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Departamento de Fı́sica Teórica II, Universidad Complutense, 28040 Madrid, Spain
(Received 29 September 2008; published 25 March 2009)

We calculate the bulk viscosity of the massive pion gas within unitarized chiral perturbation theory. We

obtain a low-temperature peak arising from explicit conformal breaking due to the pion mass and another

peak near the critical temperature, dominated by the conformal anomaly through gluon condensate terms.

The correlation between bulk viscosity and conformal breaking supports a recent QCD proposal. We

discuss the role of resonances, heavier states, and large-Nc counting.
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The matter produced after thermalization in relativistic
heavy ion collisions behaves nearly as a perfect fluid [1].
Deviations are seen mainly in elliptic flow and can be
reasonably explained with a small shear viscosity over
entropy density ratio �=s < 0:5 [2], whereas bulk viscosity
� is generically assumed to be negligible. However, it has
been recently proposed [3] that � might be large near the
QCD phase transition. If �=s is comparable to �=s near the
critical point (where indeed the latter is expected to have a
minimum) interesting physical possibilities arise such as
radial flow suppression, modifications of the hadronization
mechanism [3] or clustering at freeze-out [4]. The argu-
ment of [3] is that, following the QCD sum rules in [5], one
can relate � with the trace anomaly:

�ðTÞ ¼ 1

9!0ðTÞ
�
T5 @

@T

h�iT � h�i0
T4

þ 16j�0j
�
; (1)

with h�iT � hT�
� iT ¼ �� 3P, T

�
� the energy-momentum

tensor, � the energy density, P the pressure, and �0 ¼
h�i0=4 in vacuum. To derive (1), a particular ansatz has
been used for �ð!Þ, the h��i spectral function at zero
spatial momentum, with ð�=!Þð0Þ ¼ 9�=� and 9�!0 ¼
2
R1
0 ð�=!Þd!. Equation (1) implies then a large bulk

viscosity near the QCD transition, from the h�iT peak
observed in the lattice [6], more or less pronounced de-
pending on the transition order [3]. However, this argument
has been recently criticized on the basis of the

R1
0 ð�=!Þ

convergence and parametric dependence with the QCD
coupling constant [7]. On the other hand, estimates of �
from lattice data show that !	ð!Þ terms and large-!
nonthermal contributions have to be properly accounted
for in spectral functions [8,9].

It is therefore of great importance to study QCD regimes
where one can rely on analytic calculations, in order to
clarify the validity of the above proposal without appealing
directly to lattice data. In the weak coupling regime, valid
for very high temperatures, �=� has been found to be
parametrically small [10]. Another regime where one can
perform analytic calculations is low-energy QCD, where
the system consists primarily of a meson gas and, for low
temperatures, one can rely on chiral perturbation theory
(ChPT) [11]. In this regime, we have recently shown

[12,13], within linear response theory (Kubo’s formula),
that the usual ChPT power counting must be extended to
account for 1=�p contributions arising in transport coef-

ficients. Here, �p is the thermal width of a pion with three-

momentum p, in which the �� total elastic cross section
enters linearly in the dilute gas regime [14]. Performing the
power counting, which includes a detailed analysis of
ladder-type diagrams considered in [15], the leading-order
ChPT contribution comes from a one-loop meson diagram
with �p � 0 internal lines. An essential point is to include

unitarity corrections in �p to describe correctly the tem-

perature behavior as the system approaches chiral restora-
tion. We neglect inelastic 2� $ 4� reactions restoring
particle number equilibrium, which are suppressed in our
counting and yield chemical relaxation times about 10
times larger than the plasma lifetime [16]. Thus, our bulk
viscosity is meaningful for the pion gas formed in heavy
ion collisions, which conserves approximately pion num-
ber between chemical and thermal freeze-out, as confirmed
by particle spectra data analyses with a pion chemical
potential [17]. If � is defined in complete chemical equi-
librium, then particle-changing processes dominate [15].
The dominance of elastic processes for � in the pion gas
holds also in kinetic theory [18–20]. With our approach we
have also obtained �=s developing a minimum compatible
with AdS/CFT bounds with values in good agreement with
kinetic theory [19,21] and phenomenological estimates on
elliptic flow. This is the theoretical basis of the present
work, where we will analyze within ChPT the correlation
between bulk viscosity and the conformal anomaly in the
pion gas regime, studying the origin of the different con-
tributions to conformal breaking for physical massive
pions. Thus, we start with Kubo’s formula

�ðTÞ ¼ 1

2
lim
!!0þ

@

@!

Z
d4xei!x0h½P̂ ðxÞ; P̂ ð0Þ�i; (2)

where the modified pressure operator P̂ � �Ti
i=3�

c2sT00, the squared speed of sound c2s ¼ @P=@� ¼ s=cv,
s ¼ @P=@T and the specific heat cv ¼ @�=@T ¼ T@s=@T.
We follow the conventions of [22], where � is defined as
the change in the pressure produced by a gradient in the
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flow velocity, relative to equilibrium. This leads to the
correlator in (2), which is the adequate one to be used
within perturbation theory [7,10]. In lattice analyses, one
works with the Lorentz invariant � instead. In our approach
these two correlators are not equivalent, since the leading
order in 1=�p for perturbative T00 commutators does not

vanish for zero spatial momentum. As we shall see, stick-
ing to the original definition (2) leads naturally to the
expected conformal properties and asymptotic behavior
of the bulk viscosity. Following [12], we calculate then

the spectral function (P̂ commutator) in (2) in the
imaginary-time formalism, picking up the dominant con-
tribution in 1=�p (pinching pole) of the analytically con-

tinued retarded correlator. That term is purely imaginary
and gives the dominant effect in the spectral function at
zero momentum and small energy. Thus, to leading order:

�ðTÞ ¼
Z 1

0
dp

3p2ðp2=3� c2sE
2
pÞ2

4�2TE2
p�p

nBðEpÞ½1þ nBðEpÞ�;
(3)

with nBðxÞ � 1=½expðx=TÞ � 1� the Bose-Einstein distri-

bution function, Ep � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

�

p
and where the leading

Oðp2Þ order in T�� has been retained in the vertex. Now,
we get c2s in (3) from P calculated up to OðT8Þ in [11]. In
Fig. 1 we see that to OðT6Þ, both the specific heat and the
speed of sound increase monotonically, c2s approaching
the ultrarelativistic limit of 1=3 corresponding to a gas of
free massless pions. To that order, since the distribution
function is peaked around p� T for T � m�, we see that
(3) vanishes asymptotically for large temperatures, as ex-
pected for conformally invariant systems [10,13,18,19,22].
In fact, from (3) we get for massless pions (chiral limit)
� ¼ 15ð1=3� c2sÞ2�, consistently with [23] and paramet-
rically with high-T QCD [10]. The crucial point here is that
taking one more order in the pressure cv grows, reaching a
maximum at about Tc ’ 220 MeV. The speed of sound
attains then a minimum at Tc which will alter the behavior
of �ðTÞ. This is the critical behavior of a Oð4Þ-like cross-
over, as expected for two massive flavors at zero chemical
potential. A physical interpretation is that, although tem-
perature tends to erase mass scales, chiral interactions are

enhanced and produce in the critical region a significant,
nonperturbative, conformal breaking reflected in c2s � 1=3.
Note that, although in the massive case Tc is near the chiral
restoration temperature T


c where the order parameter
h �qqiT vanishes [11], in the chiral limit T


c ’ 170 MeV,
while Tc is almost unchanged.
We plot our result for the bulk viscosity in Fig. 2. The

effect of including the OðT8Þ in c2s effectively produces a
peak around Tc, not present to OðT6Þ [13]. The speed of
sound is not the only relevant effect yielding a sizable
peak: unitarization of the cross section entering �p [12]

is also crucial to OðT8Þ. Considering unitarized partial
waves for �� scattering (ChPT is only perturbatively
unitary) improves the high energy behavior (and therefore
the high temperature one) and generates dynamically the
f0ð600Þ and �ð770Þ resonance poles. Consistently, we have
chosen the values of the low-energy constants �li entering
pion scattering (they can be found in [24]) so that the mass
and width of the � are at their physical values for T ¼ 0.
As we discuss below, the �li dependence is crucial in the
present analysis. In the chiral limit, the transition peak is
almost unchanged and so is Tc, unlike T



c , which indicates

that chiral restoration is not the main source of this effect.
Our massless results are in reasonable agreement with a
recent kinetic theory analysis [20]. We also obtain a low-T
peak, which disappears in the chiral limit. In our regime

and for T � m�, nBðEpÞ ’ e�m�=Te�p2=2m�T so that three-

momenta p ¼ Oð ffiffiffiffiffiffiffiffiffiffi
m�T

p Þ and taking the leading order for
�p [12] and c2s ’ T=m� þ . . . [11], Eq. (3) becomes

�ðTÞ ’ 13:3
f4�

ffiffiffiffi
T

p

m3=2
�

for T � m�; (4)

where f� is the pion decay constant. The above behavior is
consistent with nonrelativistic kinetic theory [18] where �
and � are expected to be comparable at low T. Thus, �ðTÞ
increases for very low T and has to decrease at some point
to match the asymptotic vanishing behavior, thus explain-
ing the low-T maximum.
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FIG. 1 (color online). Specific heat (left) and speed of sound
squared (right) for the pion gas. The red dashed line is the OðT6Þ
calculation, and the continuous blue line the OðT8Þ one. The
green dotted line is the ultrarelativistic limit c2s ¼ 1=3. The dash-
dotted blue line is the chiral limit result to OðT8Þ.
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FIG. 2 (color online). Bulk viscosity of the pion gas. The full
blue line is the unitarized result with c2s to OðT8Þ and the dash-
dotted blue one is the same calculation in the chiral limit. The
dashed green line is the nonunitarized result at the same order.
The dotted red line is unitarized with c2s to OðT6Þ and lies very
close to the nonunitarized curve, which is not displayed.
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Let us now evaluate conformal-breaking contributions
for the pion gas. First, it is instructive to recall the QCD
result for the trace anomaly [25]:

ðT�
� ÞQCD ¼ �ðgÞ

2g
Ga

��G
��
a þ ð1þ �mðgÞÞ �qMq; (5)

where the renormalization group functions are, perturba-
tively, �ðgÞ ¼ Oðg3Þ, �mðgÞ ¼ Oðg2Þ. The first term is the
conformal anomaly proportional to the gluon condensate.
The second one comes from the explicit breaking in the
QCD Lagrangian, M being the quark mass matrix. For the
pion gas, using the thermodynamic identity

h�iT ¼ T5 d

dT

�
P

T4

�
; (6)

we represent in Fig. 3 the trace anomaly to different orders
in the pressure, as well as the T function appearing in the
right-hand side of (1). We observe clearly the same two-
peak structure as the bulk viscosity, with similar features.

The low-T peak disappears in the chiral limit. Its con-
tribution comes then from explicit conformal breaking.
Calculating only the first nonvanishing order in ChPT,
either using (6) or evaluating directly the energy-
momentum correlators, we get

h�iT � h�i0 ¼ 3m2
�g1ðm�; TÞ þOðf�2

� Þ
¼ 2mqðh �qqiT � h �qqi0Þ þOðf�2

� Þ; (7)

where mq ¼ mu ¼ md and we formally account for differ-

ent chiral orders by their f� power. The function g1 is the
thermal correction to the free pion propagator Gðx ¼ 0Þ
[11]. Comparing with the QCD expression (5) the factor
of 2 in (7) for the quark condensate is perfectly consistent
with the result [26] showing that the quark and gluon
contributions to the trace anomaly are identical at low
temperatures. Now, g1ðTÞ=T4 has a maximum at T ’
2m�=5 ’ 60 MeV, which is the low-T peak in Fig. 3 and
the source for the first peak of the bulk viscosity.

The transition peak only shows up atOðT8Þ and survives
in the chiral limit, where its origin is purely anomalous.
It comes from ChPT interactions involving dimension-
ful couplings, such as f�, and is therefore suppressed at
low temperatures [27]. For massive pions, the value of the
peak and its position are almost unchanged with respect to
the chiral limit, the difference being even smaller than the
simple extrapolation of the quark condensate contribution
in (7) with h �qqiT toOðT8Þ, which represents around a 10%
correction in the critical region. The fermion contribution
is also subdominant in lattice analyses [6]. These results
show again that the nature of this effect is not likely to be
related to chiral symmetry restoration but rather to other
QCD critical effects such as deconfinement. The correla-
tion with the bulk viscosity is again clear. In fact, in the
chiral limit the function between brackets in (1) and
15ðc2s � 1=3Þ2 ¼ �=� have their maximum at the same

Tc ¼ e�5=8�p with �p given in [11] in terms of �l1 þ 4�l2.

We recall that in order to establish the possible correlations
between the conformal anomaly and the bulk viscosity, we
have used the same set of �li in both figures. For those
unitarized values, Tc ’ 220 MeV. Using perturbative val-
ues, for instance those given in [11] fixed to reproduce pion
scattering lengths, the critical peak is about 3 times smaller
and Tc ’ 148 MeV, while T


c varies only about 10 MeV
from one set to another. We get exactly the same drastic
reduction of the critical peak and shift of Tc in the bulk
viscosity. The presence of resonances is then crucial to
yield a sizable effect in the transition peak, whose domi-
nant contribution comes from the gluon condensate.
Regarding the!0ðTÞ function defined through (1), in the

chiral limit it grows linearly with T, reaching !0 �
400 MeV at the transition. In the massive case, taking
j�0j ¼ f2�m

2
�, the ChPT lowest order, we get !0ðTcÞ �

1 GeV, almost constant from T � 150 MeV onwards.
These values are in reasonable agreement with the esti-

mates in [3]. On the other hand, from (4) we get !0ðTÞ ’
0:13m7=2

� =ðf2�
ffiffiffiffi
T

p Þ for T ! 0þ.
The numerical values of the trace anomaly in Fig. 3 are

not far from the lattice values [6] for low T, but they are
about a factor of 10 smaller near Tc. The increasing of
degrees of freedom due to heavier states, not included in
our approach, is clearly important in that region. For
instance, the OðT8Þ pressure in the chiral limit is propor-
tional to N2

fðN2
f � 1Þ [27] so that changing from two to

three flavors, which are not Boltzmann suppressed near the
transition, significantly increases the anomaly. In addition,
using a simple free hadron resonance gas approach [3], the
�, �, 
 contributions to the anomaly amount only to a 5%
of all baryon and meson states up to 2.5 GeV. In fact,
although we get �=s ’ 0:02 at the transition peak, still
smaller than �=s ’ 0:25, we would get a larger value if
we assume that the introduction of heavier states increase
the anomaly, and that implies an increase of the transition
strength and a strong reduction of c2s [3]. As an indication,
setting c2s ¼ 0 in (3) we get �=s� 1 at Tc.
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FIG. 3 (color online). Thermal expectation value of the trace
anomaly for the pion gas. The dash-dotted green and continuous
blue lines are, respectively, the OðT6Þ and OðT8Þ results. The
dashed red line corresponds to the OðT8Þ result for massless
pions [the OðT6Þ order vanishes for m� ¼ 0]. The dotted blue

line is T @
@T

h�iT�h�i0
T4 .
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We have seen that it is crucial to include correctly the
effect of the � resonance. On the other hand, the f0ð600Þ=

is expected to be related to chiral restoration. Regarding
bulk viscosity, it has been suggested in [28], within mean
field theory, that any dynamic scalar field 
 should con-
tribute to � / �
=m

2

, which may be large near the critical

region by mass reduction, for instance in the linear sigma
model (LSM) context. Within unitarized ChPT, the dy-
namically generated f0ð600Þ pole undergoes a significant
mass reduction towards 2m� governed by chiral restora-
tion, remaining a broad state with sizable width near the
transition [24]. Interestingly, from [24], we find that
�
=m

2

 has a peak at T � 180 MeV, where the pole mass

reaches threshold. For higher T the width still decreases
(by phase space reduction) while the mass remains close to
threshold. This critical value is very close to the one
obtained in [28] for the LSM assuming a T-independent
width. However, as discussed above, these chiral restora-
tion effects are likely to be subdominant.

The large-Nc limit is also revealing. The counting of the
�li can be extracted from the Li (Nf ¼ 3) [29] while f2� ¼
OðNcÞ. We get �p �OðN�2

c Þ and, in the chiral limit,

h�iT �OðN�1
c Þ � ðc2s � 1=3Þ so that � �Oð1Þ and �=��

OðN�2
c Þ, parametrically suppressed as expected. Now, tak-

ing into account the critical behavior, Tc �OðeNcÞ and
h�iTc

�OðeNc=N2
cÞ. This large dependence is another in-

dication of the dominance of confinement over chiral resto-
ration, comparing with the chiral T



c ¼OðNcÞ. Also, h�i/

L3, which in large Nc includes a term proportional to the
gluon condensate [30]. Comparing with the QCD expres-
sions in [10], we agree except for the overall OðN2

cÞ con-
stants in the pressure which count the degrees of freedom.
For massive pions, the above chiral limit scaling is only
reached asymptotically for large T, while for any T we get
�=��Oð1Þ � h�iT � h�i0 with � �OðN2

cÞ, compatible
with (4).

Summarizing, we have shown, within unitarized ChPT,
that the massive pion gas develops a strong correlation
between bulk viscosity and the conformal anomaly. Both
quantities show a low-temperature peak coming from mass
conformal breaking and another one at the critical tem-
perature remaining in the chiral limit and mainly domi-
nated by gluon condensate contributions not related to
chiral restoration. The dynamically generated light reso-
nances are essential to obtain sizable effects at the transi-
tion. Different estimates indicate that heavier states could
yield a larger bulk viscosity near the transition, leading to
observable effects in heavy ion collisions.
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