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In this work, we make the observation that the gravitational leptogenesis mechanism can be
implemented without invoking new axial couplings in the inflaton sector. We show that, in the perturbed
Robertson-Walker background emerging after inflation, the spacetime metric itself breaks parity symmetry
and generates a nonvanishing Pontryagin density which can produce a matter-antimatter asymmetry. We
analyze the produced asymmetry in different inflationary and reheating scenarios. We show that the
generated asymmetry can be locally comparable to observations in certain cases, although the size of the
matter-antimatter regions is typically much smaller than the present Hubble radius.
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I. INTRODUCTION

The excess ofmatter over antimatter in theUniverse is one
of the long-standing problems in cosmology [1]. This
matter-antimatter asymmetry is usually quantified through
the ratio of the net baryon number density with respect to
the total entropy density, whose value measured by the
Planck Collaboration is nB=s ¼ 8.718� 0.004 × 10−11 [2].
One of the most interesting proposals for the generation
of the baryon asymmetry is leptogenesis [3]. The original
implementation of thismechanism relied on the introduction
of right-handed Majorana neutrinos in the Standard Model,
whose mass term breaks lepton symmetry. This lepton
asymmetry is later on converted into baryon asymmetry
through electroweak sphaleron processes [4]. For right-
handed neutrinos in thermal equilibrium, this mechanism
requires a reheating temperature TRH above the right-
handed neutrino mass mR which should satisfy
mR ≳ 109 GeV [5,6]. For nonthermally produced neutrinos,
these constraints could be relaxed [7–9].
In Ref. [10], an alternative mechanism for leptogenesis

was proposed which is not based on the introduction of
heavy Majorana leptons. In this gravitational leptogenesis
mechanism, lepton asymmetry is generated from the chiral
gravitational lepton anomaly already operating in the
Standard Model with only left-handed neutrinos [11,12]:

∇μJ
μ
L ¼ NR−L

24ð4πÞ2 RR̃; ð1Þ

where JμL is the total lepton current and NR−L is the
difference between the number of right-handed and

left-handed lepton species. As a matter of fact, it has been
shown that neutrino masses, either Dirac or Majorana, do
not affect the predictions of gravitational leptogenesis [13].
The necessary ingredient in this case for the generation

of a net lepton number is the existence of a primordial chiral
gravitational wave background which contributes to the
Pontryagin density RR̃. In order to generate such a chiral
background, extended inflationary models involving axial
couplings of the inflaton field have been considered. Thus,
for example, a gravitational Chern-Simon coupling of a
pseudoscalar inflaton field was originally proposed in
Ref. [10], although some consistency issues were discussed
in Refs. [14,15]. Other possibilities include a Chern-
Simons interaction between the pseudoscalar inflaton
and a Uð1Þ gauge field [16] and non-Abelian gauge fields
coupled to an axionic inflaton [17,18]. Alternative ways of
generating a parity-violating GW background have been
considered in Refs. [19–21].
In this work, we make the observation that the gravita-

tional leptogenesis mechanism can be implemented without
invoking new axial couplings in the inflaton sector. Indeed,
the perturbed Robertson-Walker (RW) background emerg-
ing after inflation already breaks parity, thus generating a
nonvanishing Pontryagin density. Notice that, although the
probability distribution functions for the production of left-
and right-handed gravity waves are the same in ordinary
inflation models, our Universe is a particular realization of
the Gaussian process in which the actual amplitude of
left- and right-handed gravitational wave excitations can be
different.
We, thus, conclude that the minimal Standard Model

with left-handed neutrinos together with an ordinary infla-
tionary model driven by a scalar inflaton field already
contains all the ingredients to generate a lepton asymmetry
after inflation.
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II. GRAVITATIONAL LEPTOGENESIS

Let us then consider a spatially flat RW spacetime with
scalar and tensor perturbations in the longitudinal gauge.
We will ignore vector perturbations, as they are not
typically produced during inflation. The line element in
conformal time reads

ds2 ¼ a2ðηÞ½ð1þ 2ΦÞdη2 − ðð1 − 2ΨÞδij − hijÞdxidxj�;
ð2Þ

withΦ andΨ the scalar perturbations and hij the transverse
traceless tensor perturbation.
The Pontryagin density that sources the leptonic current

in Eq. (1) can be written in terms of the electric and
magnetic parts of the Weyl tensor [22–24], E and B,
respectively, as

RR̃ ¼ 1

2
εμνρσRμναβRρσαβ ¼ 16EμνBμν: ð3Þ

The unperturbed part of the metric (2) does not con-
tribute to either the electric or magnetic parts of the Weyl
tensor. On the other hand, all scalar, vector, and tensor
components contribute to the electric part, whereas only
vector and tensor ones add to the magnetic part. This means
that the leading contribution to RR̃ is second order in metric
perturbations. Since the tensor-to-scalar ratio of the pri-
mordial power spectra r < 0.1 [25], we expect the scalar-
tensor contribution to dominate over the tensor-tensor
one, i.e.,

RR̃ ¼ −
4

a4
ϵjklðΦþΨÞ;ijh0ik;l þ � � � ; ð4Þ

where the prime denotes derivative with respect to the
conformal time. In the comoving frame, we can write JμL ¼
ða−1nL; 0Þ to leading order in perturbations, where nL is
the physical lepton number density. Inserting these expres-
sions into Eq. (1), we obtain the leptonic number density
after integrating in time:

nL ¼ 1

16π2a3
ϵjkl

Z
dηΦ;ijh0ik;l; ð5Þ

where we used that in the Standard Model NR−L ¼ −3 and
that in the absence of anisotropic stress Φ ¼ Ψ.
Let us now expand the scalar and tensor perturbations in

terms of creation and annihilation operators

Φðη;xÞ ¼
Z

d3p

ð2πÞ3=2 ðΦðp; ηÞbpeip·x þΦ�ðp; ηÞb†pe−ip·xÞ

ð6Þ

and

hijðη;xÞ ¼
Z

d3k

ð2πÞ3=2
X
λ¼þ;−

�
hλðk; ηÞeλijðk̂Þak;λeik·x

þ h�λðk; ηÞeλij �ðk̂Þa†k;λe−ik·x
�
; ð7Þ

where λ ¼ � correspond to the �2 helicity modes whose
polarization tensors can bewritten as eλijðk̂Þ ¼ ελ�i ðk̂Þελ�j ðk̂Þ,
with ελðk̂Þ the helicity�1 polarizationvectors. Notice that in
the absence of chiral couplings hþ ¼ h− ¼ h.
It is straightforward to see that the expectation value of

the scalar-tensor contribution to the lepton number in the
Bunch-Davies vacuum is vanishing. Indeed, we can sche-
matically write hnLi ∼ hΦh0i ¼ hΦihh0i ¼ 0. Therefore,
the leading contribution to the expectation value would
be the tensor-tensor one, which has been already explored
in previous works [6,10,16]. However, this contribution
also vanishes for inflationary sectors without axial cou-
plings. Notice, however, that the variance of the lepton
number density is in general nonvanishing, since we can
write hn2Li ∼ hΦ2ihh02i ≠ 0. Precisely the root mean square
nrms
L ¼ hn2Li1=2 provides an estimate of the produced lepton

density in a typical realization of the random process. Thus,
it is straightforward to obtain

hn2Li¼
�

1

16π2a3

�
2X

λ

Z
d3kd3pdηdη0

ð2πÞ6

×k2jp · ελðk̂Þj4ðh0λðk;ηÞh�0λ ðk;η0ÞΦðp;ηÞΦ�ðp;η0ÞÞ:
ð8Þ

In the absence of chiral couplings, the whole integral in
Eq. (8) is independent of λ thanks to spherical symmetry.
After some simplification, the variance can be written in a
compact manner as

hn2Li ¼
1

3840π8a6

Z
dkdpk4p6

����
Z

dηΦðp; ηÞh0ðk; ηÞ
����2:

ð9Þ
III. LEPTOGENESIS DURING REHEATING

For the sake of concreteness, we will assume that the net
lepton number density at the end of inflation is negligible,
so that we will consider the leptogenesis produced through-
out the stage of reheating by the inflationary primordial
metric perturbations. For simplicity, we consider that the
energy content during reheating is described by means of
an effective fluid with barotropic equation of state p ¼ wρ,
with w constant. We will also parametrize the primordial
power spectra in the usual way:

PSðkÞ ¼ AS

�
k
k�

�
nS−1

; PTðkÞ ¼ AT

�
k
k�

�
nT
; ð10Þ
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where AS and AT are the scalar and tensor amplitudes at the
pivot scale k�, respectively. We will use the value obtained
by the Planck Collaboration [2] for the scalar spectral index
ns ¼ 0.965 and assume a scale-invariant tensor power
spectrum nT ¼ 0. The primordial power spectra generated
during inflation have a natural ultraviolet cutoff at the scale
kI ¼ aIHI corresponding to the size of the comovingHubble
horizon at the end of inflation, as modes with k > kI have
never left the horizon and could not become classical metric
perturbations. Imposing this upper limit in the momentum
integrals in Eq. (9), we obtain for the total lepton number
variance generated during reheating

hn2LiRH ¼ 1

960π4

�
kI
aRH

�
6

PSðkIÞPTðkIÞIðηRHÞ ð11Þ

with

IðηÞ ¼
Z

1

0

dx
Z

1

0

dyxnTþ1ynSþ2

×

����
Z

η

ηI

dη̂ Φ̃ðkIy; η̂Þh̃0ðkIx; η̂Þ
����2; ð12Þ

where aRH denotes the scale factor at the end of reheating,
Φ̃ðk; ηÞ ¼ Φðk; ηÞ=Φðk; ηIÞ is the scalar perturbation nor-
malized to its value at the end of inflation, and similarly for
the tensor mode. Notice that the x and y integrals are
dominated by the upper integration limits which correspond
to modes with k ≃ p ≃ kI.
During reheating, scalar and tensor modes behave as

Φðp; ηÞ ¼ η−r½C1Jrð
ffiffiffiffi
w

p
pηÞ þ C2Yrð

ffiffiffiffi
w

p
pηÞ� ð13Þ

and

hðk; ηÞ ¼ ηs½D1JsðkηÞ þD2YsðkηÞ� ð14Þ

with Jr;s and Yr;s Bessel functions of order r ¼
ð5þ 3wÞ=ð2þ 6wÞ and s ¼ ð3w − 3Þ=ð2þ 6wÞ, respec-
tively, and C1;2 and D1;2 constants. Both scalar and tensor

modes remain constant outside the horizon (kη ≪ 1), while
well inside the horizon they oscillate with decreasing
amplitude, except for w ¼ 0, where Φ ¼ const even inside
the horizon. In Fig. 1, we show the behavior of the
perturbations together with the product appearing in
the integrand of Eq. (12) for different values of w for
the dominant modes. We can see that contributions to the
time integral in Eq. (12) occur only when tensor modes
enter the Hubble horizon, since in the super-Hubble regime
h0 ≃ 0. We also plot function IðηÞ in Fig. 2, which provides
the time dependence of the lepton production. The different
behavior for each equation of state, and, hence, the different
interference between scalar and tensor modes, translates
into a different time evolution of IðηÞ. We can also see that
leptogenesis takes place in a few Hubble times.
We can now compute the lepton number to entropy ratio

by dividing by the entropy density s ¼ 2π2g�sT3
RH=45, with

g�s the effective number of relativistic species. This ratio
should be so that it reproduces the baryon asymmetry after
the partial conversion of leptonic asymmetry via sphalerons
[4], which is

FIG. 1. Time evolution of the perturbations Φ̃ðkI; ηÞ (left), h̃0ðkI; ηÞ (center), and its product (right), which is the integrand of the time
integral in Eq. (12), for reheating equations of state w ¼ 0, 1 and wave number k ¼ p ¼ kI.

FIG. 2. Time evolution of IðηÞ in Eq. (12) for three different
reheating equations of state. For inflationary and reheating scales
so that ηRH=ηI ≫ 1, the integral evaluates to its asymptotic value,
and, as a result, it depends only on w.
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nrms
L

s
¼ 79

28

���� nBs
���� ¼ 2.45 × 10−10: ð15Þ

Far from the instantaneous reheating limit, we find that,
in general, IðηRHÞ ¼ Oð10−1Þ. Thus, from Eq. (11), we see
that, apart from the power spectra which are (almost) scale
invariant, the relevant quantity in determining the size of
nrms
L =s is the factor ðkI=aRHÞ3. As a matter of fact, we can

extract the dependence on HI and TRH from such a factor
and obtain

nrms
L

s

����
RH

∝
ffiffiffiffiffiffiffiffiffiffiffi
ASAT

p �
HI

MP

�1þ3w
1þw

�
TRH

MP

�1−3w
1þw ð16Þ

for ns ≃ 1 and where MP ¼ 1=
ffiffiffiffi
G

p
is the Planck mass,

meaning that leptogenesis is enhanced for high inflation
scales and, in the case of stiff reheating scenarios with
w > 1=3, for low reheating temperatures.
In the left panel in Fig. 3, we plot nrms

L =s in the ðTRH; HIÞ
parameter space for a stiff equation of state w ¼ 1 during
reheating. We see that the asymmetry in Eq. (15) can be
locally generated for inflationary scales above HI ¼
1012 GeV and reheating temperatures larger than the electro-
weak threshold.
In the right panel in Fig. 3, we plot the values of nrms

L =s
obtained from Eq. (11) in the ðTRH; wÞ parameter space for
an inflation scale corresponding to HI ¼ 1013 GeV, which
corresponds to a tensor-to-scalar ratio of r ≃ 10−3. We can
see that large baryon asymmetries can be generated for stiff
equations of state and reheating temperatures near the
electroweak scale. For a radiation behavior w ¼ 1=3, we
find that, as expected, the production is not sensitive to the

reheating temperature. Reheating scenarioswith equations of
state close to w ¼ 0 are not efficient at producing the lepton
number. Comparing these results with those obtained in
Ref. [10] with the axial coupling, we find that, for the
instantaneous reheating case and the parameters used in that
work, we get nrms

L =s ∼ 10−20, which is slightly above their
results.

IV. SIZE OF MATTER-ANTIMATTER REGIONS

The variance of the lepton number density obtained in
Eq. (11) provides only the typical amplitude of local
fluctuations. In order to determine the size of the matter-
antimatter regions, it is necessary to calculate the correla-
tion function ξðrÞ ¼ hnLðxþ rÞnLðxÞi. For an equation of
state during reheating w ¼ 0 and scale-invariant scalar and
tensor spectra, it is possible to obtain analytical expres-
sions. Thus, changing variables p ¼ q − k, we can write

ξðrÞ ¼ ASAT

4096π5a6

Z
kI

k0

dk
Z

d3qkq4eiq·r

×
Z

1

−1
dx

ð1 − x2Þ2
ðq2 þ k2 − 2kqxÞ3=2 ; ð17Þ

where k0 and kI denote the infrared and ultraviolet cutoffs,
respectively, of the production. The following limits can be
obtained:

ξðrÞ ¼
( 41ASAT

483840π4
ðkIaÞ6; kIr ≪ 1;

− 11ASAT

26880π4
ðkIaÞ6 cosðkIrÞ

k2I r
2 ; kIr ≫ 1:

ð18Þ

The comoving coherence length associated to the lepton
number variance is, therefore, lcoh ≃ 1=kI, which is much

FIG. 3. Values of nrms
L =s for power spectra with Planck 2018 scalar amplitude and scale-invariant tensor power spectrum AT ¼

16=πðHI=MPÞ2 with fixed equation of state w ¼ 1 (left) and fixed inflation scale HI ¼ 1013 GeV (right). We consider only
temperatures TRH > 1 MeV in order to ensure the existence of a big bang nucleosynthesis period. The vertical dashed line shows the
threshold of the electroweak scale, which is the minimum temperature for the sphaleron process to be effective. The solid black line
shows the parameters that yield the value (15), which scales as in Eq. (16). The dashed area on the bottom right corner in the left panel is
excluded, since reheating is not possible in such a parameter range, with the boundary corresponding to instantaneous reheating. The
contour lines (in gray) in the left panel deviate from Eq. (16) close to the limit of instantaneous reheating.
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smaller than the observable Universe. We, thus, expect that
these small matter-antimatter regions will annihilate each
other on subhorizon scales, providing an average asymmetry
over a comoving scale r0 given by the weighted variance

hn2Lir0 ¼
�

1

V2
W

�Z
d3rnLðxþ rÞWðrÞ

�
2
�
; ð19Þ

whereWðrÞ is awindow function of characteristic size r0 and
VW ¼ R

d3rWðrÞ. Again, for an equation of state during
reheating w ¼ 0 and scale-invariant spectra, we can write

hn2Lir0 ¼
ASATπ

256a6r60

Z
kI

k0

dk
Z

kI

0

dqkq6
jŴðkþ pÞj2

V2
W

×
Z

1

−1
dx

ð1 − x2Þ2
ðq2 þ k2 − 2kqxÞ3=2 : ð20Þ

If we choose a Gaussian window function WðrÞ ¼
e−r

2=2r2
0 , we can obtain

hn2Lir0 ¼
ASAT

2048π4a6r60

�
2e−k

2
0
r2
0

k20r
2
0

þ ffiffiffi
π

p ��
1

k3I r
3
0

−
2

kIr0

�

× erfðkIr0Þ −
�

1

k30r
3
0

−
2

k0r0

�
erfðk0r0Þ

�	
: ð21Þ

Compared to the local variance in Eq. (8), this quantity is
suppressed as

hn2Lir0 ≃
1

ðkIr0Þ6
1

k0r0
hn2Li; ð22Þ

exhibiting a clear blue-tilted behavior. Thus, on regions of
the order of r0 ¼ H−1

0 , the expected lepton asymmetry will
be several orders of magnitude smaller than observations.

V. PHENOMENOLOGY IN THE LATE UNIVERSE

Let us examine the implications of this gravitational
leptogenesis mechanism for standard cosmology. First, the
lepton number asymmetry generated during reheating can
be converted into baryon asymmetry only if TRH is above
the electroweak scale. Around and above this temperature,
QCD confinement has not occurred yet, so the baryon
number is in the form of quarks, which are relativistic.
Quarks interact in this preconfinement plasma with a mean
free path which can be estimated as Γ−1

q ≃ T−1, causing
diffusion of the baryon number. As a result, perturbations
in the baryon asymmetry are suppressed on scales below
the corresponding (comoving) Silk length, which can be
estimated at the moment of confinement as follows [26]

r2SðTQCDÞ ¼
Z

aQCD

0

da
Γ−1
q ðaÞ

a3HðaÞ ≃ ð10−16 MpcÞ2; ð23Þ

with aQCD the scale factor at the confinement temper-
ature TQCD ≃ 300 MeV.
After confinement, quarks can no longer exist as free

particles and form bound states, namely, protons and
neutrons. These particles are now nonrelativistic and still
interact with photons, which makes the baryon diffusion
scale drop significantly, so the comoving size of the matter-
antimatter patches freezes after confinement. We can
calculate the weighted variance of the baryon asymmetry
at the Silk scale r0 ¼ rS from Eq. (19). Note that, after
inserting Eq. (11) into Eq. (22), the dependence on the
inflation scale cancels out (except for the power spectra,
which are nearly scale invariant), so the Silk scale becomes
the only relevant one, so that we obtain

hn2Bi1=2
s

����
rS

≃ 10−36
�
H0

k0

�
1=2

ð24Þ

for an infrared cutoff k0.
Thus, we have the following behavior for the rms baryon

asymmetry fluctuations at a given r0 scale:

nrms
B

s

����
r0

≃

8>><
>>:

10−36


H0

k0

�
1=2

; r0 < rS;

10−36


H0

k0

�
1=2



rS
r0

�
7=2

; r0 > rS;
ð25Þ

i.e., for regions smaller than the Silk scale, diffusion
suppresses baryon fluctuations, and the abundance must
be obtained through the weighted variance over the Silk
length, which does not depend on the inflationary param-
eters. For larger patches r0 > rS, the averaged abundance is
damped as shown in Eq. (22).
In conclusion, we see that gravitational leptogenesis

effects will induce tiny fluctuations in the baryon asym-
metry parameter over regions with a typical size of the Silk
length at confinement. Regarding the lepton number
asymmetry that is also generated, it is homogenized in a
similar manner through free-streaming of electrons and
especially neutrinos, which are relativistic until very late
stages of cosmic evolution.

VI. DISCUSSION

In the previous analysis, we have considered simple
power laws for the scalar and tensor primordial spectra in
the whole range of scales with the amplitudes and spectral
indices measured from cosmic microwave background
(CMB) observations. However, as shown in Eq. (11), the
produced lepton density depends on the values of the power
spectra at the kI scale, which can be separated from the
scales measured in the CMB by many orders of magnitude.
This means that a possible running of the spectral indices
could affect the predictions of the model. An interesting
possibility would be the presence of features in the scalar
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power spectrum at small scales. In particular, it has been
shown that the presence of (broad) peaks could play
an important role in the generation of primordial black
holes after inflation [27]. Such peaks could, in fact,
enhance by several orders of magnitude the produced
lepton asymmetry.
As shown in Fig. 3, the lepton-to-entropy ratio strongly

depends on the equation of state during the reheating phase,
and stiff equations enhance the generated asymmetry. This
possibility has been recently discussed in Ref. [6], where
kination-dominated reheating scenarios [28] have been
considered. An interesting consequence of early phases
with a stiff equation of state is the generation of a blue tilt in
the transfer function of tensor modes [29], which could
render the primordial gravitational wave background
observable for the sensitivity and frequency range of future
detectors such as LISA, Einstein Telescope, or Cosmic
Explorer. Even when considering the rms fluctuation at the
Silk scale, which eliminates the explicit dependency on the
inflation scale, both a kination phase and the presence of
features in the power spectra introduce a dependency on the
particular inflationary scenario.

Even though primordial metric perturbations do not
seem to be able to generate the observed homogeneous
asymmetry on Hubble scales, the produced baryon asym-
metry could, in principle, act as a source of baryonic
isocurvature perturbations. However, according to the
obtained results (25), these perturbations would be very
small for observable scales. Finally, let us mention that,
beyond the linear regime, gravitational lepton generation in
chiral astrophysical systems [22] could also provide poten-
tial experimental ways to test the leptogenesis mechanism
discussed in this work.
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