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Quantum evolution according to real clocks
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We characterize good clocks, which are naturally subject to fluctuations, in statistical terms. We also obtain
the master equation that governs the evolution of quantum systems according to these clocks and find its
general solution. This master equation is diffusive and produces loss of coherence. Moreover, real clocks can
be described in terms of effective interactions that are nonlocal in time. Alternatively, they can be modeled by
an effective thermal bath coupled to the syst¢81050-294{®9)04905-7

PACS numbd(s): 03.65.Bz, 05.40-a, 42.50.Lc

[. INTRODUCTION ern day atomic clocks, it is nonetheless always present to
some extent. In other words, the third law of thermodynam-
In quantum mechanics, spatial positions are described bigs forbids the existence of ideal clocks.
quantum observables. However, the situation with respect to We Will study, within the context of the standard quantum
the time parameter is rather more involved, as has beef€0Y: the evolution of an arbitrary system according to a

known since Pauli pointed out that there is no self—adjointreal clock. Unlike other work$4—9], we are not concerned

operator canonically conjugate to the total energy, if theabOUt the quantum-dynamical behavior of the clock but only

spectrum of the latter is bounded from belpt. Some at- with the readings of time that it provides. As stated before,

tempts have been made to circumvent this problem by ma hese tre?dln?s will undelrtgo_ertrr?_rs, Wh'cr;hw't" be desc(;I?hed
ing use of the concept of time of arrivi?]. Recent devel- y a stochastic process. 1t is n this sense that we regard these

opments, however, have mapped the problem of constructin ocks as cIassma], althqugh this does not pre_clude a pqssmle
uantum-mechanical origin for the stochastic fluctuations.

a good time of arrival operator into the problem of construct-1"*. X ; .
g P b Notice also that we will mostly consider clocks which are

ing a good-time operatdi3], thus showing that the special
status of time is deeply embedded into the structure of quanQecoupIed from the system under study. In what follows we

tum mechanics. We are then bound to use real physicﬁha" not delve further into the source of stochasticity, but

clocks and rely on their readouts when measuring the evol gSSUme a phenomenol_o_g|cal description Qf It .
tion of a quantum system. Let us be more specific about the meaning of this random-

Any real clock is inevitably subject to quantum fluctua- ness in_the readings of the clock. Imagine a Iargc_—z engemble
tions, which introduce uncertainties in the equations of mo-Of identical systems, prepare one of them in a given initial

tion. For instance, it has been shown that the finite mass an ate at initial clock tl_me=0, and then measure the state of
size of the clock impose limitations in the measurement ofnat system a.t clock time If we repeat this p_rocedure for aI_I.
space-time distances in the framework of general reIativit)}he §yst¢ms in the en;emble, the resqlt W'.” be a probablllty
[4]. Some considerations have also been made on the role gfs_trlbutlon for the possible outcomes, its dispersion partlal_ly
quantum clocks in the context of quantum cosmolg§g). being a consequence of the lack of knowledge of _the precise
Simple models for quantum clocks have been proposed, ar{geal time that has elapsed. Therefor(_e, the evplutmn accord-
the quantum evolution of a system according to a quantu g to the readouts of the real .clock is nonunitary. In othe_r
clock suitably coupled with it has also been studjdé-9]. words, the' use of real clocks induces I.OSS Of. goherence In
The general conclusion is that the system becomes more afest ph-‘/s.'ca'.q“ar.‘t“m states,'as we wil expllqltly .ShOW'
more perturbed as the resolution of the clock is improved. T(.) attain this obj_ec_tlve we will start by analyzing in some
Even more, quantum gravity may well imply the existence Ofdetall the cha(ac_tenstlcs that s_hould be expecfued from a go_od
an absolute limit, the Planck scale, to the accuracy of spacé?a.I TG expoundgd L next section. The impli-
time-distance measurements and, in particular, to clock sy ations of the randomness in the readings of a real clock for

chronization(for a review, see, e.g., RdfL0]), with possible he quantum evolution of a system is explored in Sec. lll. In
; ; Sec. IV, we discuss the evolution according to real clocks
effects in the low-energy reginmé.1]. ; trocti it of view in t ¢ local int
It follows that any quantum clock that we could possibly rom an efiective point of view in terms of honlocal interac-

build would lead to uncertainties and errors. These quantu ons mttlme agd al.';‘odm tgrmshof a therme}l batth clouEIed to
errors, however, are not the only source of randomness in th e system under study. Deconerence owing 1o clock errors

measure of time. Real clocks are also subject to classical investigated in Sec. V. Finally, we summarize and con-

imperfections, small errors, that can only be dealt with sta—CIUde in the last section with some general remarks.
tistically. For instance, an unavoidable classical source of
stochasticity is temperature, which will introduce thermal
fluctuations in the behavior of real clocks. Although this is Let us consider the phase space of a classical physical

not necessarily the most important source of errors in modsystem, divided in a set of ordered cells, such that the ex-

Il. GOOD CLOCKS
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pected evolution of the system moves the state from one cell The correlation time¥ for the stochastic sequente,} is
k to the nextk+1 in a timee approximately. An observer given by ﬁ=sE]-+=°°,wc,-/(Zco). We will introduce a new
keeps tally of which is the cell of largestthat has been parameter x with dimensions of time, defined as?
visited, and thus the passage of time is recordedslele- =c,92. This comes about because, when the errors of the
note the ideal time at which the readout of the clockés  clock have a thermal origing? is proportional to the tem-
l.e., s is the ideal time of first arrival of the system at kil perature, and independent 6f In general, the good-clock
cell. For an ideal clock, the timg, and the clock time&ke  conditions implyx<d. As we shall sees¥ cannot be arbi-
would coincide. However, for a real clock, these two quan-rarily large, and, therefore, the ideal clock limit is given by
tities will differ by an errorA,=s,—ke, where it should be ,—0.
noticed that the indek pertains to the readoke of the Until now we have discussed general properties that a
clock, i.e., to thekth tick, and not to a preset ideal time. good clock must fulfill, regardless of the physical system
Given any real discrete clock, its characteristics will be en-under study. In addition to these properties, a good clock
coded in the probability distribution for the stochastic se-must have enough precision in order to measure the evolu-
quence[12] of clock errors,P({Ay}), which must satisfy tion of the specific system, which imposes further restrictions
appropriate conditions, so that it describes a good clock. on the clock. On the one hand, the characteristic evolution

A first property is that Galilean causality should be pre-time ¢ of the system must be much larger than the correlation
served, i.e., that causally related events should always bgme ¢ of the clock. On the other hand, the leading term in
properly ordered in clock time as well, which implies that the asymptotic expansion of the variar(czhi) for largek is
Sc+1> Sk for everyk. In terms of the discrete derivative,  of the form x?(ke/9) which means that, after a certain pe-
=(As1—Ay)/e of the stochastic sequendd,}, we can riod of time, the absolute errors can be too large. The maxi-
state this condition as requiring that, for any realization ofmum admissible standard deviationAR must be at most of
the stochastic sequence, > —1. the same order as Then the period of applicability of the

A second condition that we would require good clocks toclock to the system under study, i.e., the period of clock time
fulfill is that the expectation value of relative errors, deter-during which the errors of the clock are smaller than the
mined by the stochastic sequenge}, be zero, i.e.{ay)  characteristic evolution time of the system is approximately
=0 for all k. If this were not the case, the clock would either equal to?9/«2. For a good clockxk<d<(¢, as we have
systematically go fast or slow down, and a redefinitionseen, so that the period of applicability is much larger than
through this systematic drift would provide us with a well- the characteristic evolution timg
centered clock. Consequently, the expectation value for the Even though, so far, we have only spoken of good dis-
absolute errorgA,} will be constant. Furthermore, sinée  crete clocks, by analogy, we will consider continuous sto-
=0 will be the time at which the systems whose evolutionchastic processas(t), with corresponding probability func-
we are studying are preparely will not be stochastic and, tionals P[«(t)]. The conditions previously stated for the
without loss of generality, will be set to zero by a simple discrete sequenciy,} admit a straight-forward generaliza-
translation of the origin of time, so that\,)=0. tion to the continuous case. In what follows, we shall use the

Another expectation that we would have for a good clockfgrmulation in the continuum.
is that it should always behave in the same Wiaya statis-
tical sensg The difference between the ideal time for the
(k+1)th tick and the ideal time for th&th tick must be
always the same, statistically speaking, even if the actual e shall now obtain the evolution equation for the den-
errorsAy ;1 andA are large by some statistical fluctuation. sity matrix of an arbitrary quantum system in terms of the
Therefore, we can say that the clock behaves consistently iflock timet. Let pg(s) be the density matrix for a quantum
time as a good one if those relative errgrg} are statisti-  system whose unitary evolution in the ideal Salinger time
cally stationary, i.e., the probability distributid({e}) for  s=t+A(t) is provided by the time-independent Hamiltonian
the sequence of relative errofa,} [which can be obtained H.
from P({A,}), and vice vershmust not be affected by glo-  For any given realization of the stochastic process that
bal shiftsk—k+ kg of the readout of the clock. Note that the characterizes a good clock, and using the chain rule, we can
stochastic process, need not be stationary, despite the sta-write the von Neumann evolution equation in terms of the

IIl. MASTER EQUATION

tionarity of the process, . clock timet as
It is also intuitively obvious that the one-point probability
distribution function for the variables, should be highly dps(t+A(1)=—i(1+a(t))[H,pst+A(1)],

concentrated around the zero mean, if the clock is to behave

crrore that &l the higher-order eumulants be much smalcfleleh has been seto L.

than the correlation, which, in turn, should also be bounde Let us now transform to the interaction picture in which
. ’ ' (?he density matrix has the form

by a small number, i.e.,

<C(k>:0, <C¥kak,j>ECj$C0<1, pIS(t+A(t))zelHtps(t+A(t))eilHt

wherec;=c_;. The correlation for the sequence of absoluteNotice that the interaction term(t)H has the same form in
errors{A,} can then be easily obtained and has the formboth pictures because it is proportional to the free Hamil-

<AKA|>:SZE:<:1E}:1Ci*j . tonianH.
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Integrating the resulting equation between 0 andnd  of P[a(t)]. Although this Gaussian approximation assigns a
reintroducing the result fops, we obtain the following nonvanishing probability tex(t)<—1, this probability will

integro-differential equation: be negligibly small since, for good clocks(t)<1. Thus the
| ) | Gaussian approximation to good clocks fulfills the Galilean
dps(t+A(1)=—ia(t)[H,pg(0)] causality condition for all practical purposes.

¢ In the Gaussian approximation, there is essentially only
_f dt’a(t)a(t’)[H,[H,p'S(t’+A(t’))]]. one good clock for whichx(t) is Markovian, the Ornstein-

0 Uhlenbeck procedd 2]. In this case, the correlation function
_ , o _ for a(t) in the stationary regime is(7)=(x/&)2e |77
In order to find the evolution equation in the timeve have  gince the possible non-Markovian character of the clock
to average thls equation over all poss@le rea“Z_atl@("fS) of  does not influence the time evolution of the syst@novided
the stochastic process with the functional weighix(t)].  that the conditions<® is satisfied, as happens for good
The average of the density matrpk(t+A(t)) will be de-  ¢locks, the Ornstein-Uhlenbeck clock is generic in what

noted byp'(t) and can be regarded as the density matrix ofconcerns the evolution of quantum systems according to real
the system at clock time clocks.

At the real timet=0, we impose the initial condition

p'(0)=pg(0)=pp. Additionally, for a good clock{a(t)) IV. EFFECTIVE DESCRIPTIONS

=0, as already discussed, and, as a consequence, the average

of the linear term ina(t) vanishes. Furthermore, the clock ~ The master equation corresponds to the evolution of a

time derivatived, and the average over(t') commute be- System with a free Hamiltoniahi coupled with a classical

Causep[a/(t’)] is stationary_ Fina"y, the density matrix noise SOUr.CeI(t),.With aprobablllty fU.nCtional distribution

p's(t’+A(t’)) can be expanded in powers 4f(t’). Then P[a(t)], via the interaction Hamiltoniaa(t)H. The path

the average of the integro-differential equation for the denintegrals for this system then follow the patt¢],

sity matrix p' yields .

t f DaP[a(t’)]j DqDpel/dtpa=H)—Jdta(OHMD]

0= [ dre(n)H [H 0! (= ) TH O, o |
0 In the good-clock approximation, only the two-point corre-

lation functionc(7) is relevant, so that we can write the

where the overdot denotes derivative with respect to theyopapility functional as a Gaussian distribution. The inte-
clock timet. We have also performed a change of the inte-

X X ! gration overa(t) is then easily performed to yield
gration variable front’ to r=t—t’ and have introduced the
correlation functiorc(7) for the stochastic process(t).

For a good clock, the higher-order termsarcan be seen
to be much smaller than the(r) term by a factor k/¢)?
<1, provided that the system evolves for a time smaller thaTherefore, we see that the effect of using real clocks for
the period of applicability of the clock. Singe> 1, the sys-  studying the evolution of a quantum system is the appear-
tem does not evolve significantly within a correlation time,ance of an effective interaction term in the action integral,
and we can substitute (t— ) by p'(t). This is the so-called which is bilocal in time. This can be understood as the first
Markov approximation. The proces(t) will not be Mar-  term in a multilocal expansion, which corresponds to the
kovian in general and there is no reason for requiring that thaveak-field expansion of the probability functional around the
processa(t) has this property either. However, and evenGaussian term.
though the Markov approximation refers to the system and This nonlocality in time admits a simple interpretation:
not to the clock itself, it renders the possible non-Markoviancorrelations between relative errors at different instants of
character of the clock irrelevant. Furthermore, for evolutionclock time can be understood as correlations between clock-
timest much larger than the correlation tinfg we can take time flows at those clock instants. The clock-time flow of the

f Dqueifdt(pq— H)—(1/2)fdtdt’c(t—t’)H(t)H(t’)_

the upper integration limit to infinity. system is governed by the Hamiltonian and, therefore, the
The resulting master equation, once we go back to theorrelation of relative errors induces an effective interaction
Schralinger picture, can be written as term, generically multilocal, that relates the Hamiltonians at
different clock instants.
p(t)=—i[H,p(t)]— (k¥ N[H.[H,p(t)]]. The expression for the influence functional is, in the

weak-noise limit, completely analogous to the expressions

Notice that the accuracy of the clock appears in the mastaabove. Since the noise source is classical, we see that there is
equation through the parametetsand 9 and that, in the no dissipative term there, nor in the master equafibi.
ideal clock limit, k— 0, the unitary von Neumann equation is Moreover, as the interaction term is proportionaHpthere
recovered. We should also point out that this master equatiois no response of the system to the outside noise, which
is not a truncation of the BBGKY hierarchy13], and that means that the associated impedance is inf{iife16|.
irreversibility appears because the errors of the clock cannot From a different point of view, the clock can be effec-
be eliminated once we have started using it. tively modeled by a thermal bath, with a temperattigeto

Under the good-clock conditiong<}, we can approxi- be determined, coupled to the system. Het H;,,+H, be
mateP| «(t) ] by a stationary Gaussian probability functional the total Hamiltonian, wher#l is the free Hamiltonian of the
with zero mean and correlation given by the correlatét) system andH, is the Hamiltonian of a bath that will be



PRA 59 QUANTUM EVOLUTION ACCORDING TO REAL CLOCKS 3239

represented by a collection of harmonic oscillafd§]. The The effect of decoherence due to errors of real clocks
interaction Hamiltonian will be of the forl; ;= &éH, where  does not only turn up in the quantum context. Consider, for
the noise operatof is given by instance, a classical particle with a definite enefgyoving

under a time-independent Hamiltoniah Because of the er-
i w _ . rors of the clock, we cannot be positive about the location of
&)= —f dwyx(w)[a'(w)e“'—a(w)e™'']. the particle in its trajectory on phase space at our clock time
V2mlo t. Therefore, we have an increasing spread in the coordinate

: . 1 . ... and conjugate momentum over the trajectory. For a generic
In this expressiora anda are,_respecjuvely, the anmh"&}'ﬂon system, this effect is codified in the classical master equa-
and creation operators associated with the bathdeg is o

a real function, to be determined, that represents the coupling
between the system and the bath for each frequancy o 2

Identifying, in the classical noise limit, the classical cor- e={H.o}+ («“9){H.{H. e}
relation function of the bath witk(7), the suitable coupling

betueen the system and the bath is given by the spectrdf GECT) I RTE Y ST P e in
density of fluctuations of the clock: : q

manner completely analogous to the quantum one.
" For simplicity, let us study the particular example of a
kBTbX(w)sz drc(7)cod wT), one-dimensional Hamiltonian motion with closed orbits,
0 with H=wJ, ¢ being the angle variable with periodn2
conjugate to the action variablé and v a constant fre-
wherekg is Boltzmann’s constant. With this choice, the mas-quency characteristic of the system. The classical master
ter equation for evolution according to real clocks is identicalequation for the probability density(¢,J;t) reads
to the master equation for the system obtained by tracing
over the effective bath. &tQZwo'?(PQ-i-(szz/ﬁ)ﬂiQ )
To go beyond the classical noise limit requires the intro-
duction of the usual quadratic dissipation term in the influ-js giffusion equation can be exactly solved by separation
ence functiona[14]. However, the peculiar coupling to the of variables. The slowest decaying mode has, as before, a
energy£H, which is quite different from the usual coupling gecay constani?«?/ 9.
to the position or the momentum of the system, implies that | the case of one particle that is released with endtgy
this term does not produce dissipation in the equations Oing initial angle,, the probability distribution spreads out
motion: the fluctuation-dissipation theorem, which reflectspyer the corresponding connected component of the energy
the microscopic structure of the bath, is thus fulfilled, bUtsheII, and tends t&(J— E/w)/27 as clock time grows. As

there is no dissipation. we can see, the information about thevariable is washed
out by the errors in our clock, which is precisely the infor-
V. DECOHERENCE mation that is not available in the quantum case:ig com-

pletely known for a given quantum state, the indeterminacy
in its conjugate variable will be infinite, the situation towards
which the classical decoherence process tends.

a Finally, it should be observed that the mechanism of de-
coherence is neither tracing over degrees of freedom, nor
coarse graining, nor dephasifii7,19. Even though there is

. . . . : X “no integration over time introduced here by fiat, as happens
trix. The stochastic perturbatian(t)H is obviously diagonal in dephasing in quantum mechanics, the spread in time due

in the basis of eigenStatéb_“» of the Ham@ltonian, which is . to the errors of the clock has a similar effect, and produces
therefore the pointer basis: the interaction term cannot iNgecoherence.

duce any transition between different energy levels
The components of the density matrix in this basis are
pnm={Nn|p|m). The master equation can be solved exactly,

The master equation contains a diffusion term and will
therefore lead to a loss of coherend&]. However, this loss
depends on the initial state. In other words, there exists
pointer basig§18], so that any density matrix which is diag-
onal in this specific basis will not be affected by the diffusion
term, while any other will approach a diagonal density ma

VI. CONCLUSIONS

its general solution being In our study of the evolution of quantum systems accord-
) ) ing to real clocks, which are necessarily subject to errors, we
Pram(t) = pam(0) e “nmie™ (wnm <UD have first established a stochastic characterization of good

real clocks. Using this description, we have derived a master
where w,m=w,— w,. The smallest energy difference equation for the quantum evolution in real-clock time and we
provides the inverse of the characteristic time for the evoluhave also found its general solution in the basis of energy
tion of the system{=1/w. The smallest decay constant is eigenstates. The stochastic features of good real clocks and
w?K?1 9, equal to the inverse of the period of applicability of their effects on the quantum evolution can be equivalently
the clock. By the end of this period, the density matrix will described by means of interactions which are nonlocal in
have been reduced to the diagonal terms and a much dimitime. They can also be effectively modeled by a quantum
ished remnant of those off-diagonal terms with slow evolu-thermal bath. The master equation exhibits a diffusion term,
tion. In any case, the von Neumann entropy grows if thewhich is responsible for the loss of coherence of most initial
density matrix is not initially diagonal in the energy basis. states. Finally, we have analyzed the evolution of classical



3240 EGUSQUIZA, GARAY, AND RAYA PRA 59

systems according to real clocks and reached analogous cowill suffer loss of coherence because of the fluctuations of

clusions. the real clock and will appear as effectively coupled to a
The third law of thermodynamics and the quantum fluc-reservoir.

tuations prevent real clocks from being perfectly accurate.

This suggests that, strictly speaking, the Sdimger unitary

evolution equation is just an excellent approximation valid

for sufficiently short periods of time and that should be sub- We thank C. BarceloC. Cabrillo, P.F. GonZaz-Diaz,

stituted, along the lines proposed in this paper, by a diffusives.A. Mena Maruga, and M.A. Valle Basagoiti for discus-

master equation in more general situations. This adds a rasions. J.M.R. is also grateful to J.M. Quintana. We had sup-

dom aspect to the evolution of quantum systems. Indeedqort from the University of the Basque Coun{i§roject No.

coherence is progressively lost until we reach the period oUPV 063.310-EB225/95rom Junta de Andaluay and from

applicability of the clock and, after that time, unpredictabil- DGICYT (Spain under Project Nos. PB94-0107 and PB93-

ity sets in, as we have seen. Even perfectly isolated systentsl39.
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