensing of several antigens (CEA, human IgG) and tumor cells by targeting 

specific cell surface receptors such as HER-2 and CD44 upon modification of the Janus 

particles with specific antibodies represents interesting bioanalytical strategies. In addition, 

Janus particles have shown both sensing and barcoding functions to enable multiplexed 

determination of DNA oligomers and protein targets. The use of Janus micro- and nanomotors 

has been reported also in connection to optical transduction for sensing of LPS released by 

deadly bacteria, organophosphorous nerve agents, dyes and propanolol. It is worth to remark 

also the variability in the Janus particles preparation in the reported approaches. Janus 

particles containing PDA liposomes and MIP nanoparticles as sensing units and magnetic γ-

Fe2O3 nanoparticles to provide them with magnetic properties have been described. 

Particularly attractive is the use of magnetic γ-Fe2O3 nanoparticles because, apart from 

enabling the easy separation and recycling of the Janus particles by an external magnetic field, 

they offer the possibility of exploiting the intrinsic peroxidase-like catalytic activity which is 

of great interest also in biosensing applications.  

Moreover, although significant progress has been made in the preparation of well-defined 

Janus nanoparticles, such as heterodimers and polymeric Janus nanoparticles with only few 

steps, currently the combination of new materials, the creation of particles with well-defined 

compartments, each carrying its own functionalities, and the possibility to create objects with 

groups allowing for self-propulsion, is only achievable for large microparticles. Therefore, a 

major challenge ahead to take full advantage of their potential for biosensing, is to develop 

new methods able to produce high quantities of Janus nanoparticles in a precise and 

reproducible manner, and compatible with the diverse array of materials and functionalities 

that chemistry and material science offer. Indeed, it is envisaged that numerous applications 

of Janus nanoparticles will be increased further as the yield and control of the synthetic 
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methods is improves. Also, binary nanoparticles characterization must be improved for the 

unambiguous identification of Janus nanoparticles and to provide information about their 

polydispersity and quality. In this sense, it is worth to mention that the use of click chemistry 

to prepare Janus particles has been shown recently as a rapid and scalable method to design 

the chemistry, surface charge, morphology, and self-assembly of Janus particles. 

In summary, given the large range of possibilities and interesting capabilities described so 

far and the main challenges to be facet yet, advances mainly in the preparation and 

modification of Janus particles with additional capabilities and in their practical applications 

in real-world systems are expected to drive researchers working in this exciting field.    
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