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Quantum evolution according to real clocks
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We characterize good clocks, which are naturally subject to fluctuations, in statistical terms. We also obtain
the master equation that governs the evolution of quantum systems according to these clocks and find its
general solution. This master equation is diffusive and produces loss of coherence. Moreover, real clocks can
be described in terms of effective interactions that are nonlocal in time. Alternatively, they can be modeled by
an effective thermal bath coupled to the system.@S1050-2947~99!04905-7#

PACS number~s!: 03.65.Bz, 05.40.2a, 42.50.Lc
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I. INTRODUCTION

In quantum mechanics, spatial positions are described
quantum observables. However, the situation with respec
the time parameter is rather more involved, as has b
known since Pauli pointed out that there is no self-adjo
operator canonically conjugate to the total energy, if
spectrum of the latter is bounded from below@1#. Some at-
tempts have been made to circumvent this problem by m
ing use of the concept of time of arrival@2#. Recent devel-
opments, however, have mapped the problem of construc
a good time of arrival operator into the problem of constru
ing a good-time operator@3#, thus showing that the specia
status of time is deeply embedded into the structure of qu
tum mechanics. We are then bound to use real phys
clocks and rely on their readouts when measuring the ev
tion of a quantum system.

Any real clock is inevitably subject to quantum fluctu
tions, which introduce uncertainties in the equations of m
tion. For instance, it has been shown that the finite mass
size of the clock impose limitations in the measurement
space-time distances in the framework of general relati
@4#. Some considerations have also been made on the ro
quantum clocks in the context of quantum cosmology@5,6#.
Simple models for quantum clocks have been proposed,
the quantum evolution of a system according to a quan
clock suitably coupled with it has also been studied@4–9#.
The general conclusion is that the system becomes more
more perturbed as the resolution of the clock is improv
Even more, quantum gravity may well imply the existence
an absolute limit, the Planck scale, to the accuracy of sp
time-distance measurements and, in particular, to clock s
chronization~for a review, see, e.g., Ref.@10#!, with possible
effects in the low-energy regime@11#.

It follows that any quantum clock that we could possib
build would lead to uncertainties and errors. These quan
errors, however, are not the only source of randomness in
measure of time. Real clocks are also subject to class
imperfections, small errors, that can only be dealt with s
tistically. For instance, an unavoidable classical source
stochasticity is temperature, which will introduce therm
fluctuations in the behavior of real clocks. Although this
not necessarily the most important source of errors in m
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ern day atomic clocks, it is nonetheless always presen
some extent. In other words, the third law of thermodyna
ics forbids the existence of ideal clocks.

We will study, within the context of the standard quantu
theory, the evolution of an arbitrary system according to
real clock. Unlike other works@4–9#, we are not concerned
about the quantum-dynamical behavior of the clock but o
with the readings of time that it provides. As stated befo
these readings will undergo errors, which will be describ
by a stochastic process. It is in this sense that we regard t
clocks as classical, although this does not preclude a pos
quantum-mechanical origin for the stochastic fluctuatio
Notice also that we will mostly consider clocks which a
decoupled from the system under study. In what follows
shall not delve further into the source of stochasticity, b
assume a phenomenological description of it.

Let us be more specific about the meaning of this rando
ness in the readings of the clock. Imagine a large ensem
of identical systems, prepare one of them in a given ini
state at initial clock timet50, and then measure the state
that system at clock timet. If we repeat this procedure for a
the systems in the ensemble, the result will be a probab
distribution for the possible outcomes, its dispersion partia
being a consequence of the lack of knowledge of the pre
ideal time that has elapsed. Therefore, the evolution acc
ing to the readouts of the real clock is nonunitary. In oth
words, the use of real clocks induces loss of coherenc
most physical quantum states, as we will explicitly show.

To attain this objective we will start by analyzing in som
detail the characteristics that should be expected from a g
real clock. This is expounded in the next section. The imp
cations of the randomness in the readings of a real clock
the quantum evolution of a system is explored in Sec. III.
Sec. IV, we discuss the evolution according to real cloc
from an effective point of view in terms of nonlocal intera
tions in time and also in terms of a thermal bath coupled
the system under study. Decoherence owing to clock er
is investigated in Sec. V. Finally, we summarize and co
clude in the last section with some general remarks.

II. GOOD CLOCKS

Let us consider the phase space of a classical phys
system, divided in a set of ordered cells, such that the
3236 ©1999 The American Physical Society
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PRA 59 3237QUANTUM EVOLUTION ACCORDING TO REAL CLOCKS
pected evolution of the system moves the state from one
k to the nextk11 in a time« approximately. An observe
keeps tally of which is the cell of largestk that has been
visited, and thus the passage of time is recorded. Letsk de-
note the ideal time at which the readout of the clock isk«,
i.e.,sk is the ideal time of first arrival of the system at thekth
cell. For an ideal clock, the timesk and the clock timek«
would coincide. However, for a real clock, these two qua
tities will differ by an errorDk5sk2k«, where it should be
noticed that the indexk pertains to the readoutk« of the
clock, i.e., to thekth tick, and not to a preset ideal time
Given any real discrete clock, its characteristics will be e
coded in the probability distribution for the stochastic s
quence@12# of clock errors,P($Dk%), which must satisfy
appropriate conditions, so that it describes a good clock.

A first property is that Galilean causality should be p
served, i.e., that causally related events should always
properly ordered in clock time as well, which implies th
sk11.sk for everyk. In terms of the discrete derivativeak
5(Dk112Dk)/« of the stochastic sequence$Dk%, we can
state this condition as requiring that, for any realization
the stochastic sequence,ak.21.

A second condition that we would require good clocks
fulfill is that the expectation value of relative errors, dete
mined by the stochastic sequence$ak%, be zero, i.e.,̂ ak&
50 for all k. If this were not the case, the clock would eith
systematically go fast or slow down, and a redefiniti
through this systematic drift would provide us with a we
centered clock. Consequently, the expectation value for
absolute errors$Dk% will be constant. Furthermore, sincek
50 will be the time at which the systems whose evoluti
we are studying are prepared,D0 will not be stochastic and
without loss of generality, will be set to zero by a simp
translation of the origin of time, so that^Dk&50.

Another expectation that we would have for a good clo
is that it should always behave in the same way~in a statis-
tical sense!. The difference between the ideal time for th
(k11)th tick and the ideal time for thekth tick must be
always the same, statistically speaking, even if the ac
errorsDk11 andDk are large by some statistical fluctuatio
Therefore, we can say that the clock behaves consistent
time as a good one if those relative errors$ak% are statisti-
cally stationary, i.e., the probability distributionP($ak%) for
the sequence of relative errors$ak% @which can be obtained
from P($Dk%), and vice versa# must not be affected by glo
bal shiftsk→k1k0 of the readout of the clock. Note that th
stochastic processDk need not be stationary, despite the s
tionarity of the processak .

It is also intuitively obvious that the one-point probabili
distribution function for the variablesak should be highly
concentrated around the zero mean, if the clock is to beh
nicely. Even more, it is to be expected for clocks with sm
errors that all the higher-order cumulants be much sma
than the correlation, which, in turn, should also be bound
by a small number, i.e.,

^ak&50, ^akak2 j&[cj<c0!1,

wherecj5c2 j . The correlation for the sequence of absolu
errors $Dk% can then be easily obtained and has the fo
^DkD l&5«2( i 51

k ( j 51
l ci 2 j .
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The correlation timeq for the stochastic sequence$ak% is
given by q5«( j 52`

1` cj /(2c0). We will introduce a new
parameter k with dimensions of time, defined ask2

5c0q2. This comes about because, when the errors of
clock have a thermal origin,k2 is proportional to the tem-
perature, and independent ofq. In general, the good-clock
conditions implyk!q. As we shall see,q cannot be arbi-
trarily large, and, therefore, the ideal clock limit is given b
k→0.

Until now we have discussed general properties tha
good clock must fulfill, regardless of the physical syste
under study. In addition to these properties, a good cl
must have enough precision in order to measure the ev
tion of the specific system, which imposes further restrictio
on the clock. On the one hand, the characteristic evolu
time z of the system must be much larger than the correlat
time q of the clock. On the other hand, the leading term
the asymptotic expansion of the variance^Dk

2& for largek is
of the formk2(k«/q) which means that, after a certain p
riod of time, the absolute errors can be too large. The ma
mum admissible standard deviation inDk must be at most of
the same order asz. Then the period of applicability of the
clock to the system under study, i.e., the period of clock ti
during which the errors of the clock are smaller than t
characteristic evolution time of the system is approximat
equal toz2q/k2. For a good clock,k!q!z, as we have
seen, so that the period of applicability is much larger th
the characteristic evolution timez.

Even though, so far, we have only spoken of good d
crete clocks, by analogy, we will consider continuous s
chastic processesa(t), with corresponding probability func
tionals P@a(t)#. The conditions previously stated for th
discrete sequence$ak% admit a straight-forward generaliza
tion to the continuous case. In what follows, we shall use
formulation in the continuum.

III. MASTER EQUATION

We shall now obtain the evolution equation for the de
sity matrix of an arbitrary quantum system in terms of t
clock time t. Let rS(s) be the density matrix for a quantum
system whose unitary evolution in the ideal Schro¨dinger time
s5t1D(t) is provided by the time-independent Hamiltonia
H.

For any given realization of the stochastic process t
characterizes a good clock, and using the chain rule, we
write the von Neumann evolution equation in terms of t
clock time t as

] trS„t1D~ t !…52 i „11a~ t !…@H,rS„t1D~ t !…#,

where\ has been set to 1.
Let us now transform to the interaction picture in whic

the density matrix has the form

rS
I
„t1D~ t !…5eiHtrS„t1D~ t !…e2 iHt .

Notice that the interaction terma(t)H has the same form in
both pictures because it is proportional to the free Ham
tonianH.
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Integrating the resulting equation between 0 andt, and
reintroducing the result forrS

I , we obtain the following
integro-differential equation:

] trS
I
„t1D~ t !…52 ia~ t !@H,rS

I ~0!#

2E
0

t

dt8a~ t !a~ t8!†H,@H,rS
I
„t81D~ t8!…#‡.

In order to find the evolution equation in the timet, we have
to average this equation over all possible realizationsa(t) of
the stochastic process with the functional weightP@a(t)#.
The average of the density matrixrS

I
„t1D(t)… will be de-

noted byr I(t) and can be regarded as the density matrix
the system at clock timet.

At the real time t50, we impose the initial condition
r I(0)5rS

I (0)5r0
I . Additionally, for a good clock,̂ a(t)&

50, as already discussed, and, as a consequence, the av
of the linear term ina(t) vanishes. Furthermore, the cloc
time derivative] t and the average overa(t8) commute be-
causeP@a(t8)# is stationary. Finally, the density matri
rS

I
„t81D(t8)… can be expanded in powers ofD(t8). Then

the average of the integro-differential equation for the d
sity matrix r I yields

ṙ I~ t !52E
0

t

dtc~t!†H,@H,r I~ t2t!#‡1O~^a3&!,

where the overdot denotes derivative with respect to
clock time t. We have also performed a change of the in
gration variable fromt8 to t5t2t8 and have introduced th
correlation functionc(t) for the stochastic processa(t).

For a good clock, the higher-order terms ina can be seen
to be much smaller than thec(t) term by a factor (k/z)2

!1, provided that the system evolves for a time smaller th
the period of applicability of the clock. Sincez@q, the sys-
tem does not evolve significantly within a correlation tim
and we can substituter I(t2t) by r I(t). This is the so-called
Markov approximation. The processD(t) will not be Mar-
kovian in general and there is no reason for requiring that
processa(t) has this property either. However, and ev
though the Markov approximation refers to the system a
not to the clock itself, it renders the possible non-Markov
character of the clock irrelevant. Furthermore, for evolut
timest much larger than the correlation timeq, we can take
the upper integration limit to infinity.

The resulting master equation, once we go back to
Schrödinger picture, can be written as

ṙ~ t !52 i @H,r~ t !#2~k2/q!†H,@H,r~ t !#‡.

Notice that the accuracy of the clock appears in the ma
equation through the parametersk and q and that, in the
ideal clock limit,k→0, the unitary von Neumann equation
recovered. We should also point out that this master equa
is not a truncation of the BBGKY hierarchy@13#, and that
irreversibility appears because the errors of the clock can
be eliminated once we have started using it.

Under the good-clock conditions,k!q, we can approxi-
mateP@a(t)# by a stationary Gaussian probability function
with zero mean and correlation given by the correlationc(t)
f
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of P@a(t)#. Although this Gaussian approximation assign
nonvanishing probability toa(t),21, this probability will
be negligibly small since, for good clocks,c(t)!1. Thus the
Gaussian approximation to good clocks fulfills the Galile
causality condition for all practical purposes.

In the Gaussian approximation, there is essentially o
one good clock for whicha(t) is Markovian, the Ornstein-
Uhlenbeck process@12#. In this case, the correlation functio
for a(t) in the stationary regime isc(t)5(k/q)2e2utu/q.
Since the possible non-Markovian character of the clo
does not influence the time evolution of the system~provided
that the conditionz!q is satisfied, as happens for goo
clocks!, the Ornstein-Uhlenbeck clock is generic in wh
concerns the evolution of quantum systems according to
clocks.

IV. EFFECTIVE DESCRIPTIONS

The master equation corresponds to the evolution o
system with a free HamiltonianH coupled with a classica
noise sourcea(t), with a probability functional distribution
P@a(t)#, via the interaction Hamiltoniana(t)H. The path
integrals for this system then follow the pattern@14#,

E DaP@a~ t8!#E DqDpei [*dt~pq̇2H !2*dta~ t !H~ t !] .

In the good-clock approximation, only the two-point corr
lation function c(t) is relevant, so that we can write th
probability functional as a Gaussian distribution. The in
gration overa(t) is then easily performed to yield

E DqDpei *dt~pq̇2H !2~1/2!*dtdt8c~ t2t8!H~ t !H~ t8!.

Therefore, we see that the effect of using real clocks
studying the evolution of a quantum system is the appe
ance of an effective interaction term in the action integr
which is bilocal in time. This can be understood as the fi
term in a multilocal expansion, which corresponds to t
weak-field expansion of the probability functional around t
Gaussian term.

This nonlocality in time admits a simple interpretatio
correlations between relative errors at different instants
clock time can be understood as correlations between clo
time flows at those clock instants. The clock-time flow of t
system is governed by the Hamiltonian and, therefore,
correlation of relative errors induces an effective interact
term, generically multilocal, that relates the Hamiltonians
different clock instants.

The expression for the influence functional is, in t
weak-noise limit, completely analogous to the expressi
above. Since the noise source is classical, we see that the
no dissipative term there, nor in the master equation@14#.
Moreover, as the interaction term is proportional toH, there
is no response of the system to the outside noise, wh
means that the associated impedance is infinite@15,16#.

From a different point of view, the clock can be effe
tively modeled by a thermal bath, with a temperatureTb to
be determined, coupled to the system. LetH1H int1Hb be
the total Hamiltonian, whereH is the free Hamiltonian of the
system andHb is the Hamiltonian of a bath that will be
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PRA 59 3239QUANTUM EVOLUTION ACCORDING TO REAL CLOCKS
represented by a collection of harmonic oscillators@16#. The
interaction Hamiltonian will be of the formH int5jH, where
the noise operatorj is given by

j~ t !5
i

A2p
E

0

`

dvx~v!@a†~v!eivt2a~v!e2 ivt# .

In this expression,a anda† are, respectively, the annihilatio
and creation operators associated with the bath, andx(v) is
a real function, to be determined, that represents the coup
between the system and the bath for each frequencyv.

Identifying, in the classical noise limit, the classical co
relation function of the bath withc(t), the suitable coupling
between the system and the bath is given by the spe
density of fluctuations of the clock:

kBTbx~v!25E
0

`

dtc~t!cos~vt! ,

wherekB is Boltzmann’s constant. With this choice, the ma
ter equation for evolution according to real clocks is identi
to the master equation for the system obtained by trac
over the effective bath.

To go beyond the classical noise limit requires the int
duction of the usual quadratic dissipation term in the infl
ence functional@14#. However, the peculiar coupling to th
energyjH, which is quite different from the usual couplin
to the position or the momentum of the system, implies t
this term does not produce dissipation in the equations
motion: the fluctuation-dissipation theorem, which refle
the microscopic structure of the bath, is thus fulfilled, b
there is no dissipation.

V. DECOHERENCE

The master equation contains a diffusion term and w
therefore lead to a loss of coherence@17#. However, this loss
depends on the initial state. In other words, there exis
pointer basis@18#, so that any density matrix which is diag
onal in this specific basis will not be affected by the diffusi
term, while any other will approach a diagonal density m
trix. The stochastic perturbationa(t)H is obviously diagonal
in the basis of eigenstates$un&% of the Hamiltonian, which is
therefore the pointer basis: the interaction term cannot
duce any transition between different energy levelsvn .

The components of the density matrix in this basis
rnm5^nurum&. The master equation can be solved exac
its general solution being

rnm~ t !5rnm~0!e2 ivnmte2~vnm!2k2t/q ,

where vnm5vn2vm . The smallest energy differencev
provides the inverse of the characteristic time for the evo
tion of the system,z51/v. The smallest decay constant
v2k2/q, equal to the inverse of the period of applicability
the clock. By the end of this period, the density matrix w
have been reduced to the diagonal terms and a much di
ished remnant of those off-diagonal terms with slow evo
tion. In any case, the von Neumann entropy grows if
density matrix is not initially diagonal in the energy basis
ng
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The effect of decoherence due to errors of real clo
does not only turn up in the quantum context. Consider,
instance, a classical particle with a definite energyE moving
under a time-independent HamiltonianH. Because of the er-
rors of the clock, we cannot be positive about the location
the particle in its trajectory on phase space at our clock t
t. Therefore, we have an increasing spread in the coordi
and conjugate momentum over the trajectory. For a gen
system, this effect is codified in the classical master eq
tion,

%̇5$H,%%1~k2/q!ˆH,$H,%%‰,

where%(t) is the probability distribution on phase space
clock time. This classical master equation can be derived
manner completely analogous to the quantum one.

For simplicity, let us study the particular example of
one-dimensional Hamiltonian motion with closed orbi
with H5vJ, w being the angle variable with period 2p
conjugate to the action variableJ, and v a constant fre-
quency characteristic of the system. The classical ma
equation for the probability density%(w,J;t) reads

] t%5v]w%1~v2k2/q!]w
2% .

This diffusion equation can be exactly solved by separat
of variables. The slowest decaying mode has, as befor
decay constantv2k2/q.

In the case of one particle that is released with energE
and initial anglew0 , the probability distribution spreads ou
over the corresponding connected component of the en
shell, and tends tod(J2E/v)/2p as clock time grows. As
we can see, the information about thew variable is washed
out by the errors in our clock, which is precisely the info
mation that is not available in the quantum case: ifJ is com-
pletely known for a given quantum state, the indetermina
in its conjugate variable will be infinite, the situation towar
which the classical decoherence process tends.

Finally, it should be observed that the mechanism of
coherence is neither tracing over degrees of freedom,
coarse graining, nor dephasing@17,19#. Even though there is
no integration over time introduced here by fiat, as happ
in dephasing in quantum mechanics, the spread in time
to the errors of the clock has a similar effect, and produ
decoherence.

VI. CONCLUSIONS

In our study of the evolution of quantum systems acco
ing to real clocks, which are necessarily subject to errors,
have first established a stochastic characterization of g
real clocks. Using this description, we have derived a ma
equation for the quantum evolution in real-clock time and
have also found its general solution in the basis of ene
eigenstates. The stochastic features of good real clocks
their effects on the quantum evolution can be equivalen
described by means of interactions which are nonloca
time. They can also be effectively modeled by a quant
thermal bath. The master equation exhibits a diffusion te
which is responsible for the loss of coherence of most ini
states. Finally, we have analyzed the evolution of class
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systems according to real clocks and reached analogous
clusions.

The third law of thermodynamics and the quantum flu
tuations prevent real clocks from being perfectly accura
This suggests that, strictly speaking, the Schro¨dinger unitary
evolution equation is just an excellent approximation va
for sufficiently short periods of time and that should be su
stituted, along the lines proposed in this paper, by a diffus
master equation in more general situations. This adds a
dom aspect to the evolution of quantum systems. Inde
coherence is progressively lost until we reach the period
applicability of the clock and, after that time, unpredictab
ity sets in, as we have seen. Even perfectly isolated syst
ik.
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will suffer loss of coherence because of the fluctuations
the real clock and will appear as effectively coupled to
reservoir.
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