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Summary

A one-shot device is a unit that performs its function only once and, after use, the device either

gets destroyed or must be rebuilt. For this kind of device, one can only know whether the failure

time is either before or after a specific inspection time, and consequently the lifetimes are either

left- or right-censored, with the lifetime being less than the inspection time if the test outcome is a

failure (resulting in left censoring) and the lifetime being more than the inspection time if the test

outcome is a success (resulting in right censoring). An accelerated life test (ALT) plan is usually

employed to evaluate the reliability of such products by increasing the levels of stress factors

and then extrapolating the life characteristics from high stress conditions to normal operating

conditions. This acceleration process will shorten the life span of devices and reduce the costs

associated with the experiment. The study of one-shot device from ALT data has been developed

considerably recently, mainly motivated by the work of Fan et al. [2009].

In the last decades the use of divergence measures in the resolution of statistical problems

has reached a remarkable relevance among the statisticians. It can be seen in Basu et al. [2011]

and Pardo [2005] the importance of divergence measures in the areas of parametric estimation

and parametric tests of hypotheses, together with many non-parametric uses. In particular, the

minimum density power divergence estimators, introduced by Basu et al. [1998], are well-known

to have robust statistical properties. Along this Thesis, robust estimators and tests are developed

based on density power divergences for one-shot device testing.

In Chapter 2, we consider the problem of one-shot device testing along with an accelerating

factor, in which the failure time of the devices is assumed to follow an exponential distribution. In

this context, Fan et al. [2009] considered a single stress factor to the accelerated life test plan for one-

shot devices, and analyzed the data by using a Bayesian approach in which the model parameters

in the prior information were assumed to be close to the true values. In contrast, Balakrishnan

and Ling [2012a] developed an EM algorithm for a single stress model, and made a comparative

study with the mentioned Bayesian approach, showing that the EM method is more appropriate for

moderately and lowly reliable products. Proposed minimum density power divergence estimators

and Z-type tests are shown, both theoretically and empirically, to present a much more robust

behavior than the classical MLE and Z-test. However, as opposed to a single-stress test by using

a high stress level so as to attain the aging within a limited time, some ALTs involve two or

more stress factors. Effectively, multiple-stress model becomes better suited for the prediction of

lifetimes of products, subjected to, for example, electrical, thermal or mechanical stresses; see, for

example, Srinivas and Ramu [1992] and Bartnikas and Morin [2004]. In Balakrishnan and Ling

[2012b], an EM algorithm for developing inference is developed, based on one-shot device testing

data under the exponential distribution when there are multiple stress factors. In Chapter 3, we

extend the results in Chapter 2 to multiple-stress ALTs. In this case, instead of Z-type tests, we

muss define Wald-type tests, which are shown, by means of an extensive simulation study, to be

much more robust than classical Wald-test. In Chapter 4, we extend the results of Chapter 3 by

assuming that the lifetimes follow a gamma distribution. Gamma distribution is commonly used

for fitting lifetime data in reliability and survival studies due to its flexibility. Its hazard function

can be increasing, decreasing, and constant. When the hazard function of gamma distribution is a

constant, it corresponds to the exponential distribution. In addition to the exponential distribution,
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the gamma distribution also includes the Chi-square distribution as a special case.

In practice, the Weibull distribution is widely used as a lifetime model in engineering and

physical sciences. In fact, the Weibull model is also used extensively in biomedical studies as

a proportional hazards model for evaluating the effects of covariates on lifetimes, meaning that

the hazard rates of any two products stay in constant ratio over time. See Meeter and Meeker

[1994], Meeker et al. [1998], and references therein. However, in some situations,the assumption of

constant shape parameters may not be valid; see, for example, Kodell and Nelson [1980], Nogueira

et al. [2009] and Vázquez et al. [2010]. In such situations, Balakrishnan and Ling [2013] suggested

using a log-link of the stress levels to model the unequal shape parameters. Based on this idea, we

develop, in Chapter 5, robust inference for one-shot device testing under the Weibull distribution

with scale and shape parameters varying over stress. Other distributions may be considered for

modeling the lifetimes. In Chapter 6, we consider the Lindley and lognormal distributions. The

Lindley distribution, introduced by Lindley [1958], has shown to give better modeling that the

exponential distribution in some contexts (see Ghitany et al. [2008]). On the other hand, the

lognormal distribution has been studied in different types of censored data, see, for example,

Meeker [1984] and Ng et al. [2002].

Under the classical parametric setup, product lifetimes are assumed to be fully described by a

probability distribution involving some model parameters. However, as data from one-shot devices

do not contain actual lifetimes, parametric inferential methods can be very sensitive to violations

of the model assumption. Ling et al. [2015] proposed a semi-parametric model, in which, under the

proportional hazards assumption, the hazard rate is allowed to change in a non-parametric way.

However, this methods suffer again from lack of robustness, as it is based on the MLE of model

parameters. In Chapter 7, we develop robust estimators and tests for one-shot device testing based

on divergence measures under proportional hazards model.

In lifetime data analysis, it is often the case that the products under study can experience

one of different types of failure. For example, in the context of survival analysis, we can have

several different types of failure (death, relapse, opportunistic infection, etc.) that are of interest

to us, leading to the so-called “competing risks” scenario. A competing risk is an event whose

occurrence precludes the occurrence of the primary event of interest. Balakrishnan et al. [2015a,b]

have discussed the problem of one-shot devices under competing risk for the first time. The main

purpose of Chapter 8 is to develop weighted minimum density power divergence estimators as

well as Wald-type test statistics under competing risk models for one-shot device testing assuming

exponential lifetimes. Chapter 9 finally provides some concluding remarks and also points out

some further problems of interest. The Appendix briefly presents some other results, which have

also been obtained by the candidate during her Ph.D. studies.
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Resumen

Los dispositivos de un sólo uso (one shot devices en inglés), son aquellos que, una vez usados,

dejan de funcionar. La mayor dificultad a la hora de modelizar su tiempo de vida es que sólo

se puede saber si el momento de fallo se produce antes o después de un momento espećıfico de

inspección. Aśı pues, se trata de un caso extremo de censura interválica: si el tiempo de vida es

inferior al de inspección observaremos un fallo (censura por la izquierda), mientras que si el tiempo

de vida es mayor que el tiempo de inspección, observaremos un éxito (censura por la derecha).

Para la observación y modelización de este tipo de dispositivos es común el uso de tests de vida

acelerados. Los tests de vida acelerados permiten evaluar la fiabilidad de los productos en menos

tiempo, incrementando las condiciones a las que se ven sometidos los dispositivos para extrapolar

después estos resultados a condiciones más normales. El estudio de los dispositivos de un sólo uso

por medio de tests de vida acelerados se ha incrementado considerablemente en los últimos años

motivado, principalmente, por el trabajo de Fan et al. [2009].

Por otra parte, en las últimas décadas, el uso de medidas de divergencia en la resolución de

problemas estad́ısticos ha ganado gran importancia dentro de la investigación. Por ejemplo, en

Basu et al. [2011] y Pardo [2005], se puede apreciar la relevancia de las medidas de divergencia en

la estimación paramétrica y tests de hipótesis paramétricos, aśı como para otros muchos usos. En

particular, los estimadores de mı́nima densidad de potencia (minimum density power divergence

estimators en inglés), introducidos en Basu et al. [1998], son muy importantes debido a su robustez.

A lo largo de esta Tesis, se desarrollarán estimadores y tests robustos para los dispositivos de un

sólo uso basados en estas divergencias.

En el Caṕıtulo 2, presentamos el problema de los dispositivos de un sólo uso con un único factor

de estrés, asumiendo que el tiempo de fallo de los dispositivos sigue una distribución exponencial.

En este contexto, Fan et al. [2009] consideraron un único factor de estrés para los tests de vida

acelerados en el contexto de dispositivos de un sólo uso, y analizaron los datos usando un enfoque

Bayesiano en el que los parámetros de la información a priori se asumı́an cercanos a los verdaderos

valores. Por otro lado, Balakrishnan and Ling [2012a] desarrollaron un algoritmo EM para un

factor de estrés, e hicieron un estudio comparativo con el método Bayesiano antes mencionado,

mostrando que el método EM es más apropiado para productos con media o baja fiabilidad. Los

estimadores y tests de tipo Z que proponemos en este caṕıtulo muestran, de forma tanto teórica

como emṕırica, ser más robustos que el estimador de máxima verosimilitud (EMV) y el clásico test

o prueba Z. Sin embargo, muchos tests de vida acelerados constan de más de un factor de estrés,

lo cuál puede resultar más preciso para la predicción de los tiempos de vida (Srinivas and Ramu

[1992],Bartnikas and Morin [2004]). En Balakrishnan and Ling [2012b], se desarrolla un algoritmo

EM para múltiples factores de estrés asumiendo que los tiempos de vida siguen una distribución

exponencial. En el Caṕıtulo 3, extendemos los resultados del Caṕıtulo 2 al caso de múltiples

factores de estrés. En este caso, en lugar de tests de tipo Z, tenemos que definir tests de tipo Wald,

los cuáles generalizan el clásico test de Wald. Con esta idea en mente, en el Caṕıtulo 4, asumimos

que los tiempos de vida siguen una distribución gamma. Esta distribución se usa comúnmente

en estudios de supervivencia y fiabilidad debido a su flexibilidad. Su función de riesgo puede ser

creciente, decreciente o constante. En este último caso, la distribución gamma corresponde a la

exponencial. Aparte de ésta, la distribución gamma también contiene a la Chi-cuadrado como caso
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particular.

En la práctica, la distribución Weibull es ampliamente utilizada en ingenieŕıa y ciencias f́ısicas.

De hecho, esta distribución también se usa habitualmente en estudios biomédicos para un modelo

de riesgos proporcional que evalue el efecto de las covariables, ya que los ratios o tasas de riesgo de

cualesquiera dos productos se mantienen constantes en el tiempo, véase por ejemplo Meeter and

Meeker [1994], Meeker et al. [1998]. Sin embargo, no siempre es válido asumir ésto (Kodell and

Nelson [1980], Nogueira et al. [2009] y Vázquez et al. [2010]). En esos casos, Balakrishnan and Ling

[2013] sugirieron relacionar los factores de estrés a los parámetros de forma. Basándonos en esta

idea, desarrollamos, en el Caṕıtulo 5 inferencia robusta para los dispositivos de un sólo uso bajo

la distribución Weibull asumiendo que los parámetros de escala y forma vaŕıan con los factores

de estrés. También podŕıamos considerar otras distribuciones para modelizar los tiempos de vida.

En el Caṕıtulo 6, consideramos las distribuciones Lindley y lognormales. En algunos contextos se

ha demostrado que la distribución Lindley, introducida por Lindley [1958], da mejores resultados

que la distribución exponencial (Ghitany et al. [2008]). Por otra parte, la distribución lognormal

ha sido estudiada en diferentes tipos de datos censurados, por ejemplo Meeker [1984] y Ng et al.

[2002].

En el clásico modelo paramétrico, se asume que las vidas de los productos están completamente

descritas por una distribución de probabilidad con ciertos parámetros. Sin emabrgo, como no se

pueden conoccer el momento real de fallo de los dispositivos de un sólo uso, los métodos parmétricos

pueden ser demasiado sensibles. Ling et al. [2015] propusieron un modelo semi-paramétrico, en

el que, bajo el modelo de riesgos proporcionales, el ratio de riesgo puede variar de forma no

paramétrica. Sin embargo, este método sufre de nuevo de falta de robustez, ya que se basa en

el EMV de los parámetros del modelo. En el Caṕıtulo 7, definimos estimadores y tests robustos

basados en medidas de divergencia para el modelo de riesgos proporcionales.

Si bien en los caṕıtulos descritos se asume que hay una sola causa de riesgo, es habitual en el es-

tudio de este tipo de datos, que los dispositivos puedan tener diferentes causas de fallo. Por ejemplo,

en el contexto de análisis de supervivencia, podemos tener varias causas de fallo (muerte, recáıda,

infección, etc.) que son de interés, llevando a lo que llamamos escenario de riesgos competitivos

(competing risks en inglés). Balakrishnan et al. [2015a,b] trataron por primera vez el problema

de dispositivos de un sólo uso bajo riesgos competitivos. El principal objetivo del Caṕıtulo 8 es

desarrollar estimadores y tests para este caso asumiendo distribuciones exponenciales. Finalmente,

en el Caṕıtulo 9 se presentan algunas conclusiones finales y se dan unas pinceladas sobre posibles

ĺıneas de investigación futuras. El Apéndice presenta de forma breve otros resultados, obtenidos

por la candidata durante la elaboración de su Tesis.
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Chapter 1

Introduction

1.1 Motivation of the Thesis

On May 2015, Professor N. Balakrishnan (McMaster Uinversity, Ontario, Canada) was invited by

Professor L. Pardo and the Department of Statistics and Operational Research at Complutense Uni-

versity of Madrid (Madrid, Spain), to give a talk entitled “One-Shot Device Testing and Analysis”.

In this talk, Professor N. Balakrishnan first introduced the one-shot devices and the corresponding

form of test and data and made an overview of some results related to the EM-algorithm for this

kind of devices under different lifetime distribution assumptions. All these results had resulted on

the publication of several papers (see, for example, Balakrishnan and Ling [2012a,b, 2013]) and

were collected on the Thesis of Dr. Ling on 2012 (Ling [2012]). An extension of these results can

be found on several papers collected in the Thesis of Dr. So (So [2016]).

While all these results deal with the efficiency of the estimation on one-shot devices, the robust-

ness of these estimators was not considered. In this regard, Professors N. Martin, L. Pardo and N.

Balakrishnan discussed the possibility of applying divergence measures to one-shot device testing

to deal with this problem. In particular, the density power divergence was known to have good

robustness properties in several statistical models. This idea, which also resulted on the concession

of the National Research Project MTM2015-67057-P, can be considered the origin of this Thesis.

This work, developed under the supervision of Professors N. Mart́ın and L. Pardo, has been

funded by the Santander Bank Funding Program (Complutense University of Madrid) and by

an FPU scholarship (FPU 16/03104). It has also received support from the Research Projects

MTM2015-67057-P and PGC2018-095194-B-I00. Three main research stays have been undoubtedly

essential in the development of this work. The first two (July-August 2016 and June-August 2018)

were carried out in McMaster Uinversity (Ontario, Canada) under the supervision of Professor N.

Balakrishnan. The last one (May-July 2019) was carried out in the University of Ioannina (Greece)

under the supervision of Professor K. Zografos.

1.2 Divergence measures

In the last decades the use of divergence measures in the resolution of statistical problems has

reached a remarkable relevance among the statisticians. It can be seen in Basu et al. [2011] and

Pardo [2005] the importance of divergence measures in the areas of parametric estimation and

parametric tests of hypotheses, together with many non-parametric uses. In the following, in

accordance with the scope of this Thesis we focus on parametric methods. In estimation theory

is very intuitive the role of the divergence measures in order to get estimates of the unknown

parameters: Minimizing a suitable divergence measure between the data and the assumed model.

From a historical point of view was Wolfowitz [1952, 1953, 1954, 1957] who considered for

the first time the possibility to use divergence measures (distances) in statistical inference. The
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robustness properties of many minimum divergence estimators in relation to the maximum likeli-

hood estimator (MLE), without a significant loss of efficiency, have been one of the most important

reasons for which that statistical procedures become more popular every day. Important works in

which it is possible to see these facts are, for instance: Beran et al. [1977], Lindsay et al. [1994],

Simpson [1987, 1989] and Tamura and Boos [1986]. Based on these minimum divergence estima-

tors has been possible to get test statistics that have better robustness properties that the classical

likelihood ratio tests, Wald tests of Rao‘s tests. In this Thesis, we shall use divergence measures

in order to present robust inference procedures for one-shot devices that we shall describe in the

next sections.

The statistical distances or measures of divergence can be classified in two different groups:

1. Distances between the distribution function of the data and the model distribution. Examples

include the Kolmogorov-Smirnov distance, the Cramer-von Mises distance, see Mises [1936,

1939, 1947], the Anderson-Darling distance (Anderson and Darling [1952]), etc...

2. Distances or divergence measures between the probability density function or probability

mass function of data (such as a nonparametric density estimator or the vector of relative

frequencies) and the model density. The term ”divergence” for a statistical distance was

used formally by Bhattacharyya [1943, 1946] and the term was popularized by its use for

Kulllback-Leibler divergence in Kullback and Leibler (1951), its use in the textbook Kullback

(1959), and then by Ali and Silvey [1966] and Csiszar [1963], for the class of φ-divergences.

The three more important families of divergences of this type are: φ-divergence measures,

Bregman divergences and Burbea-Rao divergences.

In this Thesis we pay special attention to some members of the Bregman divergences and

φ-divergence measures. We are going to describe these two classes of divergence measures. We

shall introduce some additional notation. Let X be a random variable taking values on a sample

space X (usually X will be a subset of Rn, n-dimensional Euclidean space). Suppose that the

distribution function F of X depends on a certain number of parameters, and suppose further

that the functional form of F is known except perhaps for a finite number of these parameters;

we denote by θ the vector of unknown parameters associated with F . Let (X , βX , Pθ)θ∈Θ be the

statistical space associated with the random variable X, where βX is the σ-field of Borel subsets

A ⊂ X and {Pθ}θ∈Θ a family of probability distributions defined on the measurable space (X , βX )

with Θ an open subset of RM0 , M0 ≥ 1. In the following the support of the probability distribution

Pθ is denoted by SX .

We assume that the probability distributions Pθ are absolutely continuous with respect to a

σ-finite measure µ on (X , βX ) . For simplicity µ is either the Lebesgue measure (i.e., satisfying the

condition Pθ(C) = 0, whenever C has zero Lebesgue measure), or a counting measure (i.e., there

exists a finite or countable setSX with the property Pθ (X − SX ) = 0). In the following

fθ(x) =
dPθ
dµ

(x) =


fθ(x) if µ is the Lebesgue measure,

Prθ (X=x) = pθ(x) if µ is a counting measure,

(x∈ SX )

denotes the family of probability density functions if µ is the Lebesgue measure, or the family of

probability mass functions if µ is a counting measure. In the first case X is a random variable

with absolutely continuous distribution and in the second case it is a discrete random variable with

support SX .

1.2.1 Bregman’s divergence measures

Bregman [1967] introduced a family of divergences measures, between the probability distributions

Pθ1
and Pθ2

, by

2



Bϕ(θ1,θ2) =

∫
X

(ϕ (fθ1
(x))− ϕ (fθ2

(x)))− ϕ′ (fθ2
(x)) (fθ1

(x)− fθ2
(x)) dµ (x)

for any differentiable convex function ϕ : (0,∞) → R with ϕ (0) = limt→0 ϕ (t) ∈ (−∞,∞). It is

important to note that for ϕ(t) = t log t, we get the Kullback-Leibler divergence,

dKL (θ1,θ2) =

∫
X

fθ1
(x) log

fθ1
(x)

fθ2(x)
dµ (x) (1.1)

and for ϕ(t) = t2 and discrete probability distributions, the Euclidean distance, namely

E (θ1,θ2) =

M∑
i=1

(pθ1 (xi)− pθ2 (xi))
2
. (1.2)

But the most important family, from the point of view of this Thesis, is the family obtained

when ϕτ (t) = 1
τ t

1+τ with τ ≥ 0. The corresponding family of divergences is called “density power

divergences” (DPD), whose expression is given by

dτ (θ1,θ2) =

∫
X

(
1

τ
f1+τ
θ1

(x)− 1 + τ

τ
fτθ2

(x) fθ1
(x) + fτ+1

θ2
(x)

)
dµ (x) . (1.3)

This family of divergence measures was considered for the first time in Basu et al. (1998). They

established that dτ (θ1,θ2) ≥ 0. The expression for τ = 0 is obtained as

lim
τ→0

dτ (θ1,θ2) = dKL (θ1,θ2)

whose expression is given in (1.1). For τ = 1 we get, for discrete distributions, the Euclidean

distance given in (1.2).

It is interesting to note that the DPD not only is a member of the Bregman’s divergence

measures but also a member of the family nof divergences measures considered in Jones et al.

[2001],

dτ,β(θ1,θ2) =
1

β

(∫
X

1

τ
f1+τ
θ1

(x) dµ (x)

)β
− 1 + τ

τ

1

β

(∫
X
fτθ2

(x) fθ1 (x) dµ (x)

)β
+

1

β

(∫
X
f1+τ
θ2

(x) dµ (x)

)β
,

as, for β = 1, we have

dτ,β=1(θ1,θ2) = dτ (θ1,θ2),

i.e., the DPD. For β = 0, we have

lim
β→0

dτ,β(θ1,θ2) = log

(∫
X

1

τ
f1+τ
θ1

(x) dµ (x)

)
− 1 + τ

τ
log

(∫
X
fτθ2

(x) fθ1 (x) dµ (x)

)
+ log

(∫
X
f1+τ
θ2

(x) dµ (x)

)
.

Jones et al. [2001] considered the Rényi Pseudodistance given by

Rα (g, fθ) =
1

α+ 1
log

(∫
X
fα+1
θ (x)dx

)
+

1

α (α+ 1)
log

(∫
X
gα+1(x)dx

)
− 1

α
log

(∫
X
fαθ (x)g(x)dx

)
. (1.4)

It can be seen that

lim
β→0

dτ,β(θ1,θ2) = (α+ 1)Rα (g, fθ) .
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1.2.2 Phi-divergence measures

The family of φ-divergence measures defined simultaneously by Csiszar [1963] and Ali and Silvey

[1966] is defined by,

dφ(θ1,θ2) =

∫
X
fθ2

(x)φ

(
fθ1

(x)

fθ2
(x)

)
dµ (x) , φ ∈ Φ∗ (1.5)

where Φ∗ is the class of all convex functions φ (x), x > 0, such that at x = 1, φ (1) = 0, and at

x = 0, 0φ (0/0) = 0 and 0φ (p/0) = p limu→∞ φ (u) /u. For every φ ∈ Φ∗, that is differentiable at

x = 1, the function

ψ (x) ≡ φ (x)− φ′ (1) (x− 1) ,

also belongs to Φ∗. Then we have dψ(θ1,θ2) = Dφ(θ1,θ2), and ψ has the additional property

that ψ′ (1) = 0. The most important properties of the φ-divergence measures can be seen in

Pardo [2005]. The Kullback-Leibler divergence measure is obtained for ψ (x) = x log x − x + 1 or

φ (x) = x log x. We can observe that ψ (x) = φ (x)−φ′(1)(x−1). We shall denote by φ any function

belonging to Φ or Φ∗.

From a statistical point of view, the most important family of φ-divergences is perhaps the

family studied by Cressie and Read [1984]: the power-divergence family, given by

Iλ (θ1,θ2) ≡ Dφ(λ)
(θ1,θ2) =

1

λ (λ+ 1)

(∫
X

fλ+1
θ1

(x)

fλθ2
(x)

dµ(x)− 1

)
(1.6)

for −∞ < λ < ∞.The power-divergence family is undefined for λ = −1 or λ = 0. However, if we

define these cases by the continuous limits of Iλ (θ1,θ2) as λ→ −1 and λ→ 0, then Iλ (θ1,θ2) is

continuous in λ. It is not difficult to establish that

lim
λ→0

Iλ (θ1,θ2) = dKL (θ1,θ2)

and

lim
λ→−1

Iλ (θ1,θ2) = dKL (θ2,θ1) .

We can observe that the power-divergence family is obtained from (1.5) with

φ (x) =


φ(λ) (x) = 1

λ(λ+1)

(
xλ+1 − x− λ (x− 1)

)
; λ 6= 0, λ 6= −1,

φ(0) (x) = limλ→0 φ(λ) (x) = x log x− x+ 1,

φ(−1) (x) = limλ→−1 φ(λ) (x) = − log x+ x− 1.

The power-divergence family was proposed independently by Liese and Vajda [1987] as a φ-

divergence under the name Ia-divergence.

In this Thesis we shall use the DPD, dτ (θ1,θ2), given in (1.3) the RP, Rα (g, fθ) , given in

(1.4), the φ-divergences measures given in (1.5) and the power-divergence family given in (1.6).

1.3 Minimum distance estimators

Suppose we have n independent and identically distributed (IID) observations X1, ..., Xn from a

unidimensional random variable X with distribution function G and we model the data gener-

ating distribution by the parametric family (X , βX , Pθ)θ∈Θ with model distribution function Fθ
and density function fθ. Our aim is to estimate the unknown parameter θ for which the model

distribution Fθ is a “good” approximation of G in a suitable sense. In the likelihood approach,

maximizing this closeness translates to maximizing the probability of observing the sample data;

the estimate of θ corresponds to that particular model distribution, under which the probability

(or, likelihood) of the observed sample is the maximum. The resulting estimator is known as the
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maximum likelihood estimator (MLE) of θ. We are going to present a justification of the MLE in

terms of divergence measures.

We denote by g the density function associated to the distribution function G. The Kullback-

Leibler divergence measure between g and fθ is given by

dKL(g, fθ) =

∫
X
g(x) log

g(x)

fθ(x)
dx =

∫
X
g(x) log g(x)dx−

∫
X
g(x) log fθ(x)dx.

In order to minimize in θ, dKL(g, fθ), it will be sufficient to minimize

−
∫
X
g(x) log fθ(x)dx =

∫
X

log fθ(x)dG(x).

But G(x) is unknown and we can consider as estimator of G(x) the empirical distribution function

Gn(x) =
1

n

n∑
i=1

I(−∞,x] (xi) ,

where IA is the indicator function of the set A, based on a random sample of size n, X1, ..., Xn.

Then we have to minimize

−
∫
X

log fθ(x)dGn(x) = − 1

n

n∑
i=1

log fθ(Xi)

or equivalently to maximize

1

n

n∑
i=1

log fθ(Xi) =
1

n

n∏
i=1

fθ(Xi)

i.e., we get the MLE. Therefore the MLE has an interpretation in term of the Kullback-Leibler

divergence. This result is the main idea for the development of minimum distance estimators.

1.3.1 Minimum DPD estimators

The minimum DPD estimators were introduced by Basu et al. [1998], by defining

θ̂τ = arg min
θ∈Θ

dτ (g, fθ),

i.e., we must minimize ∫
X

(
1

τ
f1+τ
θ (x)− 1 + τ

τ
fτθ (x) g (x) + gτ+1 (x)

)
dx.

But the term
∫
X g

τ+1 (x) dx has not any role in the minimization in θ of dτ (g, fθ). Therefore, we

must minimize ∫
X

1

τ
f1+τ
θ (x) dx− 1 + τ

τ

∫
X
fτθ (x) dG(x).

In the same way that previously we can estimate G using the empirical distribution function

based on a random sample of size n, X1, ..., Xn, i.e. we must minimize, for τ > 0,∫
X

1

τ
f1+τ
θ (x) dx− 1 + τ

τ

1

n

n∑
i=1

fτθ (Xi) .

and the negative loglikelihood

− 1

n

n∑
i=1

log fθ(Xi)uθ(Xi)

5



for τ = 0. Differentiating with respect to θ, θ̂τ can be also be defined by the estimating equation,

1

n

n∑
i=1

fτθ (Xi)uθ(Xi)−
∫
X
f1+τ
θ (x)uθ(x)dx = 0p, (1.7)

for τ > 0, where 0p is the null vector of dimension p, being uθ(x) = ∂ log fθ(x)
∂θ .

Therefore the minimum DPD estimator is defined by

θ̂τ =

 arg minθ∈Θ

(∫
X

1

τ
f1+τ
θ (x) dx− 1 + τ

τ

1

n

n∑
i=1

fτθ (Xi)

)
τ > 0

MLE τ = 0

. (1.8)

Basu et al. [1998] established the asymptotic distribution of θ̂τ , by

√
n
(
θ̂τ − θ

)
L−→

n−→∞
N (0p,J

−1
τ (θ)Kτ (θ)J−1

τ (θ)),

being

Jτ (θ) =

∫
X
uθ(x)uTθ (x)f1+τ

θ (x)dx+

∫
X
{iθ(x)− τuθ(x)uTθ (x)}{g(x)− fθ(x)}fτθ (x)dx (1.9)

and

Kτ (θ) =

∫
X
uθ(x)uTθ (x)f2τ

θ (x)g(x)dx− ξτ (θ)ξTτ (θ), (1.10)

where ξτ (θ) =
∫
X uθ(x)fτθ (x)g(x)dx, and iθ(x) = − ∂

∂θuθ(x) , the so called information function

of the model. When the true distribution G belongs to the model so that G = Fθ for some θ ∈ Θ,

the formula for Jτ (θ),Kτ (θ) and ξτ (θ) simplify to

Jτ (θ) =

∫
X
uθ(x)uTθ (x)f1+τ

θ (x)dx,

Kτ (θ) =

∫
X
uθ(x)uTθ (x)f1+2τ

θ (x)dx− ξτ (θ)ξTτ (θ),

ξτ (θ) =

∫
X
uθ(x)f1+τ

θ (x)dx.

They also established that the minimum density power divergence estimating equation (1.7) has a

consistent sequence of roots θ̂β = θ̂n.

This result were extended in Ghosh et al. [2013] to the situation in which the observations are

independent but not identically distributed. Let us assume that our observations X1, . . . , Xn are

independent but for each i, the density function of Xi is gi(x), i = 1, . . . , n, with respect to some

common dominating measure. We want to model gi by the family fi,θ(x), θ ∈ Θ, i = 1, . . . , n.

Thus, while the distributions might be different, they all share the same parameter θ. In this

situation, the model density is different for each Xi, and we need to calculate the divergence

between the data and the model separately for each point, d1(ĝ1, f1,θ), . . . , dn(ĝn, fn,θ) and to

define

dτ (ĝi, f
1+τ
i,θ ) =

∫
X
f1+τ
i,θ (x)dx−

(
1 +

1

τ

)∫
X
fτi,θ(x)ĝi(x)dx+K,

where K is a constant that does not depend on θ. But in case we only had one data point Xi

to estimate gi, the best possibility is to assume that gi is the distribution which puts their entire

mass on Xi. Then we have,

dτ (ĝi, f
1+τ
i,θ ) =

∫
X
f1+τ
i,θ (x)−

(
1 +

1

τ

)
fτi,θ(x)dx+K,

6



and

θ̂τ = arg min
θ∈Θ

Hn,τ (θ),

with

Hn,τ (θ) =


1
n

∑n
i=1(− log fi,θ(xi)) τ = 0

1
n

∑n
i=1

[∫
X
f1+τ
i,θ (xi))dx−

(
1 +

1

τ

)
fτi,θ(xi))

]
τ > 0

.

In this case, we can see that the asymptotic distribution is given by

√
n
(
θ̂τ − θ

)
L−→

n−→∞
N (0p,Ψ

−1
τ (θ)Ωτ (θ)Ψ−1

τ (θ)), (1.11)

where

Ψτ (θ) =
1

n

n∑
i=1

[∫
ui,θ(x)uTi,θ(x)f1+τ

i,θ (x)dx

−
∫
{ii,θ(x) + τui,θ(x)uTi,θ(x)}{gi(x)− fi,θ(x)}fτi,θ(x)dx

]
,

Ωτ (θ) =
1

n

n∑
i=1

[∫
ui,θ(x)uTi,θ(x)f2τ

i,θ(x)gi(x)dx− ξi,τ (θ)ξTi,τ (θ)

]
,

ξi,τ (θ) =

∫
ui,θ(x)fτi,θ(x)gi(x)dx.

If we assume that the true distribution gi belongs to the model, i.e, gi = fi,θ(x) for some θ,

the matrices Ψτ (θ) and Ωτ (θ) are given by

Ψτ (θ) =
1

n

n∑
i=1

[∫
ui,θ(x)uTi,θ(x)f1+τ

i,θ (x)dx

]
and

Ωτ (θ) =
1

n

n∑
i=1

[∫
ui,θ(x)uTi,θ(x)f2τ+1

i,θ (x)dx− ξi,τ (θ)ξTi,τ (θ)

]
,

ξi,τ (θ) =

∫
ui,θ(x)fτ+1

i,θ (x)dx.

In this Thesis, the observations associated to the methods for one-shot devices are, as we will

see in the next chapters, independent but not identically distributed. Therefore, the result in

(1.11) will be very important. This result was considered in Basu et al. [2018], in order to define

Wald-type tests for simple and composite null hypotheses with independent but non identically

distributed observations.

1.3.2 Minimum φ-divergence estimators

In the procedure given to obtain the minimum DPD estimator is very important that the term

depending at the same time of fθ(x) and g(x) will be linear in g(x). In that case we can estimate
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g(x)dx by dGn(x) where Gn(x) is the empirical distribution function associated to a random sample

of size n, X1, ..., Xn. We can see that in the case of the DPD the term is∫
X
fτθ (x) g (x) dx.

If in the term depending of fθ(x) and g(x), g(x) does not appear in a linear way it is not possible

to estimate that term using the empirical distribution function. This is the case, in general, for the

phi-divergence measures. In this case, we can define the minimum φ-divergence estimator (MφE)

by

θ̂φ = arg min
θ∈Θ

dφ(fθ, ĝ),

where ĝ is a non-parametric estimator of the density function g. This situation is more complicated.

But the MφE has been used in discrete models because in this case the estimator is a BAN (Best

asymptotically Normal) estimator. We are going to describe it because it will be used in some part

of this Thesis.

Let (X , βX , Pθ)θ∈Θ be the statistical space associated with the random variable X, where βX
is the σ-field of Borel subsets A ⊂ X and {Pθ}θ∈Θ is a family of probability distributions defined

on the measurable space (X , βX ) with Θ an open subset of RM0 , M0 ≥ 1. Let P = {Ei}i=1,...,M

be a partition of X . The formula Prθ(Ei) = pi(θ), i = 1, . . . ,M, defines a discrete statistical

model. Let Y1, . . . , Yn be a random sample from the population described by the random variable

X, let Ni =
∑n
j=1 IEi(Yj) and p̂i = Ni/n, i = 1, . . . ,M. Estimating θ by MLE method, under the

discrete statistical model, consists of maximizing for fixed n1, . . . , nM ,

Pr θ(N1 = n1, . . . , NM = nM ) =
n!

n1! . . . nM !
pn1

1 (θ)× . . .× pnMM (θ) (1.12)

or, equivalently,

log Pr θ(N1 = n1, . . . , NM = nM ) = −ndKL(p̂,p(θ)) + k (1.13)

where p̂ = (p̂1, . . . , p̂M )T , p(θ) = (p1(θ), . . . , pM (θ))T and k is independent of θ. Then, estimating

θ with the MLE of the discrete model is equivalent to minimizing the Kullback-Leibler divergence

on θ ∈ Θ ⊆ RM0 . Since Kullback-Leibler divergence is a particular case of the φ-divergence

measures, we can choose as estimator of θ the value θ̂φ verifying

dφ(p̂,p(θ̂φ)) = inf
θ∈Θ⊆RM0

dφ(p̂,p(θ)),

where

dφ(p̂,p(θ)) =

M∑
i=1

p̂iφ

(
p̂i

pi(θ)

)
. (1.14)

In general we can assume that there exists a function p(θ) = (p1(θ), . . . , pM (θ))T that maps

each θ = (θ1, . . . , θM0
)T into a point in

4M =

{
p = (p1, ..., pM )T : pi ≥ 0, i = 1, ...,M,

M∑
i=1

pi = 1

}
.

As θ ranges over the values of Θ, p(θ) ranges over a subset T of ∆M . When we assume that a given

model is “correct”, we are just assuming that there exists a value θ0 ∈ Θ such that p(θ0) = π,

where π is the true value of the multinomial probability, i.e., π ∈ T .

Morales et al. [1995] established that

√
n(θ̂φ − θ)

L−→
n→∞

N (0p, I
−1
F (θ))

where IF (θ) is the Fisher information matrix defined by
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IF (θ) =

(
M∑
j=1

1

pj(θ)

∂pj (θ)

∂θr

∂pj (θ)

∂θs

)
r=1,...,M0
s=1,...,M0

.

1.4 One-shot devices

The reliability of a product, system, weapon, or piece of equipment can be defined as the ability

of the device to perform as designed for, or, more simply, as the probability that the device does

not fail when used. Engineers assess reliability by repeatedly testing the device and observing its

failure rate. Certain products, called “one-shot” devices, make this approach challenging. One-

shot devices can be used only once and after use the device is either destroyed or must be rebuilt.

In this section, we introduce some basic concepts to understand this kind of devices.

1.4.1 Accelerated life tests

Most manufactured products are of high quality these days and so they will usually have long

lifetimes. Consequently, if the products are tested under normal conditions, the failure times of

the products will be quite large resulting in a large testing time. To reduce the experimental

time and cost, therefore, accelerated life tests (ALTs) are commonly employed to evaluate the

reliability of such products. An ALT shortens the life span of the products by increasing the

levels of stress factors, such as temperature and humidity. After estimating the parameters from

data collected under high-stress conditions, one usually extrapolates the life characteristics, such

as mean lifetime and failure rates, from high stress conditions to normal operating conditions; see

Meeter and Meeker [1994] and Meeker et al. [1998]. Some common stress factors that could be used

for this purpose include air pressure, temperature, humidity and voltage which can be controlled

easily in a laboratory setup.

1.4.2 Life-stress relationships

In ALTs, failure rate (the expected number of failures per unit time) is required to relate to stress

factors such that measurements taken during the experiment can then be extrapolated back to the

expected performance under normal operating conditions. A simple model, such a linear model,

may be not enough to describe the relationship between the failure rate and the stress factors.

The most common relationships are described in Meeker [1984], Wang and Kececioglu [2000] and

Pascual [2007]. We consider, without loss of generality, the case of one risk, and we are going to

clarify some of that relationships:

a) The Arrhenius Relationship for Temperature Acceleration

Let T be the applied temperature in degrees Celsius. Note that T+273.15 is the temperature

on the Kelvin scale. Under the Arrhenius relationship, based on the Arrhenius Law, the

failure rate λT relates to the temperature T in the form

λT = exp

(
γ0 + γ1

11605

T + 273.15

)
,

where, γ0 and γ1 are derived from physical properties of the product being tested, and the

test methods. For example, is the activation energy of the chemical reaction rate. The

Arrhenius model is used to describe the failure time of lubricants, light-emitting diodes,

insulating tapes, and bulb filaments (Pascual [2007]).
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b) The Inverse Power Relationship for Voltage Acceleration

It is useful for describing the lifetime as a function of applied voltage. The parameter λV
relates to applied voltage V as follows

λV =
1

γ0V γ1
.

c) Log-linear relationship

Commonly used in survival analysis, it is often used in practice due to its mathematical

convenience. It shows the relative importance of stress factors in influencing the failure

behavior, regardless of whether the model is correct or not. The parameter λx relates to a

stress factor x in this case in the form

λx = exp(γ0 + γ1x).

Lifetime distribution models with the log-linear relationships with covariates will be the kind

of relationship considered in the following chapters, where more than one stress factor will

be also considered.

d) Other relationships

As pointed out by Meeker [1984], assumed life-time relationships will hold only over a limited

range of stress levels. Therefore, there will typically a limit on the highest level of stress,

denoted here by xH . Although a higher limit will provide more precision for estimators, it

can also cause serious bias, if the value is so high that the associated model is incorrect. The

choice of the limit is usually made on the basis of previous results or the engineering (or

biomedical) judgment.

d.1) Standardization Define the standardized stress as

ξ =
x− xD
xH − xD

,

such that xU = 0 ≤ x and x ≤ xH = 1. xU and xH are the standardized use level, and upper

bound, respectively. The standardized model is

λx = β0 + β1ξ.

d.2) Quadratic model As a generalization of the log-linear relationship, it might be

tempting to fit the quadratic model (given here in terms of ξ)

λx = β0 + β1ξ + β2ξ
2.

However, there is general reluctance to use such a model if the desired inferences require

much extrapolation (Little and Jebe [1975]).

1.4.3 Types of censoring

In any kind of data analysis, more information will result in a more complete analysis. In the case

of lifetime data analysis, knowing the exact time of failure of the devices will be the most preferable

situation. However, this is not possible in most of the practical cases, due to constraints on time

and budget of the experiment. Incomplete data frequently arise in life-tests and are referred to as

censored data. We can distinguish between left, right and interval censoring:
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a) Left censoring

If the device under test fails before observable time, we define that to be left censored. Typical

example includes failure of an alarm system to alert in an incident of fire. The left censoring

is encountered on rare occasions in survival analysis because investigators are very particular

in the selection of participants for the study.

b) Right censoring

On the other hand, if the study finished but the event of the interest was not observed, the

device under test is said to be right censored. For instance, clothing or mobile phones are

often replaced by new ones when they are still usable, and cars are sent to junkyard when they

are still drivable. An example in survival analysis might be a clinical trial to study the defect

of treatments on heart attack occurrence. The study ends after 10 years. Those patients who

have had no heart attacks by the end of the last year are censored. Due to constraints on

time and cost, right censoring is commonly encountered in life-testing experiments. Under

this form of censoring, while some lifetimes will be completely observed, others will be known

only to be beyond some times. The two main types of right censoring are as follows:

b.1) Type-I censoring The life-test is terminated at a pre-fixed time, resulting in a fixed

censoring time and a random number of failures during the experimental period. Environ-

mental data are almost always Type-I censored.

b.2) Type-II censoring The life-test is terminated as soon as a pre-fixed number of

failures have been observed, resulting in a random censoring time and a fixed number of

failures during the experimental period. Type-II censored samples are also known as failure-

censored samples (Nelson [1980]).

The problem with Type-I censoring (random failures) is that, not guarantying a minimum

number of failures may lead to ineffective inference. This problem is solved with Type-II

censoring. However, the first censoring can be easier from managerial point of view since the

duration of the test is known in advance.

c) Interval censoring

In some situations, test items are inspected for failure at many time points and one only

knows that items failed in some intervals between two contiguous inspections. Such lifetime

data are said to be interval censored and arise naturally when the test items are not constantly

monitored. Any observation of a continuous random variable could be considered interval

censored, because its value is reported to a few decimal places. This sort of fine-scale interval

censoring is usually ignored and the values are treated as exactly observed.

Left and right censoring may cause floor and ceiling effects, while rounding data to fewer

decimal places results in interval-censored data. It is important to distinguish between censoring

and truncation. Censored values are those reported as less or greater than some value, or as an

interval. On the other hand, truncated values are those that are not reported if exceeds some limit,

but the truncated point is not recorded at all. Therefore, truncated data are less informative that

censored data.

1.4.4 One shot device testing data

In this thesis, one-shot device testing data, which is an extreme case of interval censoring, is studied.

Since one-shot devices can be used only once and are destroyed immediately after use, one can

only know whether the failure time is either before or after a specific time. The lifetimes are either
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left- or right-censored, with the lifetime being less than the inspection time if the test outcome is a

failure (resulting in left censoring) and the lifetime being more than the inspection time if the test

outcome is a success (resulting in right censoring). Some examples of one-shot devices are nuclear

weapons, space shuttles, automobile air bags, fuel injectors, disposable napkins, heat detectors,

missiles (Olwell and Sorell [2001]) and fire extinguishers (Newby [2008]). In survival analysis,

these data are called “current status data”. For instance, in animal carcinogenicity experiments,

one observes whether a tumor has occurred by the examination time for each subject.

Due to the advances in manufacturing design and technology, products have now become highly

reliable with long lifetimes. This fact would pose a problem in the analysis of data if only few

or no failures are observed. For this reason, accelerated life tests are often used by adjusting

a controllable factor such as temperature in order to induce more failures in the experiment.

The study of one-shot device from ALT data has been developed considerably recently, mainly

motivated by the work of Fan et al. [2009]. In that paper, a Bayesian approach was presented

to develop inference on the failure rate and reliability of devices. They found the normal prior

to be the best one when the failure observations are rare, that is, when the devices are highly

reliable. Balakrishnan and Ling [2012a] developed an expectation-maximization (EM) algorithm

for the determination of the maximum likelihood estimator (MLE) of model parameters under

exponential lifetime distribution for devices with a single stress factor. Balakrishnan and Ling

[2012b] further extended their work to a model with multiple stress factors. Balakrishnan and

Ling [2013] developed more general inferential results for devices with Weibull lifetimes under

non-constant shape parameters, while Balakrishnan and Ling [2014a] provided inferential work for

devices with gamma lifetimes. In Balakrishnan et al. [2015a,b] the problem of one-shot devices

under competing risks was considered for the first time. All these results are recorded in the thesis

of Ling [2012] and So [2016].

1.5 Scope of the Thesis

Most of the above results are based on MLE, which is well-known to be efficient, but also non-

robust. Therefore, testing procedures based on MLE face serious robustness problems. The main

scope of this Thesis is to develop robust estimators and test statistics (based on the DPD measures)

for one-shot device testing data. All the theoretical results will be supported by simulation studies

and illustrated by numerical examples.

The Thesis proceeds as follows. In Chapter 2, we assume the one-shot devices with lifetimes

having exponential distribution with a single-stress relationship. In Chapter 3, the exponential

distribution with multiple-stress relationship is considered, generalizing the results in Chapter 2.

Next, in Chapter 4 and Chapter 5, we consider the situation when lifetimes follow, respectively,

a Gamma and a Weibull distribution with non-constant shape parameters. In Chapter 6, similar

procedures are applied to other distribution functions, such as Lindley and lognormal. Chapter

7 develop robust inference for one-shot device testing under the proportional hazards assumption

and, in Chapter 8, we consider the competing risk model (assuming different possible causes of

failure) with exponential lifetimes. Chapter 9 summarizes the main results of previous chapters

and gives some ideas about future work. The Appendixes A and B briefly present some other

results, which have also been obtained by the candidate during her Ph.D. studies.
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Chapter 2

Robust inference for one-shot device testing

under exponential distribution with a simple

stress factor

2.1 Introduction

Let us consider the problem of one-shot device testing along with an accelerating factor, in which

the failure time of the devices is assumed to follow an exponential distribution. In this context,

Rodrigues et al. [1993] presented two approaches based on the likelihood ratio statistics for com-

paring exponential accelerated life models. Fan et al. [2009] considered a single stress factor to the

accelerated life test plan for one-shot devices, and analyzed the data by using a Bayesian approach

in which the model parameters in the prior information were assumed to be close to the true

values. In contrast, Balakrishnan and Ling [2012a] developed an EM algorithm for a single stress

model, and made a comparative study with the mentioned Bayesian approach, showing that the

EM method is more appropriate for moderately and lowly reliable products. Finally, Chimitova

and Balakrishnan [2015] made a comparison of several goodness-of-fit tests for one-shot device

testing data.

In this chapter we develop robust estimators and statistics for one-shot device testing under

the exponential distribution with a simple stress factor. In Section 2.2, we present a description of

the one-shot device model as well as the MLE of the model parameters. Section 2.3 develops the

weighted minimum DPD estimator as a natural extension of the MLE, as well as its asymptotic

distribution. In Section 2.4, Z-type test statistics are introduced for testing some hypotheses about

the parameters of the one-shot device model. The Influence Function of proposed estimators and

test statistics is developed in Section 2.5. In Section 2.6, an extensive simulation study is presented

in order to empirically illustrate the robustness of the weighted minimum DPD estimators, as

well as the Z-type test introduced earlier. A data-driven choice procedure of the optimal tuning

parameter given a data set is provided in also provided in Section 2.6. Finally, some numerical

examples are presented in Section 2.7, with one of them relating to a reliability situation and the

other two are from real applications to tumorigenicity experiments.

The results of this Chapter have been published in the form of a paper (Balakrishnan et al.

[2019b]).

2.2 Model description and MLE

Consider a reliability testing experiment in which the devices are stratified into I testing conditions

and, in the i-th testing condition Ki units or devices are tested under some stress factor (say, for

example, temperature) xi, i = 1, . . . , I. In the i-th test group, the number of failures, ni, is

collected. This setting is summarized in Table 2.2.1.
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Table 2.2.1: Data on one-shot devices testing at a simple stress level and collected at different inspection

times

Condition Inspection Time Devices Failures Temperature

1 IT1 K1 n1 x1

2 IT2 K2 n2 x2

...
...

...
...

...

I ITI KI nI xI

Let us denote the random variable for the failure time under condition i as Tik, for i = 1, . . . , I

and k = 1, . . . ,Ki, respectively. We shall assume here, that the true lifetime Tik follows an

exponential distribution with unknown failure rate, λi(θ), related to the stress factor xi in loglinear

form as

λi(θ) = θ0 exp(θ1xi),

where θ = (θ0, θ1)T is the model parameter vector, θ ∈ Θ = R+×R. Therefore, the corresponding

density function and distribution function of the failure time under condition i are, respectively,

f(t;xi,θ) = λi(θ) exp{−λi(θ)t} = θ0 exp(θ1xi) exp{−θ0 exp(θ1xi)t}

and

F (t;xi,θ) = 1− exp{−λi(θ)t} = 1− exp{−θ0 exp(θ1xi)}. (2.1)

Let us denote by R(t;xi,θ) = 1 − F (t;xi,θ) the reliability function, the probability that a unit

lasts lifetime t. Assuming independent observations, the likelihood function, based on the observed

data as in Table 2.2.1, is given by

L(n1, . . . , nI ;θ) =

I∏
i=1

Fni (ITi;xi,θ)RKi−ni (ITi;xi,θ) . (2.2)

Definition 2.1 The MLE of θ, θ̂ = (θ̂0, θ̂1)T , is given by

θ̂ = arg max
θ∈Θ

logL(n1, . . . , nI ;θ), (2.3)

where L(n1, . . . , nI ;θ) was given in (2.2).

We now introduce empirical and theoretical probability vectors, respectively,

p̂i = (p̂i1, p̂i2)
T
, i = 1, . . . , I, (2.4)

and

πi(θ) = (πi1(θ), πi2(θ))T , i = 1, . . . , I, (2.5)

with p̂i1 = ni
Ki

, p̂i2 = 1− ni
Ki

, πi1(θ) = F (ITi;xi,θ) and πi2(θ) = R(ITi;xi,θ).

The Kullback-Leibler divergence measure between p̂i and πi(θ) is given by

dKL(p̂i,πi(θ)) = p̂i1 log

(
p̂i1

πi1(θ)

)
+ p̂i2 log

(
p̂i2

πi2(θ)

)
and similarly the weighted Kullback-Leibler divergence measure of all the units, where K =∑I
i=1Ki is the total number of devices, is given by

I∑
i=1

Ki

K
dKL(p̂i,πi(θ)) =

1

K

I∑
i=1

Ki

[
p̂i1 log

(
p̂i1

πi1(θ)

)
+ p̂i2 log

(
p̂i2

πi2(θ)

)]
. (2.6)

For more details about the Kullback-Leibler divergence measure, see Pardo [2005].
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Theorem 2.2 The likelihood function L(n1, . . . , nI ;θ), given in (2.2), is related to the weighted

Kullback-Leibler divergence measure through

I∑
i=1

Ki

K
dKL(p̂i,πi(θ)) = c− 1

K
logL(n1, . . . , nI ;θ),

with c being a constant not dependent on θ.

Proof. We have,

I∑
i=1

Ki

K
dKL(p̂i,πi(θ)) =

I∑
i=1

ni
K

log

( ni
Ki

F (ITi;xi,θ)

)
+
Ki − ni
K

log

(
Ki−ni
Ki

1− F (ITi;xi,θ)

)

= c− 1

K

I∑
i=1

{ni log (F (ITi;xi,θ)) + (Ki − ni) log (R(ITi;xi,θ))}

= c− 1

K
log

(
I∏
i=1

Fni(ITi;xi,θ)RKi−ni(ITi;xi,θ)

)

= c− 1

K
logL(n1, . . . , nI ;θ),

where c =
∑I
i=1

ni
Ki

log
(
ni
Ki

)
+ Ki−ni

Ki
log
(
Ki−ni
Ki

)
does not depend on the parameter θ.

Based on Theorem 2.2, we have the following alternative definition for the MLE of θ.

Definition 2.3 The MLE of θ, θ̂, can be also defined as

θ̂ = arg min
θ∈Θ

I∑
i=1

Ki

K
dKL(p̂i,πi(θ)). (2.7)

2.3 Weighted minimum DPD estimator

Based on expression (2.7), we could think of defining an estimator by minimizing any (weighted)

divergence measure between the empirical and theoretical probability vectors. As explained in the

Introduction, there are many different divergence measures (or distances) known in the literature,

and the natural question is whether all of them are valid to define estimators with good properties.

Initially, the answer is yes, but we must think in terms of efficiency as well as robustness of the

defined estimators. From an asymptotic point of view, it is well-known that the MLE is a BAN

(Best Asymptotically Normal) estimator, but at the same time we know that the MLE has a very

poor behavior, in general, with regard to robustness. It is well-known that a gain in robustness

leads to a loss in efficiency. Therefore, the distances (divergence measures) that we must use are

those which result in estimators having good properties in terms of robustness with low loss of

efficiency. The DPD measure introduced by Basu et al. [1998] has the required properties and has

been studied for many different statistical problems until now.

Given the probability vectors p̂i and πi(θ) defined in (2.4) and (2.5), respectively, the DPD

between the two probability vectors, with tuning parameter β ≥ 0, is given by

dβ(p̂i,πi(θ)) =
(
πβ+1
i1 (θ) + πβ+1

i2 (θ)
)
− β + 1

β

(
p̂i1π

β
i1(θ) + p̂i2π

β
i2(θ)

)
+

1

β

(
p̂β+1
i1 + p̂β+1

i2

)
, if β > 0, (2.8)

and dβ=0(p̂i,πi(θ)) = limβ→0+ dβ(p̂i,πi(θ)) = dKL(p̂i,πi(θ)), if β = 0.

15



We observe that in (2.8), the term 1
β

(
p̂β+1
i1 + p̂β+1

i2

)
has no role in the minimization with

respect to θ. Therefore, we can consider the equivalent measure

d∗β(p̂i,πi(θ)) =
(
πβ+1
i1 (a) + πβ+1

i2 (θ)
)
− β + 1

β

(
p̂i1π

β
i1(θ) + p̂i2π

β
i2(θ)

)
. (2.9)

Definition 2.4 Based on (2.7) and (2.9), we can define the weighted minimum DPD estimator

for θ as

θ̂β = arg min
θ∈Θ

I∑
i=1

Ki

K
d∗β(p̂i,πi(θ)), for β > 0,

and, in particular, for β = 0, we have the MLE.

Theorem 2.5 The weighted minimum DPD estimator of θ with tuning parameter β ≥ 0, θ̂β, can

be obtained as the solution of the following system of equations:

I∑
i=1

(Ki F (ITi;xi,θ)− ni) f(ITi;xi,θ)
[
F β−1(ITi;xi,θ) +Rβ−1(ITi;xi,θ)

]
ITi = 0, (2.10)

I∑
i=1

(Ki F (ITi;xi,θ)− ni) f(ITi;xi,θ)
[
F β−1(ITi;xi,θ) +Rβ−1(ITi;xi,θ)

]
ITixi = 0. (2.11)

Proof. We have

∂F (ITi;xi,θ)

∂θ0
= exp {−θ0 exp (θ1xi) ITi} exp {θ1xi} ITi = f(ITi;xi,θ)

ITi
θ0

(2.12)

and

∂F (ITi;xi,θ)

∂θ1
= exp {−θ0 exp (θ1xi) ITi} exp {θ1xi} ITiθ0xi = f(ITi;xi,θ)ITixi. (2.13)

We denote

d∗β (p̂i,πi(θ)) = Ti1,β(θ) + Ti2,β(θ),

where Ti1,β(θ) and Ti2,β(θ) are as follows, for β > 0:

Ti1,β(θ) =

{
F β+1(ITi;xi,θ)− (1 + 1

β )F β(ITi;xi,θ)
ni
Ki

}
,

Ti2,β(θ) =

{
Rβ+1(ITi;xi,θ)− (1 + 1

β )Rβ(ITi;xi,θ)
Ki − ni
Ki

}
.

Based on (2.12), we have

∂Ti1,β(θ)

∂θ0
=(β + 1)

(
F (ITi;xi,θ)− ni

Ki

)
f(ITi;xi,θ)F β−1(ITi;xi,θ)

ITi
θ0

and

∂Ti2,β(θ)

∂θ0
=(β + 1)

(
F (ITi;xi,θ)− ni

Ki

)
f(ITi;xi,θ)Rβ−1(ITi;xi,θ)

ITi
θ0
.

On the other hand, by (2.13), we have

∂Ti1,β(θ)

∂θ1
=(β + 1)

(
F (ITi;xi,θ)− ni

Ki

)
f(ITi;xi,θ)F β−1(ITi;xi,θ)ITixi

and

∂Ti2,β(θ)

∂θ1
=(β + 1)

(
F (ITi;xi,θ)− ni

Ki

)
f(ITi;xi,θ)Rβ−1(ITi;xi,θ)ITixi.
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Finally, the system of equations is given by

I∑
i=1

Ki

K

(
∂Ti1,β(θ)

∂θ0
+
∂Ti2,β(θ)

∂θ0

)
= 0,

I∑
i=1

Ki

K

(
∂Ti1,β(θ)

∂θ1
+
∂Ti2,β(θ)

∂θ1

)
= 0.

If we consider β = 0, we get the system needed to solve to get the MLE. Hence, the previous

system of equations is valid not only for tuning parameters β > 0, but also for β = 0.

Theorem 2.6 Let θ0 be the true value of the parameter θ. Then, the asymptotic distribution of

the weighted minimum DPD estimator θ̂β is given by

√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
0,J−1

β (θ0)Kβ(θ0)J−1
β (θ0)

)
,

where

Jβ(θ) =

I∑
i=1

Ki

K

(
1
θ20

xi
θ0

xi
θ0

x2
i

)
IT 2

i f
2(ITi;xi,θ)

[
F β−1(ITi;xi,θ) +Rβ−1(ITi;xi,θ)

]
, (2.14)

Kβ(θ) =

I∑
i=1

Ki

K

(
1
θ20

xi
θ0

xi
θ0

x2
i

)
IT 2

i f
2(ITi;xi,θ) (2.15)

× F (ITi;xi,θ)R(ITi;xi,θ)
[
F β−1(ITi;xi,θ) +Rβ−1(ITi;xi,θ)

]2
.

Proof. From Ghosh et al. [2013], it is known that

√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
02,J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)
,

where

Jβ(θ) =

I∑
i=1

2∑
j=1

Ki

K
uij(θ)uTij(θ)πβ+1

ij (θ),

Kβ(θ) =
I∑
i=1

2∑
j=1

Ki

K
uij(θ)uTij(θ)π2β+1

ij (θ)−
I∑
i=1

Ki

K
ξi,β(θ)ξTi,β(θ),

with

ξi,β(θ) =

2∑
j=1

uij(θ)πβ+1
ij (θ),

uij(θ) =
∂ log πij(θ)

∂θ
=

1

πij(θ)

∂πij(θ)

∂θ
= (−1)j+1 f(ITi;xi,θ)ITi

πij(θ)

(
1
θ0

xi

)
.

Since uij(θ)uTij(θ) =
f2(ITi;xi,θ)IT 2

i

π2
ij(θ)

(
1
θ20

xi
θ0

xi
θ0

x2
i

)
, we have

Jβ(θ) =

I∑
i=1

Ki

K

(
1
θ20

xi
θ0

xi
θ0

x2
i

)
IT 2

i f
2(ITi;xi,θ)

2∑
j=1

πβ−1
ij (θ)

=

I∑
i=1

Ki

K

(
1
θ20

xi
θ0

xi
θ0

x2
i

)
IT 2

i f
2(ITi;xi,θ)

[
F β−1(ITi;xi,θ) +Rβ−1(ITi;xi,θ)

]
.
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In a similar manner

ξi,β(θ)ξTi,β(θ) =

(
1
θ20

xi
θ0

xi
θ0

x2
i

)
IT 2

i f
2(ITi;xi,θ)

 2∑
j=1

(−1)j+1πβij(θ)

2

and

Kβ(θ) =

I∑
i=1

(
1
θ20

xi
θ0

xi
θ0

x2
i

)
IT 2

i f
2(ITi;xi,θ)

 2∑
j=1

π2β−1
ij (θ)−

 2∑
j=1

(−1)j+1πβij(θ)

2
 .

Since
2∑
j=1

π2β−1
ij (θ)−

 2∑
j=1

(−1)j+1πβij(θ)

2

= πi1(θ)πi2(θ)
(
πβ−1
i1 (θ) + πβ−1

i2 (θ)
)2

,

it holds

Kβ(θ) =

I∑
i=1

Ki

K

(
1
θ20

xi
θ0

xi
θ0

x2
i

)
IT 2

i f
2(ITi;xi,θ)πi1(θ)πi2(θ)

(
πβ−1
i1 (θ) + πβ−1

i2 (θ)
)2

=

I∑
i=1

Ki

K

(
1
θ20

xi
θ0

xi
θ0

x2
i

)
IT 2

i f
2(ITi;xi,θ)

× F (ITi;xi,θ)R(ITi;xi,θ)
[
F β−1(ITi;xi,θ) +Rβ−1(ITi;xi,θ)

]2
.

2.4 Robust Z-type tests

We are now interested in testing the null hypothesis of a linear combination of θ = (θ0, θ1)T , H0:

m0θ0 +m1θ1 = d, or equivalently

H0: mTθ = d, (2.16)

where mT = (m0,m1). In this setting, it is important to know the asymptotic distribution of

the weighted minimum DPD estimator of θ. In particular, in case we wish to test if the different

temperatures do not affect the model of the one-shot devices, we need to considermT = (m0,m1) =

(0, 1) and d = 0. In the following definition, we present Z-type test statistics based on θ̂β .

Definition 2.7 Let θ̂β = (θ̂0,β , θ̂1,β)T be the weighted minimum DPD estimator of θ = (θ0, θ1)T .

Then, the family of Z-type test statistics for testing (2.16) is given by

ZK(θ̂β) =

√
K

mTJ−1
β (θ̂β)Kβ(θ̂β)J−1

β (θ̂β)m

(
mT θ̂β − d

)
. (2.17)

In the following theorem, the asymptotic distribution of ZK(θ̂β) is presented.

Theorem 2.8 The asymptotic distribution of Z-type test statistics, ZK(θ̂β), defined in (2.17), is

a standard normal.

Proof. Let θ0 be the true value of parameter θ. It is clear that under (2.16), we have

mT θ̂β − d = mT (θ̂β − θ0)

and we know that

√
K(θ̂β − θ0)

L−→
K→∞

N
(
0,J−1

β (θ0)Kβ(θ0)J−1
β (θ0)

)
,
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from which it follows that
√
K
(
mT θ̂β − d

)
L−→

K→∞
N
(

0,mTJ−1
β (θ0)Kβ(θ0)J−1

β (θ0)m
)
.

Dividing the left hand side by √
mTJ−1

β (θ̂β)Kβ(θ̂β)J−1
β (θ̂β)m,

since mTJ−1
β (θ̂β)Kβ(θ̂β)J−1

β (θ̂β)m is a consistent estimator of mTJ−1
β (θ0)Kβ(θ0)J−1

β (θ0)m,

the desired result is obtained by following the Slutsky’s theorem.

Based on Theorem 2.8, the null hypothesis in (2.16) will be rejected, with significance level α,

if ∣∣∣ZK(θ̂β)
∣∣∣ > zα

2
, (2.18)

where zα
2

is a right hand side quantile of order α
2 of a normal distribution. Now, we shall present a

result providing an asymptotic approximation, to the power function, for the test statistic defined

in (2.18).

Theorem 2.9 Let θ∗ ∈ Θ be the true value of the parameter θ so that

θ̂β
P−→

K→∞
θ∗ ∈ Θ

and mTθ∗ 6= d. Then, the approximate power function of the test statistic in (2.18) at θ∗ is as

given below, where Φ(·) is the standard normal distribution function,

π (θ∗) ' 2

[
1− Φ

(
zα

2
−
√

K

mTJ−1
β (θ∗)Kβ(θ∗)J−1

β (θ∗)m
(mTθ∗ − d)

)]
. (2.19)

Proof. The power function of ZK(θ̂β) at θ∗ can be obtained as follows:

π (θ∗) = Pr
(∣∣∣ZK(θ̂β)

∣∣∣ > zα
2
|θ = θ∗

)
(2.20)

= 2 Pr
(
ZK(θ̂β) > zα

2
|θ = θ∗

)
= 2 Pr

(√
K

mTJ−1
β (θ̂β)Kβ(θ̂β)J−1

β (θ̂β)m
(mT θ̂β − d) > zα

2
|θ = θ∗

)

= 2 Pr

(√
K

mTJ−1
β (θ̂β)Kβ(θ̂β)J−1

β (θ̂β)m
mT (θ̂β − θ∗) >

zα
2
−
√

K

mTJ−1
β (θ̂β)Kβ(θ̂β)J−1

β (θ̂β)m
(mTθ∗ − d)

)
.

Finally, since mTJ−1
β (θ̂β)Kβ(θ̂β)J−1

β (θ̂β)m is a consistent estimator of

mTJ−1
β (θ∗)Kβ(θ∗)J−1

β (θ∗)m

and

mT
√
K(θ̂β − θ∗)

L−→
K→∞

N (0,mTJ−1
β (θ∗)K̄β(θ∗)J−1

β (θ∗)m),

the desired result follows by following the Slutsky’s theorem.

Remark 2.10 Based on the above results, it is possible to provide an explicit expression for the

number of devices as

K̂(β, α) =

[
mTJ−1

β (θ̂β)Kβ(θ̂β)J−1
β (θ̂β)m

mT θ̂β − d

(
zα

2
− Φ−1(1− π∗

2 )
)2
]

+ 1,

necessary to get a fixed power π∗ for a specific significance level α. Here, [·] denotes the largest

integer value less than or equal to ·.
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2.5 Robustness of the weighted minimum DPD estimators

and Z-type tests

An important concept in robustness theory is the influence function (Hampel et al. [1986]). For

any estimator defined in terms of an statistical functional U(F ) from the true distribution F , its

influence function (IF) is defined as

IF (t,U , F ) = lim
ε↓0

U(Fε)−U(F )

ε
=
∂U(Fε)

∂ε

∣∣∣∣
ε=0+

, (2.21)

where Fε = (1−ε)F+ε∆t, with ε being the contamination proportion and ∆t being the degenerate

distribution at the contamination point t. Thus, the (first-order) IF, as a function of t, measures

the standardized asymptotic bias (in its first-order approximation) caused by the infinitesimal

contamination at the point t. The maximum of this IF over t indicates the extent of bias due to

contamination and so smaller its value, the more robust the estimator is.

2.5.1 Robustness of the weighted minimum DPD estimators

Let us denote by Gi the true distribution function of a Bernoulli random variable with an unknown

probability of success, for the i-th group of Ki observations, having mass function gi. Similarly, by

Fi,θ the distribution function of Bernoulli random variable having a probability of success equal

to πi1(θ), with probability mass function fi(·,θ) (i = 1, ..., I), which are related to the model. In

vector notation, we consider G = (G1 ⊗ 1TK1
, . . . , GI ⊗ 1TKI )

T and F θ = (F1,θ ⊗ 1TK1
, . . . , FI,θ ⊗

1TKI )
T .

For any estimator defined in terms of a statistical functional U(G) in the set-up of data from

the true distribution function G, its IF in accordance with (2.21) is defined as

IF (t,U ,G) = lim
ε↓0

U(Gε,t)−U(G)

ε
=
∂U(Gε,t)

∂ε

∣∣∣∣
ε=0+

,

where Gε,t = (1 − ε)G + ε∆t, with ε being the contamination proportion and ∆t being the

distribution function of the degenerate random variable at the contamination point

t = (t11, ..., t1K1 , ..., tI1, ..., tIKI )
T ∈ RIK .

We first need to define the statistical functional Uβ(G) corresponding to the weighted mini-

mum DPD estimator as the minimizer of the weighted sum of DPDs between the true and model

densities. This is defined as the minimizer of

Hβ(θ) =

I∑
i=1

Ki

K

 ∑
y∈{0,1}

[
fβ+1
i (y,θ)− β + 1

β
fβi (y,θ)gi(y)

] , (2.22)

where gi(y) is the probability mass function associated to Gi and

fi(y,θ) = yπi1(θ) + (1− y)πi2(θ), y ∈ {0, 1}.

If we choose gi(y) ≡ fi(y,θ), expression (2.22) is minimized at θ = θ0, implying the Fisher

consistence of the minimum DPD estimator functional Uβ(G) in our model.

Under appropriate differentiability conditions as the solution of the estimating equations

∂Hβ(θ)

∂θ
=

I∑
i=1

Ki

K

 ∑
y∈{0,1}

[
fβi (y,θ)

∂fi(y,θ)

∂θ
− fβ−1

i (y,θ)
∂fi(y,θ)

∂θ
gi(y)

] = 0, (2.23)
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In order to get the IF of the minimum DPD estimator at Fθ with respect to the k-th element

of the i0-th group of observations we replace θ in (2.23) by

θi0ε = Uβ(G1 ⊗ 1TK1
, . . . , Gi0−1 ⊗ 1TKi0−1

, Gi0,ε ⊗ 1TKi0 , Gi0+1, . . . , GI ⊗ 1TKI ),

where Gi0,ε is the distribution function associated to the probability mass function

gi0,ε,k(y) = (1− ε)fi(y,θ0) + ε∆ti0,k
(y),

where ∆ti0,k
(y) = y∆

(1)
ti0,k

+ (1 − y)∆
(2)
ti0,k

, with ∆
(1)
ti0,k

being the degenerating function at point

(i0, k), ∆
(2)
ti0,k

= (1−∆
(1)
ti0,k

), and

gi(y) =

{
fi(y,θ

0) if i 6= i0;

gi0,ε,k(y) if i = i0.

Then, we have

∂Hβ(θ)

∂θ

∣∣∣∣
θ=θ

i0
ε

=

I∑
i=1

Ki

K

 ∑
y∈{0,1}

fβi (y,θi0ε )
∂fi(y,θ)

∂θ

∣∣∣∣
θ=θ

i0
ε

 (2.24)

−
I∑

i 6=i0

Ki

K

 ∑
y∈{0,1}

fβ−1
i (y,θi0ε )

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θ

i0
ε

fi(y,θ
0)


− Ki0

K

 ∑
y∈{0,1}

fβ−1
i0

(y,θi0ε )
∂fi0(y,θ)

∂θ

∣∣∣∣
θ=θ

i0
ε

[
(1− ε)fi0(y,θ0) + ε∆ti0,k

(y)
]

Now, we are going to get the derivative of (2.24) with respect to ε.

I∑
i=1

Ki

K

 ∑
y∈{0,1}

[
βfβ−1

i (y,θi0ε )
∂fi(y,θ)

∂θT

∣∣∣∣
θ=θ

i0
ε

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θ

i0
ε

∂θi0ε
∂ε

+fβi (y,θi0ε )
∂2fi(y,θ)

∂θTθ

∣∣∣∣
θ=θ

i0
ε

∂θi0ε
∂ε

]}

−
I∑

i 6=i0

Ki

K

 ∑
y∈{0,1}

[
(β − 1)fβ−2

i (y,θi0ε )
∂fi(y,θ)

∂θT

∣∣∣∣
θ=θ

i0
ε

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θ

i0
ε

∂θi0ε
∂ε

fi(y,θ
0)

+fβ−1
i (y,θi0ε )

∂2fi(y,θ)

∂θTθ

∣∣∣∣
θ=θ

i0
ε

∂θi0ε
∂ε

fi(y,θ
0)

]}

−Ki0

K

 ∑
y∈{0,1}

[
(β − 1)fβ−2

i0
(y,θi0ε )

∂fi(y,θ)

∂θT

∣∣∣∣
θ=θ

i0
ε

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θ

i0
ε

∂θi0ε
∂ε

[
(1− ε)fi(y,θ0) + ε∆ti0,k

(y)
]

−fβ−1
i0

(y,θi0ε )
∂2fi(y,θ)

∂θTθ

∣∣∣∣
θ=θ

i0
ε

∂θi0ε
∂ε

[
(1− ε)fi(y,θ0) + ε∆ti0,k

(y)
]

−fβ−1
i0

(y,θi0ε )
∂fi(y,θ)

∂θ

∣∣∣∣
θ=θ

i0
ε

[
−fi(y,θ0) + ∆ti0,k

(y)
]]}

= 0

Now, we evaluate the previous expression in ε = 0, and we have
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IF (ti0,k,Uβ , Fθ0)

I∑
i=1

Ki

K

 ∑
y∈{0,1}

[
βfβ−1

i (y,θ0)
∂fi(y,θ)

∂θT

∣∣∣∣
θ=θ0

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θ0

+fβi (y,θ0)
∂2fi(y,θ)

∂θTθ

∣∣∣∣
θ=θ0

]}

−IF (ti0,k,Uβ , Fθ0)

 I∑
i 6=i0

Ki

K

 ∑
y∈{0,1}

[
(β − 1)fβ−1

i (y,θ0)
∂fi(y,θ)

∂θT

∣∣∣∣
θ=θ0

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θ0

+fβi (y,θ0)
∂2fi(y,θ)

∂θTθ

∣∣∣∣
θ=θ0

]}

−Ki0

K

∑
y∈{0,1}

[
(β − 1)fβ−1

i0
(y,θ0)

∂fi0(y,θ)

∂θT

∣∣∣∣
θ=θ0

∂fi0(y,θ)

∂θ

∣∣∣∣
θ=θ0

− fβi (y,θ0)
∂2fi0(y,θ)

∂θTθ

∣∣∣∣
θ=θ0

]
−Ki0

K

∑
y∈{0,1}

fβ−1
i0

(y,θ0)
∂fi0(y,θ)

∂θ

∣∣∣∣
θ=θ0

∆ti0,k
(y) +

Ki0

K

∑
y∈{0,1}

fβi0(y,θ0)
∂fi0(y,θ)

∂θ

∣∣∣∣
θ=θ0

= 0.

Then, we have

IF (ti0,k,Uβ , Fθ0)

I∑
i=1

Ki

K

 ∑
y∈{0,1}

[
βfβ−1

i (y,θ0)
∂fi(y,θ)

∂θT

∣∣∣∣
θ=θ0

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θ0

+fβi (y,θ0)
∂2fi(y,θ)

∂θTθ

∣∣∣∣
θ=θ0

]}

−IF (ti0,k,Uβ , Fθ0)

 I∑
i=1

Ki

K

 ∑
y∈{0,1}

[
(β − 1)fβ−1

i (y,θ0)
∂fi(y,θ)

∂θT

∣∣∣∣
θ=θ0

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θ0

+fβi (y,θ0)
∂2fi(y,θ)

∂θTθ

∣∣∣∣
θ=θ0

]}
−Ki0

K

∑
y∈{0,1}

fβ−1
i0

(y,θ0)
∂fi0(y,θ)

∂θ

∣∣∣∣
θ=θ0

∆ti0,k
(y) +

Ki0

K

∑
y∈{0,1}

fβi0(y,θ0)
∂fi0(y,θ)

∂θ

∣∣∣∣
θ=θ0

= 0.

Simplifying,

IF (ti0,k,Uβ , Fθ0)

I∑
i=1

Ki

K

 ∑
y∈{0,1}

[
fβ−1
i (y,θ0)

∂fi(y,θ)

∂θT

∣∣∣∣
θ=θ0

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θ0

]
− Ki0

K

∑
y∈{0,1}

fβ−1
i0

(y,θ0)
∂fi0(y,θ)

∂θ

∣∣∣∣
θ=θ0

∆ti0,k
(y) +

Ki0

K

∑
y∈{0,1}

fβi0(y,θ0)
∂fi0(y,θ)

∂θ

∣∣∣∣
θ=θ0

= 0.

Finally,

IF (ti0,k,Uβ , Fθ0) =
Π1,i0,k

Π2,k
(2.25)

=

Ki0
K

∑
y∈{0,1} f

β−1
i0

(y,θ0)
∂fi0 (y,θ)

∂θ

∣∣∣
θ=θ0

∆ti0,k
(y)− Ki0

K

∑
y∈{0,1} f

β
i0

(y,θ0)
∂fi0 (y,θ)

∂θ

∣∣∣
θ=θ0∑I

i=1
Ki
K

{∑
y∈{0,1}

[
fβ−1
i (y,θ0) ∂fi(y,θ)

∂θT

∣∣∣
θ=θ0

∂fi(y,θ)
∂θ

∣∣∣
θ=θ0

]} .

Let us now develop Π1,i0,k and Π2,i,k in (2.25) trying to simplify the form of the IF.
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∑
y∈{0,1}

fβ−1
i0

(y,θ0)
∂fi0(y,θ)

∂θ

∣∣∣∣
θ=θ0

∆ti0,k
(y)− Ki0

K

∑
y∈{0,1}

fβi0(y,θ0)
∂fi0(y,θ)

∂θ

∣∣∣∣
θ=θ0

=
∑

y∈{0,1}

[
fβ−1
i0

(y,θ0)
(
∆ti0,k

(y)− fi0(y,θ)
)]

= πβ−1
i01 (θ0)

∂πi01(θ)

∂θ

∣∣∣∣
θ=θ0

(
∆

(1)
ti0,k
− πi01(θ)

)
+ πβ−1

i02 (θ0)
∂πi02(θ)

∂θ

∣∣∣∣
θ=θ0

(
∆

(2)
ti0,k
− πi02(θ)

)
= πβ−1

i01 (θ0)
∂πi01(θ)

∂θ

∣∣∣∣
θ=θ0

(
∆

(1)
ti0,k
− πi01(θ)

)
− πβ−1

i02 (θ0)
∂πi01(θ)

∂θ

∣∣∣∣
θ=θ0

(
πi01(θ)−∆

(1)
ti0,k

)
=
∂πi01(θ)

∂θ

∣∣∣∣
θ=θ0

(
πβ−1
i01 (θ0) + πβ−1

i02 (θ0)
)(

πi01(θ)−∆
(1)
ti0,k

)
Then

Π1,i0,k =
Ki0

K

∂πi01(θ)

∂θ

∣∣∣∣
θ=θ0

(
πβ−1
i01 (θ0) + πβ−1

i02 (θ0)
)(

πi01(θ)−∆
(1)
ti0,k

)
. (2.26)

On the other hand

∑
y∈{0,1}

[
fβ−1
i (y,θ0)

∂fi(y,θ)

∂θT

∣∣∣∣
θ=θ0

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θ0

]

=
∑

y∈{0,1}

[
fβ+1
i (y,θ0)

∂ log fi(y,θ)

∂θT

∣∣∣∣
θ=θ0

∂ log fi(y,θ)

∂θ

∣∣∣∣
θ=θ0

]
= πβ+1

i1 (θ0)ui1(θ0)uTi1(θ0) + πβ+1
i2 (θ0)ui2(θ0)uTi2(θ0)

=

2∑
j=1

πβ+1
ij (θ0)uij(θ

0)uTij(θ
0).

Therefore,

Π2,k =

K∑
i=1

Ki

K

2∑
j=1

πβ+1
ij (θ0)uij(θ

0)uTij(θ
0) = Jβ(θ0) (2.27)

Then, taking unto account (2.26) and (2.27), we get

IF (ti0,k,Uβ , Fθ0) =J−1
β (θ0)

Ki0

K

∂πi01(θ)

∂θ

∣∣∣∣
θ=θ0

(2.28)

×
(
πβ−1
i01 (θ0) + πβ−1

i02 (θ0)
)(

πi01(θ0)−∆
(1)
ti0,k

)
Proposition 2.11 Let us consider the one-shot device testing under the exponential distribution

with a simple stress factor defined in (2.1). The IF with respect to the k−th observation of the

i0−th group is given by

IF (ti0,k,Uβ , Fθ0) =J−1
β (θ0)

Ki0

K

(
F β−1(ITi0 ;xi0 ,θ

0) +Rβ−1(ITi0 ;xi0 ,θ
0)
)

×
(
F (ITi0 ;xi0 ,θ

0)−∆
(1)
ti0,k

)
f(ITi0 ;xi0 ,θ

0)ITi0νi0 , (2.29)

where ∆
(1)
ti0,k

is the degenerating function at point ti0,k and νi0 = (1/θ0, xi0)
T

.

23



Proof. Straightforward from (2.28) and taking into account that
∂πi01(θ)

∂θ

∣∣∣
θ=θ0

= νi0 .

In order to get the IF of the minimum DPD estimator at Fθ with respect to all the observations,

we replace the parameter θ in (2.23) by

θi0ε = Uβ(G1,ε ⊗ 1TK1
, . . . , Gi0−1,ε ⊗ 1TKi0−1

, Gi0,ε ⊗ 1TKi0 , Gi0+1,ε, . . . , GI,ε ⊗ 1TKI ),

and the probability mass function gi(y) by

gi,ε(y) = (1− ε)fi(y,θ0) + ε∆ti(y),

where ∆ti(y) =
∑Ki
k=1 ∆ti,k(y), and we get

∂Hβ(θ)

∂θ

∣∣∣∣
θ=θε

=

I∑
i=1

Ki

K

 ∑
y∈{0,1}

fβi (y,θε)
∂fi(y,θ)

∂θ

∣∣∣∣
θ=θε

 (2.30)

−
I∑
i=1

Ki

K

 ∑
y∈{0,1}

fβ−1
i (y,θε)

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θε

fi(y,θ
0)


Differentiating with respect to ε, we have

I∑
i=1

Ki

K

 ∑
y∈{0,1}

[
βfβ−1

i (y,θε)
∂fi(y,θ)

∂θT

∣∣∣∣
θ=θε

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θε

∂θε
∂ε

+ fβi (y,θε)
∂2fi(y,θ)

∂θTθ

∣∣∣∣
θ=θε

∂θε
∂ε

]
−

I∑
i=1

Ki

K

 ∑
y∈{0,1}

[
(β − 1)fβ−2

i (y,θε)
∂fi(y,θ)

∂θT

∣∣∣∣
θ=θε

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θε

∂θε
∂ε

gi,ε,k(y)

−fβ−1
i0

(y,θε)
∂2fi(y,θ)

∂θTθ

∣∣∣∣
θ=θε

∂θε
∂ε

gi,ε,k(y)− fβ−1
i (y,θε)

∂fi(y,θ)

∂θ

∣∣∣∣
θ=θε

[
−fi(y,θ0) + ∆ti,k(y)

]]}
= 0

Finally,

IF (t,Uβ , Fθ0) =
Π1,k

Π2,k
(2.31)

=

∑I
i=1

Ki
K

∑
y∈{0,1} f

β−1
i (y,θ0) ∂fi(y,θ)

∂θ

∣∣∣
θ=θ0

∆ti,k(y)−
∑I
i=1

Ki
K

∑
y∈{0,1} f

β
i (y,θ0) ∂fi(y,θ)

∂θ

∣∣∣
θ=θ0∑I

i=1
Ki
K

{∑
y∈{0,1}

[
fβ−1
i (y,θ0) ∂fi(y,θ)

∂θT

∣∣∣
θ=θ0

∂fi(y,θ)
∂θ

∣∣∣
θ=θ0

]} .

Proposition 2.12 Let us consider the one-shot device testing under the exponential distribution

with a simple stress factor defined in (2.1). The IF with respect to all the observations is given by

IF (t,Uβ , Fθ0) =J−1
β (θ0)

I∑
i=1

Ki

K

[(
F β−1(ITi;xi,θ

0) +Rβ−1(ITi;xi,θ
0)
)

×
(
F (ITi;xi,θ

0)−∆
(1)
ti

)
f(ITi;xi,θ

0)ITiνi

]
, (2.32)

where ∆
(1)
ti =

∑Ki
k=1 ∆

(1)
ti,k

and νi = (1/θ0, xi)
T

.

Proof. Straightforward from (2.31) and taking into account that
∂πi1 (θ)

∂θ

∣∣∣
θ=θ0

= νi.
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Remark 2.13 Let

h1(IT, x,θ) =
(
F β−1(IT ;x,θ) +Rβ−1(IT ;x,θ)

)
f(IT ;x,θ)IT

1

θ0

=
[
exp {θ1x− θ0 exp (θ1x) IT} [1− exp {−θ0 exp (θ1x) IT}]β−1

+ exp {θ1x− βθ0 exp (θ1x) IT} θ0IT ]
1

θ0

h2(IT, x,θ) =
(
F β−1(IT ;x,θ) +Rβ−1(IT ;x,θ)

)
f(IT ;x,θ)IT

1

θ0

=
[
exp {θ1x− θ0 exp (θ1x) IT} [1− exp {−θ0 exp (θ1x) IT}]β−1

+ exp {θ1x− βθ0 exp (θ1x) IT} θ0IT ]x

be the factors of the influence function of θ given in (2.29) and (2.32). Based on this, might

be commented on conditions for boundedness of the influence functions presented in this Chapter,

either with respect to an observation other with respect to all the observations, that they are bounded

on ti0,k or t, however if β = 0 the norm of the bidimensional influence functions can be very large

on (x, IT ), in comparison with β > 0, since

lim
x→+∞
(θ1<0)

h1(IT, x,θ) = lim
x→+∞
(θ1>0)

h2(IT, x,θ) = lim
t→+∞

h1(IT, x,θ)

= lim
IT→+∞

h2(IT, x,θ)

{
=∞, if β = 0

<∞, if β > 0
.

This implies that the proposed weighted minimum DPD estimators with β > 0 are robust against

leverage points, but the classical MLE is clearly non-robust. Same happens for large IT s too, but

in accelerated processes inspection time tends not to be large.

In addition, it is interesting to note that

F (IT ;x,θ) −→
x→+∞

{
1, if θ1 > 0

0, if θ1 < 0
,

which matches with the degenerated distributions for cells, and similarly

λ(θ) −→
x→+∞

{
+∞, if θ1 > 0

0, if θ1 < 0

approaches both boundaries of λ(θ) ∈ (0,+∞).

2.5.2 Robustness of the Z-type tests

Next, we study the robustness of the proposed Z-type test statistics. The IF of a testing procedure,

as introduced by Ronchetti and Rousseeuw [1979] for IID data, is also defined as in the case of

estimation but with the statistical functional corresponding to the test statistics and it is studied

under the null hypothesis. This concept has been extended to the non- homogeneous data, by

Aerts and Haesbroeck [2017] and Ghosh and Basu [2018]. In our context, the functional associated

with the Z-type test, evaluated at Uβ(G) is given by

ZK(Uβ(G)) =

√
K

mTJ−1
β (Uβ(G))Kβ(Uβ(G))J−1

β (Uβ(G))m

(
mTUβ(G)− d

)
. (2.33)
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The influence function with respect to the k−th observation of the i0−th group of observations,

of the functional associated with the Z -type test statistics for testing the composite null hypothesis

in (2.18), is then given by

IF (ti0,k, ZK , Fθ0) =
∂ZK(F

θ
i0
ε

)

∂ε

∣∣∣∣∣
ε=0+

.

But,

∂ZK(F
θ
i0
ε

)

∂ε

∣∣∣∣∣
ε=0+

= ΦK(θ0)mT
∂Uβ(F

θ
i0
ε

)

∂ε

∣∣∣∣∣
ε=0+

,

where
∂Uβ(F

θ
i0
ε

)

∂ε

∣∣∣∣
ε=0+

is the IF of the estimator and

ΦK(θ0) =

√
K

mTJ−1
β (θ0)Kβ(θ0)J−1

β (θ0)m
. (2.34)

Therefore,

Proposition 2.14 Let us consider the one-shot device testing under the exponential distribution

with a simple stress factor defined in (2.1). The IF of the functional associated with the Z -type test

statistics for testing the composite null hypothesis in (2.16), with respect to the k−th observation

of the i0−th group is given by

IF (ti0,k, ZK , Fθ0) = ΦK(θ0)mT IF (ti0,k,Uβ , Fθ0),

where IF (ti0,k,Uβ , Fθ0) is given in (2.29) and ΦK(θ0) is given in (2.34).

Similarly, for all the indices,

Proposition 2.15 Let us consider the one-shot device testing under the exponential distribution

with a simple stress factor defined in (2.1). The IF of the functional associated with the Z -type

test statistics for testing the composite null hypothesis in (2.16), with respect to all the observations

is given by

IF (t, ZK , Fθ0) = ΦK(θ0)mT IF (t,Uβ , Fθ0),

where IF (t,Uβ , Fθ0) is given in (2.32) and ΦK(θ0) is given in (2.34).

From these results, same conclusions are derived about the boundedness of the influence func-

tion associated with the Z -type test statistics presented on this Chapter.

2.6 Simulation study

In this section, a simulation study is carried out to examine the behavior of the weighted minimum

DPD estimators of the parameters of the one-shot device model, studied in this chapter, as well

as the corresponding Z-type tests, based on weighted minimum DPD estimators. We pay special

attention to the robustness issue here. It is interesting to note, in this context, the following. For

each fixed time, ITi, under a fixed temperature, xi, Ki devices are tested. In particular, a balanced

data with equal sample size for each group is considered.

As it happens for product binomial sampling model, we must consider “outlying cells” rather

than “outlying observations”. A cell which does not follow the one-shot device model will be called

an outlying cell or outlier. The strong outliers may lead to reject a model fitting even if the rest
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of the cells fit the model properly. In other words, even though the cells seem to fit reasonably

well the model, the outlying cells contribute to an increase in the values of the residuals as well

as the divergence measure between the data and the fitted values according to the one-shot device

model considered. Therefore, it is very important to have robust estimators as well as robust test

statistics in order to avoid the undesirable effects of outliers in the data. The main purpose of

this simulation study is to empirically illustrate that inside the family of weighted minimum DPD

estimators developed in this chapter, some estimators may have better robust properties than the

MLE, and the Z-type tests constructed from them can be at the same time more robustness than

the classical Z-type test constructed through the MLEs.

2.6.1 Weighted minimum density power divergence estimators

The simulation study is carried out to compare the behavior of some weighted minimum DPD

estimators with respect to the MLEs of the parameters in the one-shot device model under the

exponential distribution with a simple stress factor. In order to evaluate the performance of the

proposed weighted minimum DPD estimators, as well as the MLEs, the root of the mean square

errors (RMSEs) are considered. A model in which I = 9, different conditions are obtained from the

combination of the temperatures x ∈ {35, 45, 55}, being the inspection times IT ∈ {10, 20, 30} and

Ki = 20 ∀i = 1, . . . , I, as in Table 2.6.1, and the simulation experiment proposed by Balakrishnan

and Ling [2012b]. This model has been examined under three choices of (θ0, θ1) = (0.005, 0.05),

(θ0, θ1) = (0.004, 0.05) and (θ0, θ1) = (0.003, 0.05) for low-moderate, moderate and moderate-high

reliability, respectively.

Table 2.6.1: Exponential distribution at a simple stress level: simulation scheme

i xi ITi Ki

1 35 10 20

2 45 20 20

3 55 30 20

4 35 10 20

5 45 20 20

6 55 30 20

7 35 10 20

8 45 20 20

9 55 30 20

To evaluate the robustness of the weighted minimum DPD estimators, we have studied the be-

havior of this model under the consideration of an outlying cell for i = 1, with 10, 000 replications

and estimators corresponding to the tuning parameter β ∈ {0, 0.1, 0.2, 0.4, 0.6, 0.8, 1}. The reduc-

tion of each one of the parameters of the outlying cell, denoted by θ̃0 or θ̃1 (θ0 ≥ θ̃0 or θ1 ≥ θ̃1)

increases the mean of its lifetime distribution function given in (2.1). The results obtained by

decreasing parameter θ0 and by decreasing parameter θ1 are shown in Figure 2.6.1. In all the

cases, we can see how the MLEs and the weighted minimum DPD estimators with small values

of tuning parameter β present the smallest RMSEs for weak outliers, i.e., when θ̃0 is close to θ0

(1 − θ̃0/θ0 is close to 0) or θ̃1 is close to θ1 (1 − θ̃1/θ1 is close to 0). On the other hand, large

values of tuning parameter β make the weighted minimum DPD estimators to present the smallest

RMSEs, for medium and strong outliers, i.e., when θ̃0 is not close to θ0 (1− θ̃0/θ0 is not close to 0)

or θ̃1 is not close to θ1 (1− θ̃1/θ1 is not close to 0). Therefore, the MLE of (θ0, θ1) is very efficient

when there are no outliers, but highly non-robust when there are outliers. On the other hand,

the weighted minimum DPD estimators with moderate values of the tuning parameter β exhibit a

little loss of efficiency without outliers, but at the same time possess a considerable improvement

in robustness in the presence of outliers. Actually, these values of the tuning parameter β are the
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Figure 2.6.1: Exponential distribution at a simple stress level: RMSEs of θ estimates
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most appropriate ones for the estimators of the parameters in the one-shot device model according

to robustness theory: To improve in a considerable way the robustness of the estimators, a small

amount of efficiency needs to be compromised.

2.6.2 Z-type tests

Let us consider the same Simulation Scheme defined in Section 2.6.1 (Table 2.6.1). We are interested

in testing the null hypothesis H0 : θ1 = 0.05 against the alternative H1 : θ1 6= 0.05, through the

Z-type test statistics based on weighted minimum DPD estimators. Under the null hypothesis,

we consider as true parameters (θ0, θ1) = (0.004, 0.05), while under the alternative we consider as

true parameters (θ0, θ1) = (0.004, 0.02). In Figure 2.6.2, we present the empirical significance level

(measured as the proportions of test statistics exceeding in absolute value the standard normal

quantile critical value) based on 10, 000 replications. The empirical power (obtained in a similar

manner) is also presented in the right hand side of Figure 2.6.2. Notice that, in all the cases, the

observed levels are quite close to the nominal level of 0.05. The empirical power is similar for the

different values of the tuning parameters β, a bit lower for large values of β, and closer to one as

the sample size K increases.
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Figure 2.6.2: Exponential distribution at a simple stress level: simulated levels (left) and powers (right)

with no outliers in the data.

To evaluate the robustness of the level and the power of the Z-type tests based on weighted

minimum DPD estimators with an outlier placed on the first-row cell, we perform the simulation

for the same test and the same true values for the null and alternative hypotheses, in two different

scenarios depending on the way the outlying cell is considered. In the first scenario, we keep θ1

the same and modify the true value of θ0 to be θ̃0 ≤ θ0, and in the second one, we keep θ0 the

same and modify the true value of θ1 to be θ̃1 ≤ θ1. Both cases have been analyzed for different

values of K and decreasing θ̃0 in the first scenario (increasing 1 − θ̃0/θ0) or decreasing θ̃1 in the

second scenario (increasing 1− θ̃1/θ1).

The results for the first scenario are presented in Figure 2.6.3. The empirical level for the one-

shot device model with Ki from 10 to 150, true value (θ0, θ1) = (0.004, 0.05) and θ̃0 = 0.001 for

the outlying cell is presented on the top left panel. Similarly, the empirical power for the one-shot

device model with Ki from 10 to 150, true parameter (θ0, θ1) = (0.004, 0.02) and θ̃0 = 0.001 for the

outlying cell is presented on the right top panel. In addition, the empirical level for the one-shot

device model with 1− θ̃0/θ0 from 0 to 1 for the outlying cell and true value (θ0, θ1) = (0.004, 0.05)

and Ki = 20 is presented on the bottom left panel. Similarly, the empirical power for the one-shot

device model with 1 − θ̃0/θ0 from 0 to 1 for the outlying cell and true value and true parameter

(θ0, θ1) = (0.004, 0.02) is presented on the bottom right panel.
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Figure 2.6.3: Exponential distribution at a simple stress level: simulated levels (left) and powers (right)

with an θ0-contaminated outlying cell in the data.

30



●

●

●

●

●

●

●

●

●

●

20 40 60 80 100

0.
05

0.
10

0.
15

0.
20

Ki

E
m

pi
ric

al
 le

ve
l

●

β

0
0.1
0.2
0.4
0.6
0.8
1

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

20 40 60 80 100 120 140

0.
2

0.
4

0.
6

0.
8

1.
0

Ki

E
m

pi
ric

al
 p

ow
er

●

β

0
0.1
0.2
0.4
0.6
0.8
1

●

●

●

●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
05

0.
06

0.
07

0.
08

1 − θ1
~ θ1

E
m

pi
ric

al
 le

ve
l

●

β

0
0.1
0.2
0.4
0.6
0.8
1

●

●

●

●

●

●

● ●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
22

0.
23

0.
24

0.
25

0.
26

0.
27

0.
28

1 − θ1
~ θ1

E
m

pi
ric

al
 p

ow
er

●

β

0
0.1
0.2
0.4
0.6
0.8
1

Figure 2.6.4: Exponential distribution at a simple stress level: simulated levels (left) and powers (right)

with an θ1-contaminated outlying cell in the data.
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Notice that the outlying cell represents 1/9 of the total observations in the last plots. For large

values of Ki (very large sample sizes), there is a large inflation in the empirical level and shrinkage

of the empirical power, but for the Z-type test statistic based on the weighted minimum DPD

estimators with large values of the tuning parameter β, the effect of the outlying cell is weaker in

comparison to those of smaller values of β, including the MLEs (β = 0). If θ̃0 is separated from

θ0 (1 − θ̃0/θ0 increases from 0 to 1), the empirical level of the Z-type test statistics based on the

weighted minimum DPD estimators is not stable around the nominal level, but being closer as the

tuning parameter β becomes larger. If θ̃0 is separated from θ0 (1 − θ̃0/θ0 increases from 0 to 1),

the empirical power of the Z-type test statistics based on the weighted minimum DPD estimators

decreases, but being more slowly as the tuning parameter β becomes larger.

Figure 2.6.4 presents the results for the second scenario, in which θ̃1 = 0.01 for the outlying

cell on the top left panel and θ̃1 = −0.01 for the outlying cell on the top right panel. Even though

the outliers are, in the current scenario, slightly more pronounced with respect to the previous

scenario, in general terms, we arrive at the same conclusions as in the previous scenario.

2.6.3 Choice of tuning parameter

Throughout this section, we have noted that the robustness of the proposed weighted minimum

DPD estimator seems to increase with increasing β; but, their pure data efficiency decrease slightly.

From the results of our simulation study, a moderately large value of β is expected to provide the

best trade-off for possibly contaminated data. Although a possible ad-hoc choice of β may work

quite well in practice, when working with real data, a data-driven choice of β would be better and

convenient.

A useful procedure of the data-based selection of β for the weighted minimum DPD estimator

was proposed by Warwick and Jones [2005]. It consists of minimizing the estimated mean squared

error, an approach that requires pilot estimation of model parameters. We can adopt a similar

approach to obtain a suitable data-driven β in our model. In this approach, we minimize an

estimate of the asymptotic MSE of the weighted minimum DPD estimator θ̂β given by

M̂SE(β) = (θβ − θP )T (θβ − θP ) +
1

K
trace

{
J−1
β (θβ)Kβ(θβ)J−1

β (θβ)
}
,

where θP is a pilot estimator, whose choice will be empirically discussed, as the overall procedure

depends on this choice. If we take θP = θ̂β , the approach coincides with that of Hong and Kim

[2001], but it does not take into account the model misspecification.

However, as pointed out by Basu et al. [2017], when dealing with the robustness issue, the

estimation of the variance component should not assume the model to be true. So, following the

general formulation of Ghosh and Basu [2015], we have the following result:

Proposition 2.16 Let us consider the one-shot device model under the exponential distribution

with a single stress factor with distribution function (2.1). The model robust estimates of Jβ(θ)

and Kβ(θ) defined in (2.14) and (2.15), respectively, can be obtained as

Ĵβ(θ) =(β + 1)Jβ(θ) +

I∑
i=1

Ki

K

[
F (ITi;xi,θ)− ni

Ki

]
(2.35)

×
{
C

(i)
1 (θ)

[
F β−1(ITi;xi,θ) +Rβ−1(ITi;xi,θ)

]
−C(i)

2 (θ)
[
F β−2(ITi;xi,θ)−Rβ−2(ITi;xi,θ)

]}
− β

I∑
i=1

Ki − ni
Ki

∆(i)(θ)IT 2
i f

2(ITi;xi,θ)

[
ni
Ki

F β−2(ITi;xi,θ) +
Ki − ni
Ki

Rβ−2(ITi;xi,θ)

]
,

K̂β(θ) =

I∑
i=1

Ki

K
∆(i)(θ)IT 2

i f
2(ITi;xi,θ) (2.36)
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×
{[

ni
Ki

F 2β−2(ITi;xi,θ) +
Ki − ni
Ki

Rβ−2(ITi;xi,θ)

]
−
[
ni
Ki

F β−1(ITi;xi,θ)− Ki − ni
Ki

Rβ−1(ITi;xi,θ)

]2}
,

where

∆(i)(θ) =

(
1
θ20

xi
θ0

xi
θ0

x2
i

)
,

C
(i)
1 (θ) =

(
− 1
θ20

0

0 0

)
IT 2

i f(ITi;xi,θ) + ∆(i)(θ)ITif(ITi;xi,θ)F (ITi;xi,θ), (2.37)

C
(i)
2 (θ) = ∆(i)(θ)IT 2

i f
2(ITi;xi,θ). (2.38)

Proof. Following Ghosh and Basu [2015], we have

Ĵβ(θ) =(β + 1)Jβ(θ) +

I∑
i=1

2∑
j=1

Ki

K

{
∂uij(θ)

∂θ
πβ+1
ij (θ)− nij

Ki
πβij(θ)

[
βuij(θ)uTij(θ)− ∂uij(θ)

∂θ

]}

and

K̂β(θ) =

I∑
i=1

2∑
j=1

Ki

K

{
uij(θ)uTij(θ)

nij
Ki

π2β
ij (θ)

}
−

I∑
i=1

2∑
j=1

Ki

K
ξ∗ij,β(θ)ξ∗Tij,β(θ)

with ξ∗ij,β(θ) =
nij
Ki
uij(θ)πβij(θ), ni1 = ni and ni2 = Ki − ni.

The required result follows taking into account that

∂uij(θ)

∂θ
=

1

πij(θ)
C

(i)
1 (θ) +

1

π2
ij(θ)

C
(i)
2 (θ),

where C
(i)
1 (θ) and C

(i)
2 (θ) are as given in (2.37) and (2.38), respectively.

Let us reconsider the previous simulation study with (θ0, θ1) = (0.004, 0.05), but now we

perform the selection of β following the above proposal for each iteration with different possible

pilot estimators. Let us consider as potential pilot parameters βP = {0, 0.3, 0.6, 0.9}. The selection

of β is done through a grid search of [0, 1] with spacing 0.01 and 10, 000 samples. In Figure 2.6.5,

we show the simulated true RMSEs for this scenario and the average optimal values of β for this

same scenario. We can observe how the use of pilot estimators leads us to different optimal values

of β, but, in general cases, optimal values of β are higher when a higher degree of contamination

is considered, as expected. It seems that the best trade-off between the efficiency in pure data

and the robustness under contaminated data is provided by the pilot choice βP = 0.4 and so we

suggest it as our pilot estimator. This method, summarized in Algorithm 2.6.5, will be applied in

the following section, in which three real data examples are presented.

2.7 Real data examples

In this section, we present some numerical examples to illustrate the inferential results developed

in the preceding sections. The first one is an application to the reliability example considered by

Balakrishnan and Ling [2012a] which motivated the simulation scheme, and the other two are real

applications to tumorigenicity experiments considered earlier by other authors.
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Figure 2.6.5: Exponential distribution at a simple stress level: average optimal values of β for different

values of the pilot estimators and their corresponding RMSEs.
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Algorithm 1 Algorithm for the data-driven selection of β

Goal: Optimal fitting of the model given any data set

Initialization: θP = θ̂0.4 (empirical suggestion)

1: for each β in a grid of [0, 1] do

2: Compute the estimated squared bias, Bβ = (θ̂β − θ̂0.4)T (θ̂β − θ̂0.4).

3: Compute the total estimated variance, Vβ = 1
K trace

[
Ĵ
−1

β (θ̂β)K̂β(θ̂β)Ĵ
−1

β (θ̂β)
]
.

4: Compute the total estimated MSE, M̂SEβ = Bβ + Vβ .

5: end for

6: return βopt = arg min M̂SEβ .

7: compute θ̂βopt as your final estimate with optimally chosen tuning parameter.

2.7.1 Reliability experiment (Balakrishnan and Ling, 2012)

In Balakrishnan and Ling [2012a], an example is presented, in which 90 devices were tested at

temperatures xi ∈ {35, 45, 55}, each with 10 units being detonated at times ITi ∈ {10, 20, 30},
respectively. In this example, we have I = 9, and Ki = 10, i = 1, . . . , I. The number of failures

observed is summarized in Table 2.7.1. In this one-shot device testing experiment, there were in

all 48 failures out a total of 90 tested devices.

Table 2.7.1: Reliability experiment.

i ITi Ki ni xi
1 10 10 3 35

2 20 10 3 35

3 30 10 7 35

4 10 10 1 45

5 20 10 5 45

6 30 10 7 45

7 10 10 6 55

8 20 10 7 55

9 30 10 9 55

The weighted minimum DPD estimators of the parameters of the one-shot device model are

considered. As tuning parameters, β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4}
are taken. The estimates of the reliability function at mission times (time points at which we

are interested in the reliability of the unit) t ∈ {10, 20, 30}, namely R(10, S0, θ̂β), R(20;x0, θ̂β),

R(30;x0, θ̂β), respectively, are also computed, as well as the expected mean of the lifetime, namely,

Eβ(T |x0) =
1

λx0
(θ̂β)

=
1

θ̂0,βeθ̂1,βx0

,

under the normal operating temperature x0 = 25.

Table 2.7.2 shows that the mean lifetime obtained by the MLE (β = 0) is greater than that ob-

tained from the alternative weighted minimum DPD estimators. However, results for all considered

choices of β seem to be quite similar. We now apply Algorithm 1 to the data. Optimal β results

to be βopt = 0.62 and the corresponding optimal parameters, θ̂0,opt = 0.0049 and θ̂1,opt = 0.04696.

2.7.2 ED01 Data

In 1974, the National Center for Toxicological Research made an experiment on 24000 female

mice randomized to a control group or one of seven dose levels of a known carcinogen, called 2-

Acetylaminofluorene (2-AAF). Table 1 in Lindsey and Ryan [1993] shows the results obtained when
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Table 2.7.2: Reliability experiment: estimates of the model parameters, the reliability function at times

t ∈ {10, 20, 30}, and mean lifetime at normal temperature of 25◦C

β θ̂0,β θ̂1,β R(10; 25, θ̂β) R(20; 25, θ̂β) R(30; 25, θ̂β) Eβ(T |25)

0 0.00487 0.04732 0.85300 0.72761 0.62065 62.89490

0.1 0.00489 0.04722 0.85288 0.72741 0.62039 62.83953

0.2 0.00490 0.04714 0.85277 0.72722 0.62016 62.79031

0.3 0.00491 0.04706 0.85268 0.72706 0.61995 62.74654

0.4 0.00492 0.04700 0.85260 0.72693 0.61978 62.70965

0.5 0.00493 0.04695 0.85253 0.72681 0.61963 62.67944

0.6 0.00494 0.04690 0.85247 0.72671 0.61950 62.65188

0.7 0.00495 0.04687 0.85246 0.72669 0.61947 62.64457

0.8 0.00495 0.04683 0.85236 0.72651 0.61925 62.59732

0.9 0.00496 0.04681 0.85233 0.72646 0.61918 62.58398

1 0.00496 0.04681 0.85239 0.72656 0.61931 62.61131

2 0.00496 0.04679 0.85231 0.72644 0.61915 62.57739

3 0.00494 0.04687 0.85255 0.72684 0.61966 62.68584

4 0.00491 0.04700 0.85292 0.72748 0.62048 62.85869

the highest dose level (150 parts per million) was administered. The original study considered four

different outcomes: Number of animals dying tumour free (DNT) and with tumour (DWT), and

sacrificed without tumour (SNT) and with tumour (SWT), summarized over three time intervals

at 12, 18 and 33 months. A total of 3355 mice were involved in the experiment. We make an

analysis combining SNT and SWT as the sacrificed group (r = 0); and denoting the cause of DNT

as natural death (r = 1), and the cause of DWT as death due to cancer (r = 2). This modified

data are presented in Table 2.7.3. Here, x = 0 refers to the control group and x = 1 is the test

group.

Table 2.7.3: ED01 experiment: number of mice sacrificed (r = 0) and died without tumour (r = 1) and

with tumour (r = 2)

i ITi Ki xi ni,r=0 ni,r=1 ni,r=2

1 12 145 0 115 22 8

2 12 175 1 110 49 16

3 18 830 0 780 42 8

4 18 620 1 540 54 26

5 33 960 0 675 200 85

6 33 625 1 510 64 51

The weighted minimum DPD estimators of the model parameters and the corresponding es-

timates of mean lifetimes are presented in Table 2.7.4. Here, we distinguish between sacrifice or

nature death (r = 0, 1) and death due to cancer (r = 2). Note that, in the model under considera-

tion in this chapter, only one possible failure cause is considered, so both estimations are computed

separately.

Figure 2.7.1 shows the total estimated mean lifetimes for the control group (x0 = 0) and the

test group (x0 = 1), computed as

Eβ(T |x0) =
1

λ∗x0
(θ̂β) + λ∗∗x0

(θ̂β)
=

1

θ̂∗0,βe
θ̂∗1,βx0 + θ̂∗∗0,βe

θ̂∗∗1,βx0

,

the estimators with β ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, show a reduction when the carcinogenic

drug is administered, but the other ones, β ∈ {0, 0.8, 0.9, 1}, do not show this behavior. Thus, in
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Table 2.7.4: ED01 experiment: estimates of the model parameters and expected lifetimes

Sacrificed/ death without tumor Death with tumor

β θ̂∗0,β θ̂∗1,β E∗β(T |0) E∗β(T |1) θ̂∗∗0,β θ̂∗∗1,β E∗∗β (T |0) E∗∗β (T |1)

0 0.00594 -0.12980 168.333 191.665 0.00216 0.27620 463.425 351.582

0.1 0.00702 0.09355 142.352 129.639 0.00250 0.32870 399.794 287.795

0.2 0.00698 0.06495 143.302 134.290 0.00250 0.31173 400.433 293.189

0.3 0.00703 0.00999 142.253 140.840 0.00249 0.29613 401.393 298.513

0.4 0.00690 0.00998 145.019 143.578 0.00249 0.27957 401.602 303.655

0.5 0.00677 0.00998 147.662 146.195 0.00249 0.26421 401.839 308.537

0.6 0.00666 0.00998 150.085 148.594 0.00283 0.00997 353.925 350.414

0.7 0.00682 -0.06678 146.635 156.763 0.00249 0.23702 401.985 317.157

0.8 0.00680 -0.08753 147.020 160.468 0.00279 0.00997 358.642 355.083

0.9 0.00679 -0.10530 147.321 163.680 0.00278 0.00997 360.357 356.781

1 0.00678 -0.11980 147.546 166.324 0.00277 0.00995 361.607 358.028

this case, we observe that the first weighted minimum DPD estimators give a more meaningful

result in the context of the laboratory experiment than, in particular, the MLE (β = 0).
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Figure 2.7.1: ED01 experiment: estimated mean lifetimes, for different values of the tuning parameter.

Let us apply the ad-hoc procedure for the choice of the optimal tuning parameter presented in

Algorithm 1 to the ED01 data (2.7.5). Is important to notice that this ad-hoc choice of β does not

depend on the results of data analysis and expert knowledge. In this sense, we see that, once the

optimal values of the parameters are obtained, expected lifetimes in control group are seen to be

higher than in the group to which the carcinogen is applied, which is a result that is consistent in

the context of the experiment studied.

2.7.3 Benzidine Dihydrochloride data

The benzidine dihydrochloride experiment was also conducted at the National Center for Toxi-

cological Research to examine the incidence in mice of liver tumours induced by the drug, and

studied by Lindsey and Ryan [1993]. The inspection times used on the mice were 9.37, 14.07 and

18.7 months. In Table 2.7.6, the numbers of mice sacrificed (r = 0), died without tumour (r = 1)

and died with tumour (r = 2), are shown, for two different doses of drug: 60 parts per million
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Table 2.7.5: ED01 experiment: optimal choice of the estimators

Sacrificed/ death

without tumor Death with tumor

β∗opt θ̂∗0,opt θ̂∗1,opt β∗∗opt θ̂∗∗0,opt θ̂∗∗1,opt Eβ,opt(T |0) Eβ,opt(T |1)

0.24 0.00711 0.00998 0 0.00216 0.27620 107.827 99.681

(x = 1) and 400 parts per million (x = 2). As in the previous example, we consider as “failures”

the mice died due to cancer.

Table 2.7.6: Benzidine Dihydrochloride experiment: number of mice sacrificed (r = 0) and died without

tumour (r = 1) and with tumour (r = 2)

i ITi Ki xi ni,r=0 ni,r=1 ni,r=2

1 9.37 72 1 70 2 0

2 9.37 25 2 22 3 0

3 14.07 49 1 48 1 0

4 14.07 35 2 14 4 17

5 18.7 46 1 35 4 7

6 18.7 11 2 1 1 9

Table 2.7.7 shows the weighted minimum DPD estimators of the model parameters and the

corresponding estimates of mean lifetimes. Although some differences are observed in the results

for different values of the tuning parameter, in all the cases, the mean lifetime shows a reduction

when the carcinogenic drug is administered. The optimal values are computed and presented in

Table 2.7.8.

Table 2.7.7: Benzidine Dihydrochloride data: estimates of model parameters and expected lifetimes

Death without tumor Death with tumor

β θ̂∗0,β θ̂∗1,β E∗β(T |1) E∗β(T |2) θ̂∗∗0,β θ̂∗∗1,β Eβ(T |1) Eβ(T |2)

0 0.00114 1.03606 309.9401 109.9828 0.00029 2.41598 154.1152 21.91462

0.1 0.00137 0.88718 301.3767 124.1119 0.00034 2.43535 139.4039 19.19976

0.2 0.00141 0.86736 298.6438 125.4474 0.00036 2.41128 136.2217 19.05452

0.3 0.00144 0.85118 297.0690 126.8120 0.00037 2.39392 134.5945 19.08241

0.4 0.00148 0.83279 294.5364 128.0470 0.00039 2.37048 132.5912 19.16100

0.5 0.00151 0.81685 292.6733 129.3098 0.00040 2.35318 130.3661 19.05474

0.6 0.00154 0.80124 290.7204 130.4671 0.00042 2.33504 128.7609 19.09932

0.7 0.00157 0.78793 289.2526 131.5478 0.00044 2.31249 126.9138 19.13369

0.8 0.00160 0.77577 287.6854 132.4363 0.00045 2.29739 125.3146 19.09985

0.9 0.00163 0.76485 286.3007 133.2454 0.00046 2.29251 124.5972 19.09096

1 0.00165 0.75493 284.8778 133.9056 0.00047 2.27947 123.1959 19.05346

Table 2.7.8: Benzidine Dihydrochloride experiment: optimal choice of the estimators

Sacrificed/ death

without tumor Death with tumor

β∗opt θ̂∗0,opt θ̂∗1,opt β∗∗opt θ̂∗∗0,opt θ̂∗∗1,opt Eβ,opt(T |1) Eβ,opt(T |2)

0.30 0.00143 0.85118 0 0.00029 2.41598 150.859 22.60977
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Chapter 3

Robust inference for one-shot device testing

under exponential distribution with multiple

stress factors

3.1 Introduction

As pointed out in Section 1.4.1, to assess the reliability of one-shot devices, ALTs are frequently

preformed to reduce the time to failure so that enough life data can be obtained in a reasonable

period of time. Although this can be done through a single stress factor, aging is usually induced

in devices by various accelerating factors such as temperature, pressure, humidity, and voltage

simultaneously. Even though a single-stress test at a very high stress level may attain aging within

limited time, a multiple-stress accelerated life test would enable us to achieve the same without

requiring any of the stress factors to be set at very high levels. If maintaining a stress factor at

high stress level for testing purposes is expensive, one could introduce several stress factors set at

slightly elevated stress levels, causing more devices to fail than would under a single-stress test.

For this reason, a multiple-stress model becomes better suited for the prediction of lifetimes of

products, subjected to electrical, thermal, and mechanical stresses; see, for example, Srinivas and

Ramu [1992] and Bartnikas and Morin [2004]. In Balakrishnan and Ling [2012b], an EM algorithm

for developing inference is developed, based on one-shot device testing data under the exponential

distribution when there are multiple stress factors.

Section 3.1.1 generalizes the model presented in Chapter 2 to the case of multiple stresses, and

defines the weighted minimum DPD estimators. In particular, in this chapter, the failure time

of the devices is assumed to follow an exponential distribution, following the notation in Section

3.1.2. The rest of the chapter is organized as follows: in Section 3.2, the estimating equations for

the weighted minimum DPD estimators and their asymptotic distribution is developed, and their

robustness is studied through the influence function study. In Section 3.3, robust Wald-type tests

are provided for testing linear hypotheses. Finally, an extensive simulation study is carried out

and some numerical examples are presented in Section 3.4 and Section 3.5, respectively.

The results of this Chapter have been published in the form of a paper (Balakrishnan et al.

[2020c]).

3.1.1 One-shot device Inference with multiple stresses

Let us suppose now, that the devices are stratified into I testing conditions and that in the i-th

testing condition Ki units are tested with J types of stress factors being maintained at certain

levels, and the conditions of those units are then observed at pre-specified inspection times ITi, for

i = 1, . . . , I. In the i-th test group, the number of failures, ni, is collected. The data thus observed

can be summarized as in Table 3.1.1.
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Table 3.1.1: Data on one-shot devices testing at multple stress levels and collected at different inspection

times

Covariates

Condition Inspection Time Devices Failures Stress 1 · · · Stress J

1 IT1 K1 n1 x11 · · · x1J

2 IT2 K2 n2 x21 · · · x2J

...
...

...
...

...
...

I ITI KI nI xI1 · · · xIJ

In this setting, we consider that the density and distribution functions are given, respectively,

by f(t;xi,θ) and F (t;xi,θ), where xi = (1, xi1, . . . , xiJ)T is the vector of stresses associated to

the test condition i (i = 1, . . . , I), and θ ∈ Θ = RS is the model parameter vector (S will depend

on the distribution associated to the model). The reliability function is denoted by R(t;xi,θ) =

1− F (t;xi,θ).

Assuming independent observations, the likelihood function based on the observed data, pre-

sented in Table 3.1.1, is given by

L(n1, . . . , nI ;θ) ∝
I∏
i=1

Fni(ITi;xi,θ)RKi−ni(ITi;xi,θ), (3.1)

and the corresponding MLE of θ, θ̂, will be obtained by maximizing in θ the equation (3.1) or,

equivalently, its logarithm. This is, θ̂ = arg maxθ∈Θ logL(n1, . . . , nI ;θ).

The empirical and theoretical probability vectors are given, respectively, by

p̂i = (p̂i1, p̂i2)
T
, i = 1, . . . , I, (3.2)

and

πi(θ) = (πi1(θ), πi2(θ))T , i = 1, . . . , I, (3.3)

with p̂i1 = ni
Ki

, p̂i2 = 1 − ni
Ki

, πi1(θ) = F (ITi;xi,θ) and πi2(θ) = R(ITi;xi,θ). Let us

consider the weighted Kullback divergence given in equation (2.6) between probability vectors

(3.2) and (3.3). Following Theorem 2.2, it is straightforward that the MLE can be obtained as its

minimization

θ̂ = arg min
θ∈Θ

I∑
i=1

Ki

K
dKL(p̂i,πi(θ)), (3.4)

where K =
∑I
i=1Ki.

Based on this idea, we can now define the weighted minimum DPD estimators for the one-shot

device model with multiple stresses

Definition 3.1 Let us consider the framework in Table 3.1.1, we can define the weighted minimum

DPD estimator for θ as

θ̂β = arg min
θ∈Θ

I∑
i=1

Ki

K
d∗β(p̂i,πi(θ)), for β > 0,

where d∗β(p̂i,πi(θ)) is given in (2.9), and p̂i and πi(θ)) are given in (3.2) and (3.3), respectively.

For β = 0, we have the MLE, θ̂ defined in (3.4).
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3.1.2 The Exponential Distribution

As a generalization of the model presented in the previous chapter, we shall assume here, that the

true lifetime follows an exponential distribution with unknown failure rate λi(θ), related to the

stress factor xi in loglinear form as

λi(θ) = exp(xTi θ),

where xi = (xi0, xi1, . . . , xiJ)T , and θ = (θ0, θ1, . . . , θJ)T . Thus, here Θ = RJ+1. The correspond-

ing density function and distribution function are, respectively,

f(t;xi,θ) = λi(θ) exp{−λi(θ)t} = exp(xTi θ) exp{− exp(xTi θ)t} (3.5)

and

F (t;xi,θ) = 1− exp{−λi(θ)t} = 1− exp{−t exp(xTi θ)}. (3.6)

On the other hand, the reliability at time t and the mean lifetime under normal operating conditions

xi are given by

R(t;xi,θ) = 1− F (t;xi,θ) = exp
(
−t exp

(
xTi θ

))
(3.7)

and

E[Ti] =
1

λi
= exp

(
−xTi θ

)
.

3.2 Weighted minimum DPD estimator

In this section, we will first obtain the estimating equations for the unknown parameter θ and the

asymptotic distribution of the weighted minimum DPD estimators.

3.2.1 Estimation and asymptotic distribution

Theorem 3.2 For β ≥ 0, the estimating equations are given by

I∑
i=1

(KiF (ITi;xi,θ)− ni) f(ITi;xi,θ)ITixi
(
F β−1(ITi;xi,θ) +Rβ−1(t;xi,θ)

)
= 0J+1,

where f(ITi;xi,θ), F (ITi;xi,θ) and R(ITi;xi,θ) are given, respectively, by (3.5), (3.6) and (3.7)

and 0J+1 is the null column vector of dimension J + 1.

Proof. The estimating equations are given by

∂

∂θ

I∑
i=1

Ki

K
d∗β(p̂i,πi(θ)) =

I∑
i=1

Ki

K

∂

∂θ
d∗β(p̂i,πi(θ)) = 0J+1,

with

∂

∂θ
d∗β(p̂i,πi(θ)) =

(
∂

∂θ
πβ+1
i1 (θ) +

∂

∂θ
πβ+1
i2 (θ)

)
− β + 1

β

(
p̂i1

∂

∂θ
πβi1(θ) + p̂i2

∂

∂θ
πβi2(θ)

)
= (β + 1)

(
πβi1(θ)− πβi2(θ)− p̂i1πβ−1

i1 (θ) + p̂i2π
β−1
i2 (θ)

) ∂

∂θ
πi1(θ)

= (β + 1)
(

(πi1(θ)− p̂i1)πβ−1
i1 (θ)− (πi2(θ)− p̂i2)πβ−1

i2 (θ)
) ∂

∂θ
πi1(θ)

= (β + 1)
(

(πi1(θ)− p̂i1)πβ−1
i1 (θ) + (πi1(θ)− p̂i1)πβ−1

i2 (θ)
) ∂

∂θ
πi1(θ)

= (β + 1) (πi1(θ)− p̂i1)
(
πβ−1
i1 (θ) + πβ−1

i2 (θ)
) ∂

∂θ
πi1(θ). (3.8)
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Taking into account that

∂

∂θ
πi1(θ) = f(ITi;xi,θ)ITixi,

we obtain

∂

∂θ

I∑
i=1

Ki

K
d∗β(p̂i,πi(θ)) =

β + 1

K

I∑
i=1

(Kiπi1(θ)− ni)
(
πβ−1
i1 (θ) + πβ−1

i2 (θ)
)
f(ITi;xi,θ)ITixi,

and then the required result follows.

Theorem 3.3 Let θ0 be the true value of the parameter θ. The asymptotic distribution of the

weighted minimum DPD estimator, θ̂β, is given by

√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
0J+1,J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)
,

where

Jβ(θ) =

I∑
i

Ki

K
xix

T
i f

2(ITi;xi,θ)IT 2
i

(
F β−1(ITi;xi,θ) +Rβ−1(ITi;xi,θ)

)
, (3.9)

Kβ(θ) =

I∑
i=1

Ki

K
xix

T
i f

2(ITi;xi,θ)IT 2
i F (ITi;xi,θ)R(ITi;xi,θ)

×
(
F β−1(ITi;xi,θ) +Rβ−1(ITi;xi,θ)

)2
. (3.10)

Proof. From Ghosh et al. [2013], it is known that

√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
0J+1,J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)
,

where

Jβ(θ) =

I∑
i=1

2∑
j=1

Ki

K
uij(θ)uTij(θ)πβ+1

ij (θ),

Kβ(θ) =

I∑
i=1

2∑
j=1

Ki

K
uij(θ)uTij(θ)π2β+1

ij (θ)−
I∑
i=1

Ki

K
ξi,β(θ)ξTi,β(θ),

with

ξi,β(θ) =

2∑
j=1

uij(θ)πβ+1
ij (θ),

uij(θ) =
∂ log πij(θ)

∂θ
=

1

πij(θ)

∂πij(θ)

∂θ
= (−1)j+1 f(ITi;θ,xi)ITi

πij(θ)
xi, .

Because uij(θ)uTij(θ) = xix
T
i
f2(ITi;xi,θ)IT 2

i

π2
ij(θ)

, we have

Jβ(θ) =

I∑
i=1

Ki

K
xix

T
i f

2(ITi;xi,θ)IT 2
i

2∑
j=1

πβ−1
ij (θ).

In a similar manner

ξi,β(θ)ξTi,β(θ) = xix
T
i f

2(ITi;xi,θ)IT 2
i

 2∑
j=1

(−1)j+1πβij(θ)

2
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and

Kβ(θ) =

I∑
i=1

Ki

K
xix

T
i f

2(ITi;xi,θ)IT 2
i

 2∑
j=1

π2β−1
ij (θ)−

 2∑
j=1

(−1)j+1πβij(θ)

2
 .

Since
2∑
j=1

π2β−1
ij (θ)−

 2∑
j=1

(−1)j+1πβij(θ)

2

= πi1(θ)πi2(θ)
(
πβ−1
i1 (θ) + πβ−1

i2 (θ)
)2

,

it holds

Kβ(θ) =

I∑
i=1

Ki

K
xix

T
i f

2(ITi;xi,θ)IT 2
i πi1(θ)πi2(θ)

(
πβ−1
i1 (θ) + πβ−1

i2 (θ)
)2

.

3.2.2 Study of the Influence Function

In Section 2.5, the IF of the weighted minimum DPD estimators under the exponential distribution

with one stress factor were computed. Same procedures are followed to obtain the IF for the case

of multiple stress factors:

Proposition 3.4 Let us consider the one-shot device testing under the exponential distribution

with multiple stress factors. The IF with respect to the k−th observation of the i0−th group is

given by

IF (ti0,k,Uβ , Fθ0) =J−1
β (θ0)

Ki0

K
f(ITi0 ;xi0 ,θ

0)ITi0xi0 (3.11)

×
(
F β−1(ITi0 ;xi0 ,θ

0) +Rβ−1(ITi0 ;xi0 ,θ
0)
) (
F (ITi0 ;xi0 ,θ

0)−∆
(1)
ti0

)
,

where ∆
(1)
ti0 ,k

is the degenerating function at point (ti0 , k).

Proposition 3.5 Let us consider the one-shot device testing under the exponential distribution

with multiple stress factors. The IF with respect to all the observations is given by

IF (t,Uβ , Fθ0) =J−1
β (θ0)

I∑
i=1

Ki

K
f(ITi;xi,θ

0)ITixi (3.12)

×
(
F β−1(ITi;xi,θ

0) +Rβ−1(ITi;xi,θ
0)
) (
F (ITi;xi,θ

0)−∆
(1)
ti

)
,

where ∆
(1)
ti =

∑Ki
k=1 ∆

(1)
ti,k

.

3.3 Wald-type tests

In this section, we develop robust Wald-type tests, presenting also some results in relation with

their power function. IF of the proposed Wald-type tests are finally computed.

3.3.1 Definition and study of the level

Let us consider the function m : RJ+1 −→ Rr, where r ≤ J + 1. Then, m (θ) = 0r represents a

composite null hypothesis. We assume that the (J + 1)× r matrix

M (θ) =
∂mT (θ)

∂θ
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exists and is continuous in θ with rank M (θ) = r. For testing

H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0, (3.13)

where Θ0 =
{
θ ∈ RJ+1 : m (θ) = 0r

}
, we can consider the following Wald-type test statistics

WK(θ̂β) = KmT (θ̂β)
(
MT (θ̂β)Σ(θ̂β)M(θ̂β)

)−1

m(θ̂β), (3.14)

where Σβ(θ̂β) = J−1
β (θ̂β)Kβ(θ̂β)J−1

β (θ̂β) and Jβ(θ) and Kβ(θ) are as in (3.9) and (3.10), re-

spectively.

In the following theorem, we present the asymptotic distribution of WK(θ̂β).

Theorem 3.6 The asymptotic null distribution of the proposed Wald-type test statistics, given in

Equation (3.14), is a chi-squared (χ2) distribution with r degrees of freedom. This is,

WK(θ̂β)
L−→

K→∞
χ2
r.

Proof. Let θ0 ∈ Θ0 be the true value of parameter θ. It is then clear that

m(θ̂β) = m(θ0) +MT (θ̂β)(θ̂β − θ0) + op

(∥∥∥θ̂β − θ0
∥∥∥) = MT (θ̂β)(θ̂β − θ0) + op

(
K−1/2

)
.

But,
√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
0J+1,Σβ(θ̂β)

)
. Therefore, we have

√
Km(θ̂β)

L−→
K→∞

N
(
0r,M

T (θ0)Σβ(θ0)M(θ0)
)

and taking into account that rank(M
(
θ0
)
) = r, we obtain

KmT (θ̂β)
(
MT (θ0)Σβ(θ0)M(θ0)

)−1

m(θ̂β)
L−→

K→∞
χ2
r.

But,
(
MT (θ̂β)Σβ(θ̂β)M(θ̂β)

)−1

is a consistent estimator of
(
MT (θ0)Σβ(θ0)M(θ0)

)−1

and,

therefore,

WK(θ̂β)
L−→

K→∞
χ2
r.

Based on Theorem 3.6, we will reject the null hypothesis in (3.13) if

WK(θ̂β) > χ2
r,α, (3.15)

where χ2
r,α is the upper percentage point of order α of χ2

r distribution.

3.3.2 Some results relating to the power function

In many cases, the power function of this testing procedure cannot be derived explicitly. In the

following theorem, we present a useful asymptotic result for approximating the power function of

the Wald-type test statistics given in (3.14). We shall assume that θ∗ /∈ Θ0 is the true value of

the parameter such that

θ̂β
P−→

K→∞
θ∗, (3.16)

and we denote `β (θ1,θ2) = mT (θ1)
(
MT (θ2) Σβ (θ2)M (θ2)

)−1

m (θ1) . We then have the fol-

lowing result.
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Theorem 3.7 We have

√
K
(
`β

(
θ̂β ,θ

∗
)
− `β (θ∗,θ∗)

)
L−→

K→∞
N (0, σ2

WK ,β (θ∗)) ,

where

σ2
WK ,β (θ∗) =

∂`β (θ,θ∗)

∂θT

∣∣∣∣
θ=θ∗

Σβ (θ∗)
∂`β (θ,θ∗)

∂θ

∣∣∣∣
θ=θ∗

.

Proof. Under the assumption that

θ̂β
P−→

K→∞
θ∗,

the asymptotic distribution of `β

(
θ̂1, θ̂2

)
coincides with the asymptotic distribution of `β

(
θ̂1,θ

∗
)
.

A first-order Taylor expansion of `β

(
θ̂β ,θ

)
at θ̂β , around θ∗, yields(

`β

(
θ̂β ,θ

∗
)
− `β (θ∗,θ∗)

)
=
∂`β (θ,θ∗)

∂θT

∣∣∣∣
θ=θ∗

(
θ̂β − θ∗

)
+ op(K

−1/2).

Now, the result readily follows since

√
K
(
θ̂β − θ∗

)
L−→

K→∞
N (0J+1,Σβ (θ∗)) .

Remark 3.8 Using Theorem 3.7, we can give an approximation for the power function of the

Wald-type test statistics in θ∗, satisfying (3.16), as follows:

πW,K (θ∗) = Pr
(
WK

(
θ̂β

)
> χ2

r,α

)
= Pr

(
K
(
`β

(
θ̂β ,θ

∗
)
− `β (θ∗,θ∗)

)
> χ2

r,α −K`β (θ∗,θ∗)
)

= Pr

√K
(
`β

(
θ̂β ,θ

∗
)
− `β (θ∗,θ∗)

)
σWK ,β (θ∗)

>
1

σWK ,β (θ∗)

(
χ2
r,α√
K
−
√
K`β (θ∗,θ∗)

)
= 1− ΦK

(
1

σWK ,β (θ∗)

(
χ2
r,α√
K
−
√
K`β (θ∗,θ∗)

))

for a sequence of distributions functions ΦK (x) tending uniformly to the standard normal distri-

bution Φ (x). It is clear that

lim
K→∞

πW,K (θ∗) = 1,

i.e., the Wald-type test statistics are consistent in the sense of Fraser (?).

The above approximation of the power function of the Wald-type test statistics can be used to

obtain the sample size K necessary in order to achieve a pre-fixed power πW,K (θ∗) = π0, say. To

do so, it is necessary to solve the equation

π0 = 1− ΦK

(
1

σWK ,β (θ∗)

(
χ2
r,α√
K
−
√
K`β (θ∗,θ∗)

))
.

The solution, in K, of the above equation yields K̂β =
[
K̂∗β

]
+ 1, where

K̂∗β =
Âβ + B̂β +

√
Âβ(Âβ + 2B̂β)

2`2β (θ∗,θ∗)
,

with Âβ = σ2
WK ,β

(θ∗)
(
Φ−1 (1− π0)

)2
and B̂β = 2`β (θ∗,θ∗)χ2

r,α.
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We may also find an approximation of the power of WK

(
θ̂β

)
at an alternative hypotheses

close to the null hypothesis. Let θK ∈ Θ − Θ0 be a given alternative and let θ0 be the element

in Θ0 closest to θK in the sense of Euclidean distance. A first possibility to introduce contiguous

alternative hypotheses is to consider a fixed d ∈ Rp and to permit θK to move towards θ0 as K

increases in such a way that

H1,K : θK = θ0 +K−1/2d. (3.17)

A second approach is to relax the condition m (θ) = 0r defining Θ0. Let d∗ ∈ Rr and consider

the sequence
{
θK
}

of parameters moving towards θ0 such that

H∗1,K : m(θK) = K−1/2d∗. (3.18)

Note that a Taylor series expansion of m(θK) around θ0 yields

m(θK) = m(θ0) +MT (θ0)
(
θK − θ0

)
+ o

(∥∥∥θK − θ0
∥∥∥) . (3.19)

Upon substituting θK = θ0 +K−1/2d in (3.19) and taking into account that m(θ0) = 0r, we get

m(θK) = K−1/2MT (θ0)d+ o
(∥∥∥θK − θ0

∥∥∥) ,
so that the equivalence in the limit is obtained for d∗ = MT (θ0)d.

Theorem 3.9 We have the following results under both versions of the alternative hypothesis:

i) WK

(
θ̂β

)
L−→

K→∞
χ2
r

(
dTM(θ0)

(
MT (θ0)Σβ(θ0)M(θ0)

)−1

MT (θ0)d

)
under H1,K in (3.17);

ii) WK

(
θ̂β

)
L−→

K→∞
χ2
r

(
d∗T

(
MT (θ0)Σβ(θ0)M(θ0)

)−1

d∗
)

under H∗1,K in (3.18).

Proof. A Taylor series expansion of m(θ̂β) around θK yields

m(θ̂β) = m(θn) +MT (θK)(θ̂β − θK) + o
(∥∥∥θ̂β − θK∥∥∥) .

We have

m(θ̂β) = K−1/2MT (θ0)d+MT (θK)(θ̂β − θK) + o
(∥∥∥θ̂β − θK∥∥∥)+ o

(∥∥∥θK − θ0
∥∥∥) .

As √
K(θ̂β − θK)

L−→
n→∞

N (0J+1,Σβ(θ0))

and
√
K
(
o
(∥∥∥θ̂β − θK∥∥∥)+ o

(∥∥∥θK − θ0
∥∥∥)) = op (1), we have

√
Km(θ̂β)

L−→
K→∞

N
(
MT (θ0)d,MT (θ0)Σβ(θ0)M(θ0)

)
.

From the relationship d∗ = M(θ0)Td, if m(θn) = K−1/2d∗, we can observe that

√
Km(θ̂β)

L−→
K→∞

N
(
d∗,MT (θ0)Σβ(θ0)M(θ0)

)
.

In the present case, the quadratic form is WK

(
θ̂β

)
= ZTZ with

Z =
√
Km(θ̂β)

(
MT (θ0)Σβ(θ0)M(θ0)

)−1/2
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and

Z
L−→

K→∞
N
((
MT (θ0)Σβ(θ0)M(θ0)

)−1/2

M(θ0)Td, Ir

)
,

where Ir is the identity matrix of order r. Hence, the application of the result is immediate and

the noncentrality parameter is given by

dTM(θ0)
(
MT (θ0)Σβ(θ0)M(θ0)

)−1

M(θ0)Td = d∗T
(
MT (θ0)Σβ(θ0)M(θ0)

)−1

d∗.

Remark 3.10 If we consider d =
√
K(θ∗ − θ0), with θ∗ satisfying (3.16), we have

θK = θ0 +K−1/2K1/2(θ∗ − θ0) = θ∗

and therefore we can use the asymptotic result in relation to H1,K in order to get an approximation

of the power function in θ = θ∗.

3.3.3 Study of the Influence Function

Next, we study the robustness of the proposed Wald-type test statistics. In our context, the

functional associated with the Wald-type tests, evaluated at Uβ(G) is given by

WK(Uβ(G)) = KmT (Uβ(G))
(
MT (Uβ(G))Σ(Uβ(G))M(Uβ(G))

)−1

m(Uβ(G)).

The IF with respect to the k−th observation of the i0−th group of observations, of the functional

associated with the Wald-type test statistics for testing the composite null hypothesis in (3.13), is

then given by

IF (ti0,k,WK , Fθ0) =
∂WK(F

θ
i0
ε

)

∂ε

∣∣∣∣∣
ε=0+

= 0.

It, therefore, becomes necessary to consider the second-order IF, as presented in the following

result.

Theorem 3.11 The second-order IF of the functional associated with the Wald-type test statistics,

with respect to the k−th observation of the i0−th group of observations, is given by

IF2(ti0,k,WK , Fθ0) =
∂2WK(F

θ
i0
ε

)

∂ε2

∣∣∣∣∣
ε=0+

= 2 IF (ti0,k,Uβ , Fθ0)mT (θ0)
(
MT (θ0)Σ(θ0)M(θ0)

)−1

m(θ0)IF (ti0,k,Uβ , Fθ0),

where IF (ti0,k,Uβ , Fθ0) is given in (3.11).

Similarly, for all the indices,

Theorem 3.12 The second-order IF of the functional associated with the Wald-type test statistics,

with respect to all the observations, is given by

IF2(t,WK , Fθ0) =
∂2WK(Fθε)

∂ε2

∣∣∣∣
ε=0+

= 2 IF (t,Uβ , Fθ0)mT (θ0)
(
MT (θ0)Σ(θ0)M(θ0)

)−1

m(θ0)IF (t,Uβ , Fθ0),

where IF (t,Uβ , Fθ0) is given in (3.12).

Note that the second-order influence functions of the proposed Wald-type tests are quadratic

functions of the corresponding IFs of the weighted minimum DPD estimator for any type of con-

tamination.
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3.4 Simulation Study

In this section, Monte Carlo simulations of size 2,000 were carried out to examine the behavior of

the weighted minimum DPD estimators of the model parameters under the exponential lifetimes

assumption.

Based on the simulation experiment proposed by Balakrishnan and Ling [2012b], we considered

the devices to have exponential lifetimes subjected to two types of stress factors at two different

conditions each, the first one at levels 55 and 70 and the second one at levels 85 and 100, and

tested at three different inspection times IT = {2, 5, 8}. Thus, we can consider a table, such as in

Table 3.1.1, with I = 12 rows corresponding to each of the 12 testing conditions. To evaluate the

robustness of the weighted minimum DPD estimators, we have studied the behavior of this model

under the consideration of an outlying cell (for example, the last one) in this table.

3.4.1 Weighted minimum DPD estimators

We carried out a simulation study to compare the behavior of some weighted minimum DPD

estimators with respect to the MLEs of the parameters in the one-shot device model under the ex-

ponential distribution with multiple stresses. In order to evaluate the performance of the proposed

weighted minimum DPD estimators, as well as the MLEs, we consider the RMSEs. The model

has been examined under (θ0, θ1, θ2) = (−6.5, 0.03, 0.03), different samples sizes Ki ∈ [40, 200],

i = 1, . . . , 12, and different degrees of contamination. The estimates have been computed with

values of the tuning parameter β ∈ {0, 0.2, 0.4, 0.6, 0.8}.
In the top of Figure 3.4.1, efficiency of weighted minimum DPD estimators is measured under

different samples sizes Ki with pure data (left) and contaminated data (right) where the observa-

tions in the i = 12 testing condition have been generated under (θ0, θ1, θ̃2) = (−6.5, 0.03, 0.025).

Same experiment is carried out by contaminating the last two testing conditions (top left of Fig-

ure 3.4.4). The efficiency is then measured for the last-cell-contaminated data, generated under

(θ0, θ̃1, θ̃2) = (−6.5, 0.025, 0.025) (top right of Figure 3.4.4). In the case of pure data, the MLE

(at β = 0) presents the most efficient behavior having the least RMSE for each sample size, while

weighted minimum DPD estimators with larger β have slightly larger RMSEs. For the contam-

inated data, the behavior of the weighted minimum DPD estimators is almost the opposite; the

best behavior (least RMSE) is obtained for larger values of β. In both cases, as expected, the

RMSEs decrease as the sample size increases.

The efficiency is also studied for different degrees of contamination of the parameters θ1 (left)

and θ2 (right), as displayed in the top of Figure 3.4.2. Here, Ki = 100 and the degree of contam-

ination is given by 4(1 − θ̃j
θj

) ∈ [0, 1] with j ∈ {1, 2}. In both cases, we can see how the MLEs

and the weighted minimum DPD estimators with small values of tuning parameter β present the

smallest RMSEs for weak outliers, i.e., when the degree of contamination is close to 0 (θ̃j is close

to θj). On the other hand, large values of tuning parameter β result in the weighted minimum

DPD estimators having the smallest RMSEs, for medium and strong outliers, i.e., when the degree

of contamination away from 0 (θ̃j is not close to θj).

In view of the results achieved, we note that the MLE is very efficient when there are no

outliers, but highly non-robust when outliers are present in the data. On the other hand, the

weighted minimum DPD estimators with moderate values of the tuning parameter β exhibit a

little loss of efficiency when there are no outliers, but at the same time a considerable improvement

in robustness is achieved when there are outliers in the data. Actually, these values of the tuning

parameter β are the most appropriate ones for the estimators of the parameters in the model

following the robustness theory: To improve in a considerable way the robustness of the estimators,

a small amount of efficiency needs to be compromised.
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3.4.2 Wald-type tests

Let us now empirically evaluate the robustness of the weighted minimum DPD estimator based

Wald-type tests for the model. The simulation is performed with the same model as in Table

3.1.1, where (θ0, θ1, θ2) = (−6.5, 0.03, 0.03). We first study the observed level (measured as the

proportion of test statistics exceeding the corresponding chi-square critical value) of the test under

the true null hypothesis H0 : θ2 = 0.03 against the alternative H1 : θ2 6= 0.03. In the middle of

Figure 3.4.1, these levels are plotted for different values of the samples sizes, for pure data (left)

and for contaminated data (θ̃2 = 0.025, right). Same experiment is carried out by contaminating

the last two testing conditions (middle left of Figure 3.4.4). The empirical levels are then measured

for the last-cell-contaminated data, generated under (θ0, θ̃1, θ̃2) = (−6.5, 0.025, 0.025) (middle right

of Figure 3.4.4). In the middle of Figure 3.4.2, the degree of contamination for both θ1 and θ2 is

changed with a fixed value of Ki = 100. Notice that when the pure data are considered, all the

observed levels are quite close to the nominal level of 0.05. In the case of contaminated data, the

level of the classical Wald test (at β = 0) as well as the proposed Wald-type tests with small β

break down, while the weighted minimum DPD estimator based Wald-type tests for moderate and

large values of β provide greater stability in their levels.

To investigate the power robustness of these tests (obtained in a similar manner), we change

the true data generating parameter value to be θ2 = 0.035 and the resulting empirical powers are

plotted in the bottom of Figures 3.4.1 and 3.4.2 and in the bottom left of Figure 3.4.4) (when

the last two cells are contaminated). The empirical powers are then measured for the last-cell-

contaminated data, generated under (θ0, θ̃1, θ̃2) = (−6.5, 0.035, 0.025) (bottom right of Figure

3.4.4). Again, the classical Wald test (at β = 0) presents the best behavior under the pure data,

while the Wald-type tests with larger β > 0 lead to better stability in the case of contaminated

samples. Same tests are also evaluated with a higher/lower value of reliability (θ0 = −6) obtaining

the same conclusions as detailed above (see Figure 3.4.3).

These results show the poor behavior in terms of robustness of the Wald test based on the

MLEs of the parameters of one-shot devices under the exponential model with multiple stresses.

Additionally, the robustness properties of the Wald-type test statistics based on the weighted

minimum DPD estimators with large values of the tuning parameter β are often better as they

maintain both level and power in a stable manner.

3.5 Real data examples

In this Section, two numerical examples are presented to illustrate the model and the estimators

developed in the preceding sections.

3.5.1 Mice Tumor Toxicological data

As mentioned earlier, current status data with covariates, which generally occur in the area of

survival analysis, can be seen as one-shot device testing data with stress factors and we therefore

apply here the methods developed in the preceding sections to a real data from a study in toxicology.

These data, originally reported by Kodell and Nelson [1980] (Table 1) and recently analyzed by

Balakrishnan and Ling [2013], are taken from the National Center for Toxicological Research and

consisted of 1816 mice, of which 553 had tumors, involving the strain of offspring (F1 or F2), gender

(females or males), and concentration of benzidine dihydrochloride (60 ppm, 120 ppm, 200 ppm or

400 ppm) as the stress factors. The F1 strain consisted of offspring from matings of BALB/c males

to C57BL/6 females, while the F2 strain consisted of offspring from non-brother-sister matings of

the Fl progeny. For each testing condition, the numbers of mice tested and the numbers of mice

that developed tumors were all recorded. Note that we consider mice with tumors as those that

died of tumors, sacrificed with tumors, and died of competing risks with liver tumors.
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Figure 3.4.1: Exponential distribution at multiple stress levels: RMSEs (top panel) of the weighted

minimum DPD estimators of θ, the simulated levels (middle panel) and powers (bottom panel) of the

Wald-type tests under the pure data (left) and under the contaminated data (right).
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Figure 3.4.2: Exponential distribution at multiple stress levels: RMSEs (top panel) of the weighted

minimum DPD estimators of θ, the simulated levels (middle panel) and powers (bottom panel) of the

Wald-type tests under the θ1-contaminated data (left) and under the θ2-contaminated data(right).
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Figure 3.4.3: Exponential distribution at multiple stress levels: Empirical levels (left) and powers (right)

under the pure data and under the contaminated data when parameter θ0 = −6
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Figure 3.4.4: Exponential distribution at multiple stress levels: RMSEs (top panel), empirical levels

(middle panel) and empirical powers (bottom panel) of two-cells contaminated data (left) and θ1-θ2-

contaminated data (right), when parameter θ0 = −6.5.
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Let θ1, θ2 and θ3 denote the parameters corresponding to the covariates of strain of offspring,

gender, and square root of concentration of the chemical of benzidine dihydrochloride in the expo-

nential distribution given in (3.6). The weighted minimum DPD estimators with tuning parameter

β ∈ {0, 0.2, 0.4, 0.6, 0.8} were all computed and are presented in Table 3.5.1. Negative values

for θ̂1 and θ̂2 indicate a greater resistance of F2 strain and male mice. As expected, a greater

concentration of benzidine dihydrochloride is seen to decrease the expected lifetime.

Table 3.5.1: Mice Tumor Toxicological data: Point estimation under the exponential distribution at

multiple stress levels

β θ̂0 θ̂1 θ̂2 θ̂3

0 -4.452 -0.126 -1.201 0.133

0.2 -4.821 -0.195 -1.300 0.148

0.4 -4.784 -0.184 -1.291 0.145

0.6 -4.753 -0.176 -1.282 0.143

0.8 -4.731 -0.170 -1.275 0.141

3.5.2 Electric current data

These data (Balakrishnan and Ling [2012b]), presented in Table 3.5.2, consist of 120 one-shot

devices that were divided into four accelerated conditions with higher-than-normal temperature

and electric current, and inspected at three different times. By subjecting the devices to adverse

conditions, we shorten the lifetimes, observing more failures in a clear example of an accelerated

life test design. This numerical example also served as a basis for the Monte Carlo study carried

out earlier in Section 3.4.

Table 3.5.2: Electric current data

i ITi Ki ni Temeperature (xi1) Electric current (xi2)

1 2 10 0 55 70

2 2 10 4 55 100

3 2 10 4 85 70

4 2 10 7 85 100

5 5 10 4 55 70

6 5 10 7 55 100

7 5 10 8 85 70

8 5 10 8 85 100

9 8 10 3 55 70

10 8 10 9 55 100

11 8 10 9 85 70

12 8 10 10 55 100

The estimates of the model parameters are presented in Table 3.5.3, for different values of

the tuning parameter β. Reliability at different inspections times and normal testing conditions

x0 = (25, 35), as well as the mean lifetimes, are also presented. As expected, the reliability

of the devices decrease when the inspection time increases. Figure 3.5.1 displays the estimated

reliabilities at a pre-fixed inspection time, t = 30, for different values of temperature and electric

current, and two different tuning parameters: β = 0 (MLE) and a high-moderate value β = 0.6.

Let us denote R̂ij0 and R̂ij0.6 for the estimated reliability at temperature level i and electric current

level j based on the weighted minimum DPD estimators with tuning parameter β = 0 and β = 0.6,

which are represented in the top left and top right of Figure 3.5.1, respectively. As expected, they

decrease when the testing conditions increase, becoming especially low for extreme testing levels.

Left bottom of Figure 3.5.1 shows the differences between the two measures, that is, R̂ij0.6 − R̂
ij
0 ,
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Table 3.5.3: Electric current data: Point estimation of parameters and reliabilities at time t ∈ {10, 30, 60}
and mean lifetimes for different tuning parameters at normal conditions x0 = (25, 35).

β θ̂0 θ̂1 θ̂2 R(10, 25, 35) R(30, 25, 35) R(60, 25, 35) T̂

0 −6.5128 0.0301 0.0340 0.9018 0.7334 0.5379 96.74

0.1 −6.6100 0.0308 0.0346 0.9069 0.7460 0.5565 102.38

0.2 −6.7178 0.0315 0.0354 0.9123 0.7594 0.5767 109.00

0.3 −6.8327 0.0323 0.0362 0.9178 0.7730 0.5975 116.51

0.4 −6.9549 0.0332 0.0370 0.9232 0.7868 0.6190 125.09

0.5 −7.0759 0.0340 0.0379 0.9282 0.7997 0.6395 134.21

0.6 −7.1920 0.0348 0.0387 0.9327 0.8115 0.6585 143.60

0.7 −7.2915 0.0355 0.0394 0.9364 0.8211 0.6742 152.17

0.8 −7.3740 0.0361 0.0400 0.9393 0.8287 0.6867 159.65

0.9 −7.4387 0.0365 0.0404 0.9415 0.8345 0.6964 165.79

1 −7.4869 0.0369 0.0407 0.9430 0.8387 0.7034 170.52

while right bottom of Figure 3.5.1 shows the standardized differences (R̂ij0.6 − R̂
ij
0 )/R̂ij0 . While in

absolute value the biggest differences are given for moderate values of temperature and current

electricity (where reliabilities are higher), the most remarkable difference (that is measured with

independence on the scale) is obtained for extreme conditions both of current and temperature.

Note that these are the only cases when the estimated reliability based on the MLEs is higher

than the one based on the weighted minimum DPD estimators with tuning parameter β = 0.6.

Table 3.5.4 shows the estimated probabilities of the weighted minimum DPD estimators with

different tuning parameters β ∈ [0, 1], compared with the observed probabilities. Last row in

Table 3.5.4 shows the estimated mean absolute error of each weighted minimum DPD estimator

considered here, eβi . MLE (β = 0) seems, in general, to be one of the worst choices to predict each

testing condition. In particular, we can say that weighted minimum DPD estimators with high

or moderate value of the tuning parameter seem to have a better behavior than the MLEs when

higher-than-normal testing conditions are considered, just as we observed a greater difference in

terms of reliability (Figure 3.5.1).

Table 3.5.4: Electric current data: Estimated probabilities for different weighted minimum DPD estima-

tors

π̂βi
i ni

Ki
β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 β = 0.6 β = 0.7 β = 0.8 β = 0.9 β = 1

1 0 0.154 0.152 0.150 0.148 0.146 0.144 0.142 0.141 0.139 0.138 0.137

2 0.4 0.338 0.340 0.343 0.346 0.348 0.351 0.354 0.356 0.358 0.359 0.360

3 0.4 0.371 0.373 0.376 0.378 0.381 0.384 0.387 0.389 0.391 0.393 0.394

4 0.7 0.681 0.691 0.703 0.715 0.728 0.740 0.752 0.761 0.769 0.776 0.780

5 0.4 0.342 0.338 0.335 0.331 0.327 0.322 0.319 0.315 0.312 0.310 0.309

6 0.7 0.644 0.647 0.650 0.654 0.657 0.661 0.664 0.667 0.669 0.671 0.672

7 0.8 0.686 0.689 0.692 0.695 0.699 0.703 0.706 0.709 0.711 0.713 0.714

8 0.8 0.943 0.947 0.952 0.957 0.961 0.965 0.969 0.972 0.974 0.976 0.977

9 0.3 0.488 0.484 0.479 0.474 0.469 0.464 0.459 0.454 0.451 0.448 0.446

10 0.9 0.808 0.811 0.814 0.817 0.820 0.823 0.825 0.828 0.830 0.831 0.832

11 0.9 0.843 0.846 0.848 0.851 0.854 0.856 0.859 0.861 0.863 0.864 0.865

12 1 0.990 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.997 0.997 0.997

eβi 0.082 0.080 0.078 0.077 0.077 0.076 0.076 0.076 0.075 0.075 0.075
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Figure 3.5.1: Electric current data: Estimated reliabilities based on weighted minimum DPD estimators

with tuning parameters β = 0 (top left) and β = 0.6 (top right) and their differences (bottom left) and

standardized differences (bottom right)

56



Chapter 4

Robust inference for one-shot device testing

under gamma distribution

4.1 Introduction

Gamma distribution is commonly used for fitting lifetime data in reliability and survival studies

due to its flexibility. Its hazard function can be increasing, decreasing, and constant. When the

hazard function of gamma distribution is a constant, it corresponds to the exponential distribution.

In addition to the exponential distribution, the gamma distribution also includes the Chi-square

distribution as a special case. The gamma distribution has found a number of applications in

different fields. For example, Husak et al. [2007] used it to describe monthly rainfall in Africa for

the management of water and agricultural resources, as well as food reserves. Kwon and Frangopol

[2010] assessed and predicted bridge fatigue reliabilities of two existing bridges, the Neville Island

Bridge and the Birmingham Bridge, based on long-term monitoring data. They made use of log-

normal, Weibull, and gamma distributions to estimate the mean and standard deviation of the

stress range. Tseng et al. [2009] proposed an optimal step-stress accelerated degradation testing

plan for assessing the lifetime distribution of products with longer lifetime based on a gamma

process.

In this chapter, we extend the results of Chapter 3 by assuming that the lifetimes follow a

gamma distribution. With this premise, weighted minimum DPD estimators, their estimating

equations and asymptotic distribution are developed in Section 4.2. In this section, robust Wald-

type tests are also presented. A simulation study is provided in Section 4.3 and a real example is

presented in Section 4.4.

The results of this Chapter have been published in the form of a paper (Balakrishnan et al.

[2019a]).

4.1.1 The gamma distribution

Let us denote by θ = (a0, . . . , aJ , b0, . . . , bJ)T the model parameter vector. We shall then assume

that the lifetimes of the units, under the testing condition i, follow gamma distribution with

corresponding probability density function and cumulative distribution function as

f(t;xi,θ) =
tαi−1

λαii Γ (αi)
exp

(
− t

λi

)
, t > 0,

and

F (t;xi,θ) =

∫ t

0

yαi−1

λαii Γ (αi)
exp

(
− y

λi

)
dy, t > 0, (4.1)
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where αi > 0 and λi > 0 are, respectively, the shape and scale parameters at condition i, which

we assume are related to the stress factors in log–linear forms as

αi = exp

{
J∑
j=0

ajxij

}
and λi = exp

{
J∑
j=0

bjxij

}
,

with xi0 = 1 for all i. Let us denote by RT (t;xi,θ) = 1 − F (t;xi,θ) the reliability function, the

probability that the unit lasts lifetime t.
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Figure 4.1.1: Gamma distributions for different values of shape and scale parameters.

4.2 Inference under the gamma distribution

Theorem 4.1 For β ≥ 0, the estimating equations are given by

I∑
i=1

li (KiF (ITi;xi,θ)− ni)
(
F β−1 (ITi;xi,θ) + (1− F (ITi;xi,θ))

β−1
)
xi = 0J+1,

I∑
i=1

si (KiF (ITi;xi,θ)− ni)
(
F β−1 (ITi;xi,θ) + (1− F (ITi;xi,θ))

β−1
)
xi = 0J+1,

where

li = αi

−Ψ (αi)πi1(θ) + log

(
ITi
λi

)
πi1(θ)−

(
ITi
λi

)αi
α2
iΓ(αi)

2F2

(
αi, αi; 1 + αi, 1 + αi;−

ITi
λi

) (4.2)

and

si = −f (ITi;xi,θ) ITi, (4.3)

where F (ITi;xi,θ) was given in (4.1). Here, nFm(a1, . . . , an; b1, . . . , bm; z) denotes the Gaussian

hypergeometric function. For more details about the Gaussian hypergeometric function, one may

refer to Seaborn [1991].

58



Proof. The estimating equations are given by

∂

∂θ

I∑
i=1

Ki

K
d∗β(p̂i,πi(θ)) =

I∑
i=1

Ki

K

∂

∂θ
d∗β(p̂i,πi(θ)) = 02(J+1),

with

∂

∂θ
d∗β(p̂i,πi(θ)) =

(
∂

∂θ
πβ+1
i1 (θ) +

∂

∂θ
πβ+1
i2 (θ)

)
− β + 1

β

(
p̂i1

∂

∂θ
πβi1(θ) + p̂i2

∂

∂θ
πβi2(θ)

)
= (β + 1)

(
πβi1(θ)− πβi2(θ)− p̂i1πβ−1

i1 (θ) + p̂i2π
β−1
i2 (θ)

) ∂

∂θ
πi1(θ)

= (β + 1)
(

(πi1(θ)− p̂i1)πβ−1
i1 (θ)− (πi2(θ)− p̂i2)πβ−1

i2 (θ)
) ∂

∂θ
πi1(θ)

= (β + 1)
(

(πi1(θ)− p̂i1)πβ−1
i1 (θ) + (πi1(θ)− p̂i1)πβ−1

i2 (θ)
) ∂

∂θ
πi1(θ)

= (β + 1) (πi1(θ)− p̂i1)
(
πβ−1
i1 (θ) + πβ−1

i2 (θ)
) ∂

∂θ
πi1(θ). (4.4)

The required result follows taking into account that

∂

∂θ
πi1(θ) = (lix

T
i , six

T
i )T .

In the following theorem, the asymptotic distribution of the weighted minimum DPD estimator

of θ, θ̂β , is presented for one-shot device testing data under gamma lifetimes.

Theorem 4.2 Let θ0 be the true value of the parameter θ. The asymptotic distribution of the

weighted minimum DPD estimator, θ̂β, is given by

√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
02(J+1),J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)
,

with

Jβ(θ) =

I∑
i=1

Ki

K
Ψi

(
F β−1(ITi;xi,θ) + (1− F (ITi;xi,θ))

β−1
)
, (4.5)

Kβ(θ) =

I∑
i=1

Ki

K
ΨiF (ITi;xi,θ) (1− F (ITi;xi,θ))

×
(
F β−1(ITi;xi,θ) + (1− F (ITi;xi,θ))

β−1
)2

, (4.6)

and

Ψi =

(
l2ixix

T
i lisixix

T
i

lisixix
T
i s2

ixix
T
i

)
,

with li and si as given in (4.2) and (4.3), respectively.

Proof. Let us denote

uij(θ) =

(
∂ log πij(θ)

∂a
,
∂ log πij(θ)

∂b

)T
=

(
1

πij(θ)

∂πij(θ)

∂a
,

1

πij(θ)

∂πij(θ)

∂b

)T
=

(
(−1)j+1

πij(θ)
lixi,

(−1)j+1

πij(θ)
sixi

)T
,

with li and si as given in (4.2) and (4.3), see Balakrishnan and Ling [2014a] for more details. Upon

using Theorem 3.1 of Ghosh et al. [2013], we have

59



√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
02(J+1),J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)
,

where

Jβ(θ) =

I∑
i=1

2∑
j=1

Ki

K
uij(θ)uTij(θ)πβ+1

ij (θ),

Kβ(θ) =

 I∑
i=1

2∑
j=1

Ki

K
uij(θ)uTij(θ)π2β+1

ij (θ)−
I∑
i=1

Ki

K
ξi,β(θ)ξTi,β(θ)

 ,

with

ξi,β(θ) =

2∑
j=1

uij(θ)πβ+1
ij (θ) = (lixi, sixi)

T
2∑
j=1

(−1)j+1πβij(θ).

Now, for uij(θ)uTij(θ), we have

uij(θ)uTij(θ) =
1

π2
ij(θ)

(
l2ix

T
i xi lisix

T
i xi

lisix
T
i xi s2

ix
T
i xi

)
=

1

π2
ij(θ)

Ψi,

with

Ψi =

(
l2ix

T
i xi lisix

T
i xi

lisix
T
i xi s2

ix
T
i xi

)
.

It then follows that

Jβ(θ) =

I∑
i=1

Ki

K
Ψi

2∑
j=1

πβ−1
ij (θ) =

I∑
i=1

Ki

K
Ψi

(
πβ−1
i1 (θ) + πβ−1

i2 (θ)
)
.

In a similar manner,

ξi,β(θ)ξTi,β(θ) = Ψi

 2∑
j=1

(−1)j+1πβij(θ)

2

and

Kβ(θ) =

I∑
i=1

Ki

K
Ψi

 2∑
j=1

π2β−1
ij (θ)−

 2∑
j=1

(−1)j+1πβij(θ)

2
 .

Since
2∑
j=1

π2β−1
ij (θ)−

 2∑
j=1

(−1)j+1πβij(θ)

2

= πi1(θ)πi2(θ)
(
πβ−1
i1 (θ) + πβ−1

i2 (θ)
)2

,

we have

Kβ(θ) =

I∑
i=1

Ki

K
Ψiπi1(θ)πi2(θ)

(
πβ−1
i1 (θ) + πβ−1

i2 (θ)
)2

.

Now, we present the IF of the proposed estimators:

Theorem 4.3 Let us consider the one-shot device testing under the gamma distribution with mul-

tiple stress factors. The IF with respect to the k−th observation of the i0−th group is given by

IF (ti0,k,Uβ , Fθ0) =J−1
β (θ0)(li0xi0 , si0xi0)T (4.7)

×
(
F β−1(ITi0 ;xi0 ,θ

0) +Rβ−1(ITi0 ;xi0 ,θ
0)
) (
F (ITi0 ;xi0 ,θ

0)−∆
(1)
ti0

)
,

where ∆
(1)
ti0 ,k

is the degenerating function at point (ti0 , k).
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Proof. Straightforward following results in Section 2.5.

Theorem 4.4 Let us consider the one-shot device testing under the gamma distribution with mul-

tiple stress factors. The IF with respect to all the observations is given by

IF (t,Uβ , Fθ0) =J−1
β (θ0)

I∑
i=1

Ki

K
(lixi, sixi)

T (4.8)

×
(
F β−1(ITi;xi,θ

0) +Rβ−1(ITi;xi,θ
0)
) (
F (ITi;xi,θ

0)−∆
(1)
ti

)
,

where ∆
(1)
ti =

∑Ki
k=1 ∆

(1)
ti,k

.

Proof. Straightforward following results in Section 2.5.

4.2.1 Wald-type tests

From Theorem 4.2, where the asymptotic distribution of the proposed weighted minimum DPD

estimators is presented, we can develop Wald-type tests for testing composite null hypotheses.

Let us consider the function m : R2(J+1) −→ Rr, where r ≤ 2(J + 1). Then, m (θ) = 0r
represents a composite null hypothesis. We assume that the 2 (J + 1)× r matrix

M (θ) =
∂mT (θ)

∂θ

exists and is continuous in θ and with rank M (θ) = r. For testing

H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0, (4.9)

where Θ0 =
{
θ ∈ R2(J+1) : m (θ) = 0r

}
, we can consider the following Wald-type test statistics

WK(θ̂β) = KmT (θ̂β)
(
MT (θ̂β)Σ(θ̂β)M(θ̂β)

)−1

m(θ̂β), (4.10)

where Σβ(θ̂β) = J−1
β (θ̂β)Kβ(θ̂β)Jβ(θ̂β) and Jβ(θ) and Kβ(θ) are as in (4.5) and (4.6), respec-

tively.

In the following theorem, we present the asymptotic distribution of WK(θ̂β).

Theorem 4.5 The asymptotic null distribution of the proposed Wald-type test statistics, given in

Equation (4.10), is a chi-squared (χ2) distribution with r degrees of freedom. This is,

WK(θ̂β)
L−→

K→∞
χ2
r.

Proof. Let θ0 ∈ Θ0 be the true value of parameter θ.
√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
02(J+1),Σβ(θ̂β)

)
.

Therefore, under H0, we have

√
Km(θ̂β)

L−→
K→∞

N
(
0r,M

T (θ0)Σβ(θ0)M(θ0)
)

and taking into account that rank(M
(
θ0
)
) = r, we obtain

KmT (θ̂β)
(
MT (θ0)Σβ(θ0)M(θ0)

)−1

m(θ̂β)
L−→

K→∞
χ2
r.

But,
(
MT (θ̂β)Σβ(θ̂β)M(θ̂β)

)−1

is a consistent estimator of
(
MT (θ0)Σβ(θ0)M(θ0)

)−1

and,

therefore, WK(θ̂β)
L−→

K→∞
χ2
r.

Based on Theorem 4.5, we will reject the null hypothesis in (4.9) if WK(θ̂β) > χ2
r,α, where χ2

r,α

is the upper percentage point of order α of χ2
r distribution.
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Results concerning the power function of the proposed Wald-type tests could be obtained in a

similar manner to previous chapters.

As happened under the exponential distribution, it becomes necessary to consider the second-

order IF of the proposed Wald-type tests, as presented in the following result

Theorem 4.6 The second-order IF of the functional associated with the Wald-type test statistics,

with respect to the k−th observation of the i0−th group of observations, is given by

IF2(ti0,k,WK , Fθ0)

= 2 IF (ti0,k,Uβ , Fθ0)mT (θ0)
(
MT (θ0)Σ(θ0)M(θ0)

)−1

m(θ0)IF (ti0,k,Uβ , Fθ0),

where IF (ti0,k,Uβ , Fθ0) is given in (5.8).

Proof. Straightforward following results on Section 3.3.3.

Similarly, for all the indices:

Theorem 4.7 The second-order IF of the functional associated with the Wald-type test statistics,

with respect to all the observations, is given by

IF2(t,WK , Fθ0)

= 2 IF (t,Uβ , Fθ0)mT (θ0)
(
MT (θ0)Σ(θ0)M(θ0)

)−1

m(θ0)IF (t,Uβ , Fθ0),

where IF (t,Uβ , Fθ0) is given in (5.9).

Proof. Straightforward following results on Section 3.3.3.

4.3 Simulation study

In this section, Monte Carlo simulations of size 2.500 are carried out to examine the behavior of

the weighted minimum DPD estimators and Wald-type tests discussed in the preceding sections.

4.3.1 Weighted minimum DPD estimators

Based on the simulation experiment proposed by Balakrishnan and Ling [2014a], we consider the

devices to have gamma lifetimes, under 4 different conditions with 2 stress factors at 2 levels, taken

to be {(30, 40), (40, 40), (30, 50), (40, 50)}. Then, all devices under each condition are tested at 3

different inspection times, depending on the reliability considered. The model parameters were set

as (a1, a2, b0, b1, b2) = (−0.06,−0.06,−0.36, 0.04,−0.01) while a0 = 6.5, 7 or 7.5, corresponding to

low, moderate and high reliability, respectively. In order to study the robustness of the weighted

minimum DPD estimators, we consider a contaminated scheme, wherein the first “cell” is generated

under ã1 = −0.035.

Bias of estimates of reliabilities at normal conditions and different times, as well as the RMSE

of the parameter estimates, are computed with the same sample size for each condition K =

{50, 100, 150}, and those are presented in Table 4.3.1, 4.3.2 and 4.3.3.

It can be seen that, while for the non-contaminated scheme, the MLE generally possesses the

best behaviour, weighted minimum DPD estimators with medium β are a better option in the

contamination scenario. This robustness is in accordance with the earlier finding for the case of

one-shot device testing based on exponential lifetimes.
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Table 4.3.1: Gamma distribution at multiple stress levels: Bias of the estimates of reliabilities for pure

and contaminated data in the case of low reliability.

Low reliability Pure data Contaminated data

True value β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0 β = 0.2 β = 0.4 β = 0.6

k=50

R(10; (25, 30)) 0.8197 -0,0101 -0,0085 -0,0135 -0,3130 0,1216 0,1137 0,1141 -0,0572

R(20; (25, 30)) 0.6168 -0,0037 -0,0058 -0,0064 -0,2287 0,1162 0,1027 0,0993 -0,0294

R(30; (25, 30)) 0.4497 -0,009 -0,0134 -0,0114 -0,1688 0,0037 -0,0009 -0,0063 -0,0788

R(40; (25, 30)) 0.3220 -0,0091 -0,0145 -0,0109 -0,1214 -0,0677 -0,0655 -0,0704 -0,0106

R(50; (25, 30)) 0.2278 -0,0037 -0,0092 -0,0048 -0,0830 -0,0849 -0,0815 -0,0852 -0,1013

RMSE(θ) - 0,9933 0,9737 1,0207 2,2000 1,8496 1,7226 1,7652 1,9626

k=100

R(10; (25, 30)) 0.8197 -0,0055 -0,003 -0,0056 -0,2749 0,1291 0,1193 0,1216 0,0100

R(20; (25, 30)) 0.6168 -0,0027 -0,0035 -0,0031 -0,2016 0,1229 0,1084 0,106 0,0194

R(30; (25, 30)) 0.4497 -0,0055 -0,0088 -0,0061 -0,1456 0,0099 0,0064 -0,0007 -0,0498

R(40; (25, 30)) 0.3220 -0,0057 -0,0105 -0,0063 -0,1022 -0,0700 -0,0648 -0,0728 -0,0949

R(50; (25, 30)) 0.2278 -0,0029 -0,0082 -0,0033 -0,0686 -0,0940 -0,0867 -0,0938 -0,1018

RMSE(θ) - 0,706 0,6919 0,7174 1,4967 1,7763 1,6122 1,6848 1,6592

k=150

R(10; (25, 30)) 0.8197 -0,0055 -0,0021 -0,0061 -0,2563 0,1317 0,1214 0,1234 0,0697

R(20; (25, 30)) 0.6168 -0,0028 -0,0024 -0,0034 -0,1887 0,1237 0,1092 0,1063 0,0632

R(30; (25, 30)) 0.4497 -0,0039 -0,0064 -0,0042 -0,1357 0,0120 0,0095 0,0017 -0,0215

R(40; (25, 30)) 0.3220 -0,0037 -0,0081 -0,0039 -0,0950 -0,0710 -0,0638 -0,0730 -0,0810

R(50; (25, 30)) 0.2278 -0,0019 -0,0070 -0,0018 -0,0640 -0,0991 -0,0893 -0,0977 -0,0982

RMSE(θ) - 0,5714 0,5754 0,5785 1,1034 1,7675 1,5892 1,6629 1,5933

Table 4.3.2: Gamma distribution at multiple stress levels: Bias of the estimates of reliabilities for pure

and contaminated data in the case of moderate reliability.

Moderate reliability Pure data Contaminated data

True value β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0 β = 0.2 β = 0.4 β = 0.6

k=50

R(40; (25, 30)) 0.5406 -0,0322 -0,0331 -0,0345 -0,0356 -0,0965 -0,0859 -0,0764 -0,0716

R(50; (25, 30)) 0.4449 -0,0317 -0,0318 -0,0335 -0,0342 -0,1242 -0,1108 -0,0989 -0,0917

R(60; (25, 30)) 0.3638 -0,0255 -0,0248 -0,0266 -0,0269 -0,1282 -0,1145 -0,1024 -0,0942

R(70; (25, 30)) 0.2960 -0,0165 -0,0151 -0,0169 -0,0169 -0,1195 -0,1067 -0,0955 -0,0872

R(80; (25, 30)) 0.2399 -0,0066 -0,0048 -0,0064 -0,0063 -0,1053 -0,0936 -0,0837 -0,0758

RMSE(θ) - 1,1827 1,1857 1,2093 1,2265 1,7034 1,5738 1,4878 1,4367

k=100

R(40; (25, 30)) 0.5406 -0,0169 -0,0177 -0,0174 -0,0184 -0,0774 -0,0666 -0,0552 -0,0512

R(50; (25, 30)) 0.4449 -0,0189 -0,0193 -0,0191 -0,0208 -0,1177 -0,1028 -0,0875 -0,0811

R(60; (25, 30)) 0.3638 -0,0173 -0,0174 -0,0171 -0,0191 -0,1330 -0,1175 -0,1016 -0,0940

R(70; (25, 30)) 0.2960 -0,0132 -0,0130 -0,0127 -0,0147 -0,1319 -0,1177 -0,1028 -0,0951

R(80; (25, 30)) 0.2399 -0,0080 -0,0074 -0,0072 -0,0091 -0,1220 -0,1096 -0,0965 -0,0892

RMSE(θ) - 0,8056 0,8074 0,8144 0,8344 1,4918 1,3356 1,2141 1,1558

k=150

R(40; (25, 30)) 0.5406 -0,0128 -0,0128 -0,0131 -0,0132 -0,0713 -0,0592 -0,0483 -0,0432

R(50; (25, 30)) 0.4449 -0,0143 -0,0138 -0,0147 -0,0149 -0,1160 -0,0988 -0,0836 -0,0754

R(60; (25, 30)) 0.3638 -0,0133 -0,0124 -0,0138 -0,0139 -0,1356 -0,1175 -0,1012 -0,0917

R(70; (25, 30)) 0.2960 -0,0105 -0,0092 -0,0109 -0,0109 -0,1374 -0,1209 -0,1053 -0,0959

R(80; (25, 30)) 0.2399 -0,0067 -0,0052 -0,0069 -0,0068 -0,1289 -0,1148 -0,1010 -0,0922

RMSE(θ) - 0,6769 0,6788 0,6903 0,7028 1,4402 1,2655 1,1330 1,0542
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Table 4.3.3: Gamma distribution at multiple stress levels: Bias of the estimates of reliabilities for pure

and contaminated data in the case of high reliability.

High reliability Pure data Contaminated data

True value β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0 β = 0.2 β = 0.4 β = 0.6

k=50

R(70; (25, 30)) 0.5157 -0,0587 -0,0551 -0,0580 -0,0623 -0,1591 -0,1374 -0,1259 -0,1101

R(80; (25, 30)) 0.4581 -0,0493 -0,0458 -0,0496 -0,0554 -0,1530 -0,1326 -0,1214 -0,1067

R(90; (25, 30)) 0.4059 -0,0385 -0,0349 -0,0395 -0,0465 -0,1431 -0,1240 -0,1133 -0,1000

R(100; (25, 30)) 0.3590 -0,0270 -0,0233 -0,0284 -0,0364 -0,1311 -0,1131 -0,1030 -0,0912

R(110; (25, 30)) 0.3169 -0,0154 -0,0116 -0,0170 -0,0258 -0,1181 -0,1012 -0,0915 -0,0811

RMSE(θ) - 1,7033 1,7030 1,7033 1,6846 1,8756 1,7491 1,7106 1,5983

k=100

R(70; (25, 30)) 0.5157 -0,0451 -0,0463 -0,0492 -0,0535 -0,1652 -0,1405 -0,1243 -0,1107

R(80; (25, 30)) 0.4581 -0,0421 -0,0441 -0,0475 -0,0525 -0,1677 -0,1438 -0,1278 -0,1157

R(90; (25, 30)) 0.4059 -0,0369 -0,0396 -0,0433 -0,0489 -0,1643 -0,1416 -0,1263 -0,1158

R(100; (25, 30)) 0.3590 -0,0304 -0,0335 -0,0374 -0,0434 -0,1569 -0,1356 -0,1213 -0,1123

R(110; (25, 30)) 0.3169 -0,0231 -0,0265 -0,0305 -0,0367 -0,1471 -0,1273 -0,1141 -0,1063

RMSE(θ) - 1,1432 1,1406 1,1653 1,1651 1,5383 1,3921 1,3102 1,2219

k=150

R(70; (25, 30)) 0.5157 -0,0376 -0,0393 -0,0419 -0,0485 -0,1639 -0,1379 -0,1194 -0,1080

R(80; (25, 30)) 0.4581 -0,0369 -0,0391 -0,0420 -0,0497 -0,1705 -0,1458 -0,1273 -0,1164

R(90; (25, 30)) 0.4059 -0,0341 -0,0367 -0,0398 -0,0483 -0,1702 -0,1474 -0,1295 -0,1195

R(100; (25, 30)) 0.3590 -0,0298 -0,0326 -0,0359 -0,0448 -0,1651 -0,1444 -0,1275 -0,1184

R(110; (25, 30)) 0.3169 -0,0246 -0,0275 -0,0307 -0,0400 -0,1569 -0,1382 -0,1225 -0,1144

RMSE(θ) - 0,9471 0,9525 0,9749 0,9772 1,4014 1,2390 1,1308 1,0681

4.3.2 Wald-type tests

Let us now empirically evaluate the robustness of the Wald-type tests developed. The simulation

is performed under the low-reliability model described before.

We first study the observed level (measured as the proportion of test statistics exceeding the

corresponding chi-square critical value) of the test under the true null hypothesis H0 : a1 = −0.06

against the alternative H1 : a1 6= −0.06. In the top of Figure 4.3.1, these levels are plotted for

different values of the samples sizes, pure data (left) and contaminated data (ã1 = −0.035, right).

Notice that in the case of pure data considered, all the observed levels are close to the nominal

level of 0.05. In the case of contaminated data, the level of the classical Wald test (at β = 0)

displays a lack of robustness, while the weighted minimum DPD estimators based Wald-type tests

for moderate and large positive β possess levels closer to the nominal level.

To investigate the power of these tests (obtained in a similar manner), we change the true data

generating parameters value to θ = (6.5,−0.06,−0.035,−0.36, 0.04,−0.01), and ã1 = −0.45 in a

contaminated scenario, nearer to the null hypothesis. The resulting empirical powers are plotted

in the bottom of Figure 4.3.1. When there are no outliers in the data, the classical Wald test

(at β = 0) is quite similar, not even the most powerful, to other tests. On the other hand, when

there are outliers in the data, the Wald-type tests with larger β > 0 provides a significantly better

power.

4.4 Real data example: application to a tumor toxicological

data

Survival analysis usually faces problems associated with interval censoring. One extreme situation

is the one in which the only available information on a survival variable is whether or not it exceeds

a monitoring time. This form of censoring, known as current status data, can be seen as one-shot
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Figure 4.3.1: Gamma distribution at multiple stress levels: Levels and powers for pure (left) and con-

taminated data (right).

device testing data, and so we can apply the methods developed in the preceding sections to a real

current status data from a tumor toxicological experiment.

The data considered, taken from the National Center for Toxicological Research, was originally

reported by Kodell and Nelson [1980] and recently analyzed by Balakrishnan and Ling [2013,

2014a] using MLE under a one-shot device model. In Chapter 3, these data were analyzed using

weighted minimum DPD estimators, but under the assumption of exponential lifetimes. However,

the gamma distribution is a better lifetime model for these data (Balakrishnan and Ling [2014a]).

These data consisted of 1816 mice, of which 553 had tumors, involving the strain of offspring (F1

or F2), gender (females or males), and concentration of benzidine dihydrochloride (60 ppm, 120

ppm, 200 ppm or 400 ppm) as the stress factors. For each testing condition, the numbers of mice

tested and the numbers of mice having tumors were all recorded.

Let a1, a2 and a3 denote the parameters corresponding to the covariates of strain of off-

spring, gender and square root of concentration of the chemical of benzidine dihydrochloride

in the shape parameter of the gamma distribution, while b1, b2 and b3 denote similarly for

the scale parameter, respectively. The weighted minimum DPD estimators of model parame-

ters as well as of the mean time to occurrence of tumors for each group, for different values of

β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, are computed and these are presented in Tables
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Table 4.4.1: Gamma distribution at multiple stress levels: weighted minimum DPD estimators of the

model parameters.

β a0 a1 a2 a3 b0 b1 b2 b3 MAB(p(θ̂)) RMSE(p(θ̂))

0 2.4066 -0.1875 -1.0099 0.0359 0.8730 0.2419 1.5545 -0.0901 0.2758 0.3950

0.1 2.8958 -0.1743 -1.2198 0.0136 0.3678 0.2196 1.7680 -0.0670 0.2701 0.3931

0.2 2.8644 -0.1477 -1.3185 0.0219 0.4050 0.1885 1.8742 -0.0758 0.2667 0.3926

0.3 2.7834 -0.1375 -1.3920 0.0332 0.4935 0.1756 1.9535 -0.0877 0.2638 0.3922

0.4 2.6980 -0.1275 -1.4569 0.0443 0.5847 0.1635 2.0217 -0.0994 0.2616 0.3919

0.5 2.6343 -0.1205 -1.5071 0.0529 0.6517 0.1549 2.0732 -0.1082 0.2601 0.3917

0.6 2.5965 -0.1189 -1.5404 0.0585 0.6912 0.1525 2.1067 -0.1139 0.2593 0.3917

0.7 2.5758 -0.1219 -1.5603 0.0619 0.7126 0.1551 2.1263 -0.1173 0.2590 0.3918

0.8 2.5636 -0.1267 -1.5716 0.0640 0.7253 0.1598 2.1370 -0.1194 0.2588 0.3919

0.9 2.5597 -0.1328 -1.5771 0.0651 0.7293 0.1659 2.1420 -0.1205 0.2588 0.3920

1 2.5570 -0.1384 -1.5787 0.0658 0.7321 0.1716 2.1431 -0.1212 0.2588 0.3921

Table 4.4.2: Gamma distribution at multiple stress levels: weighted minimum DPD estimators of the

mean time to the occurrence of tumors (in months), Ê[T ].

Ê[T ]

strain gender conc β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1

0 0 60 17.461 17.316 17.395 17.433 17.449 17.455

0 1 60 30.103 30.188 30.598 30.712 30.713 30.694

1 0 60 18.438 18.039 18.031 18.029 18.036 18.044

1 1 60 31.787 31.447 31.719 31.762 31.747 31.728

0 0 120 14.676 14.565 14.577 14.594 14.605 14.610

0 1 120 25.301 25.392 25.643 25.710 25.707 25.691

1 0 120 15.496 15.173 15.111 15.092 15.096 15.103

1 1 120 26.715 26.451 26.582 26.588 26.572 26.557

0 0 200 12.348 12.265 12.231 12.231 12.238 12.243

0 1 200 21.288 21.381 21.514 21.547 21.541 21.529

1 0 200 13.039 12.776 12.678 12.649 12.650 12.656

1 1 200 22.478 22.273 22.302 22.283 22.266 22.254

0 0 400 8.991 8.942 8.858 8.840 8.843 8.848

0 1 400 15.500 15.589 15.583 15.574 15.566 15.558

1 0 400 9.493 9.315 9.183 9.142 9.141 9.146

1 1 400 16.366 16.240 16.153 16.106 16.090 16.082

4.4.1 and 4.4.2, respectively, where strain= 0 for F1 strain of offspring, and gender= 0 for females.

There is a significant difference between genders, with males having a higher expected lifetime.

Also, tumors are induced by an increase in the dosage of benzidine dihydrochloride. Empirical

mean absolute error (MAB) and RMSE, measured by comparing predicted probabilities to the

observed ones, are also presented in Table 4.4.1. In both cases, MLE presents the maximum error.
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Chapter 5

Robust inference for one-shot device testing

under Weibull distribution

5.1 Introduction

Let us consider again the one-shot device testing problem with multiple stress factors, schematized

in Table 3.1.1. So far, we have considered that the lifetimes can follow an exponential distribution

(Chapter 3) or gamma distribution (Chapter 4). However, in practice, the Weibull distribution is

widely used as a lifetime model in engineering and physical sciences. In fact, the Weibull model is

also used extensively in biomedical studies as a proportional hazards model for evaluating the effects

of covariates on lifetimes, meaning that the hazard rates of any two products stay in constant ratio

over time. See Meeter and Meeker [1994], Meeker et al. [1998], and references therein. However, in

some situations, the assumption of constant shape parameters may not be valid; see, for example,

Kodell and Nelson [1980], Nogueira et al. [2009] and Vázquez et al. [2010]. In such situations,

Balakrishnan and Ling [2013] suggested using a log-link of the stress levels to model the unequal

shape parameters. Based on this idea, we develop, in this chapter, robust inference for one-shot

device testing under the Weibull distribution with scale and shape parameters varying over stress.

The chapter is organized as follows: in Section 5.1.1, the Weibull distribution is presented.

Inference based on minimum DPD estimators under the Weibull assumption is developed in Section

5.2. A complete simulation study and three numerical examples are presented in Section 5.3 and

Section 5.4, respectively.

The results of this Chapter have been published in the form of a paper (Balakrishnan et al.

[2020b]).

5.1.1 The Weibull distribution

Let us denote by θ = (a0, . . . , aJ , b0, . . . , bJ)T the model parameter vector. We shall then assume

that the lifetimes of the units, under the testing condition i, follow Weibull distribution with

corresponding probability density function and cumulative distribution function as

fT (t;xi,θ) =
ηit

ηi−1

αηii
e
−
(
t
αi

)ηi
, t > 0,

and

FT (t;xi,θ) = 1− e−
(
t
αi

)ηi
, t > 0,

where αi > 0 and ηi > 0 are, respectively, the scale and shape parameters at condition i, which

we assume are related to the stress factors in log–linear forms as

αi = exp

{
J∑
j=0

ajxij

}
and ηi = exp

{
J∑
j=0

bjxij

}
,
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with xi0 = 1 for all i. Let us denote by RT (t;xi,θ) = 1 − F (t;xi,θ) the reliability function, the

probability that the unit lasts lifetime t. The hazard function, given by the ratio of the density

function and the reliability function, is

hT (t;xi,θ) =
ηit

ηi−1

αηii
, t > 0.

When ηi = 1, the hazard rate is constant and the Weibull distribution in this case is simply

exponential distribution. When ηi > 1, the unit suffers an increasing rate of failure as it ages,

while the opposite is the case when ηi < 1. This last case is less common in practice, unless we

only consider the early part of lifetimes of devices. Weibull density function, reliability and hazard

functions, for different values of shape and scale parameters, are shown in Figure 5.1.1.
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Figure 5.1.1: Weibull distributions for different values of shape and scale parameters.

Notice that, as suggested in the literature (see, for example, Meeter and Meeker [1994] and Ng

et al. [2002]), it is often more convenient to work with the extreme value distribution for the log-

lifetimes, as it belongs to the location-scale family rather than the Weibull distribution belonging

to the scale-shape family. For this same reason, we will also consider here the extreme value

distribution with the corresponding probability density, distribution and reliability functions as

fW (ω;xi,θ) =
1

σi
e
ω−µi
σi e−e

ω−µi
σi =

1

σi
ξie
−ξi , −∞ < ω <∞, (5.1)

FW (ω;xi,θ) = 1− e−e
ω−µi
σi = 1− e−ξi , −∞ < ω <∞, (5.2)

RW (ω;xi,θ) = 1− FW (ω;xi,θ) = e−e
ω−µi
σi = e−ξi , −∞ < ω <∞, (5.3)

where ω = log(t), ξi = e
ω−µi
σi , the location parameter µi = log(αi) =

J∑
j=0

ajxij , and the scale

parameter σi = η−1
i = exp{−

J∑
j=0

bjxij}.
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5.2 Inference under the Weibull distribution

Let us consider the weighted minimum DPD estimator for θ, θ̂β , given in Definition 3.1, where

πi1(θ) and πi2(θ) are given in (5.2) and (5.3), respectively.

Let us first develop the estimating equations of the minimum DPD estimators under the Weibull

distribution, as well as its asymptotic distribution.

Theorem 5.1 For β ≥ 0, the estimating equations are given by

I∑
i=1

li (KiFW (lITi;xi,θ)− ni)
(
F β−1
W (lITi;xi,θ) +Rβ−1

W (lITi;xi,θ)
)
xi = 0J+1,

I∑
i=1

si (KiFW (lITi;xi,θ)− ni)
(
F β−1
W (lITi;xi,θ) +Rβ−1

W (lITi;xi,θ)
)
xi = 0J+1,

where FW (lITi;Si,θ), FW (lITi;xi,θ) and RW (lITi;xi,θ) are as given in (5.1), (5.2) and (5.3),

respectively, and

li = −{ξie−ξi}/σi, si = ξie
−ξi log(ξi), i = 1, . . . , I.

Proof. The proof is straightforward following (4.4) and taking into account

∂

∂a
πi1(θ) = li = −{ξie−ξi}/σi, (5.4)

∂

∂b
πi1(θ) = si = ξie

−ξi log(ξi). (5.5)

Theorem 5.2 Let θ0 be the true value of the parameter. The asymptotic distribution of the

minimum DPD estimator, θ̂β, is given by

√
K(θ̂β − θ0)

L−→
K→∞

N
(
02(J+1),J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)
,

where Jβ(θ) and Kβ(θ) are given by

Jβ(θ) =

I∑
i=1

Ki

K
Ψi

(
F β−1
W (lITi;xi,θ) +Rβ−1

W (lITi;xi,θ)
)
, (5.6)

Kβ(θ) =

I∑
i=1

Ki

K
ΨiFW (lITi;xi,θ)RW (lITi;SI ,θ)

(
F β−1
W (lITi;xi,θ) +Rβ−1

W (lITi;xi,θ)
)2
, (5.7)

with

Ψi =

(
l2ixix

T
i lisixix

T
i

lisixix
T
i s2

ixix
T
i

)
.

Proof. Straightforward following proof of Theorem 4.2 and equations (5.4) and (5.5).

Now, we present the IF of the proposed estimators:

Theorem 5.3 Let us consider the one-shot device testing under the Weibull distribution with

multiple stress factors. The IF with respect to the k−th observation of the i0−th group is given by

IF (ti0,k,Uβ , Fθ0) =J−1
β (θ0)(li0xi0 , si0xi0)T (5.8)

×
(
F β−1(ITi0 ;xi0 ,θ

0) +Rβ−1(ITi0 ;xi0 ,θ
0)
) (
F (ITi0 ;xi0 ,θ

0)−∆
(1)
ti0

)
,

where ∆
(1)
ti0 ,k

is the degenerating function at point (ti0 , k).
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Proof. Straightforward following results in Section 2.5.

Theorem 5.4 Let us consider the one-shot device testing under the Weibull distribution with

multiple stress factors. The IF with respect to all the observations is given by

IF (t,Uβ , Fθ0) =J−1
β (θ0)

I∑
i=1

Ki

K
(lixi, sixi)

T (5.9)

×
(
F β−1(ITi;xi,θ

0) +Rβ−1(ITi;xi,θ
0)
) (
F (ITi;xi,θ

0)−∆
(1)
ti

)
,

where ∆
(1)
ti =

∑Ki
k=1 ∆

(1)
ti,k

.

Proof. Straightforward following results in Section 2.5.

5.2.1 Wald-type tests

From Theorem 5.2, and following the idea on previous chapters, we can develop Wald-type tests

for testing composite null hypotheses.

Let us consider the function m : R2(J+1) −→ Rr, where r ≤ 2(J + 1). Then, m (θ) = 0r
represents a composite null hypothesis. We assume that the 2 (J + 1)× r matrix

M (θ) =
∂mT (θ)

∂θ

exists and is continuous in θ and with rank M (θ) = r. For testing

H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0, (5.10)

where Θ0 =
{
θ ∈ R2(J+1) : m (θ) = 0r

}
, we can consider the following Wald-type test statistics

WK(θ̂β) = KmT (θ̂β)
(
MT (θ̂β)Σ(θ̂β)M(θ̂β)

)−1

m(θ̂β), (5.11)

where Σβ(θ̂β) = J−1
β (θ̂β)Kβ(θ̂β)J−1

β (θ̂β) and J−1
β (θ) and Kβ(θ) are as in (5.6) and (5.7), re-

spectively.

In the following theorem, we present the asymptotic distribution of WK(θ̂β).

Theorem 5.5 The asymptotic null distribution of the proposed Wald-type test statistics, given in

Equation (5.11), is a chi-squared (χ2) distribution with r degrees of freedom. This is,

WK(θ̂β)
L−→

K→∞
χ2
r.

Proof. Let θ0 ∈ Θ0 be the true value of parameter θ.
√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
02(J+1),Σβ(θ̂β)

)
.

Therefore, under H0, we have

√
Km(θ̂β)

L−→
K→∞

N
(
0r,M

T (θ0)Σβ(θ0)M(θ0)
)

and taking into account that rank(M
(
θ0
)
) = r, we obtain

KmT (θ̂β)
(
MT (θ0)Σβ(θ0)M(θ0)

)−1

m(θ̂β)
L−→

K→∞
χ2
r.

But,
(
MT (θ̂β)Σβ(θ̂β)M(θ̂β)

)−1

is a consistent estimator of
(
MT (θ0)Σβ(θ0)M(θ0)

)−1

and,

therefore, WK(θ̂β)
L−→

K→∞
χ2
r.

Based on Theorem 5.5, we will reject the null hypothesis in (5.10) if WK(θ̂β) > χ2
r,α, where

χ2
r,α is the upper percentage point of order α of χ2

r distribution.

Results concerning the power function of the proposed Wald-type tests could be obtained in a

similar manner to previous chapters.
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5.3 Simulation Study

In this section, a Monte Carlo simulation study that examines the accuracy of the proposed min-

imum weighted DPD estimators and Wald-type tests is presented. Section 5.3.1 focuses on the

efficiency, measured in terms of MSE and mean absolute error (MAE), of the estimators of model

parameters and reliabilities, while Section 5.3.2 examines the behavior of the Wald-type tests de-

veloped in preceding sections. Every condition of simulation were tested until R = 2, 500 regular

observations were obtained.

5.3.1 Weighted minimum DPD estimators

The lifetimes of devices are simulated from the Weibull distribution, for different levels of reliability

and different sample sizes, under 3 different stress conditions with 1 stress factor at 3 levels, taken

to be {x1, x2, x3} = {30, 40, 50}. Then, all devices under each stress condition are tested at 3

different inspection times IT = {IT1, IT2, IT3}, depending on the level of reliability. Our data will

then be collected under 9 testing conditions S1 = {x1, IT1}, . . . , S9 = {x3, IT3}.

A. Balanced data

Firstly, a balanced data with equal sample size for each group was considered. Ki was taken to

range from small to large sample sizes, and the model parameters were set to θT = (a0, a1, b0, b1)

= (a0,−0.05,−0.6, 0.03), while a0 was chosen to be 4.9, 5.3, and 5.7 corresponding to devices with

low, moderate, and high reliability, respectively. To prevent many zero-observations in test groups,

the inspection times were set as IT = {5, 10, 15} for the case of low reliability, IT = {8, 16, 24} for

the case of moderate reliability, and IT = {12, 24, 36} for the case of high reliability. To evaluate

the robustness of the weighted minimum DPD estimators, we examine the behavior of this model

in the presence of an outlying cell for the first testing condition S1 = {x1, IT1} in our table. This

cell is generated under the parameters θ̃
T

= (a0, ã1, b0, b1) = (4.9,−0.025,−0.6, 0.03). The setting

used is now summarized in Table 5.3.1. While ALT data are based on extreme observations of

the stress factor, and therefore on low values of the inspection times, we are interested in testing

the accuracy of our estimators under normal conditions. MSEs of estimated reliabilities under the

pure and the contaminated settings are computed and are presented in Table 5.3.3, for different

values of the sample size Ki ∈ {50, 100}. As expected, MLE presents the best behavior in the

case of pure data, while a gradual decrease in efficiency occurs with greater values of β. It is

almost the opposite in the case of the contaminated scheme. This behaviour is corroborated when

computing the MAEs and MSEs of the model parameter vector θ, as can be seen in Figures 5.3.1

and 5.3.2, respectively. Here, just the weighted minimum DPD estimators with tuning parameters

β ∈ {0, 0.4, 0.8} are represented in order to demonstrate the general robustness feature of the

proposed estimators.

B. Unbalanced data

Now we consider an unbalanced data, which does not have equal sample size for all the groups.

This data consists of a total of K = 300 observations, and is presented in Table 5.3.2. Here the

vector of true parameters is θT = (5.3,−0.025,−0.6, 0.03) (moderate reliability). To examine the

robustness in this ALT plan, we increase each one of the parameters of the outlying first cell,

denoted by ã0, ã1, b̃0 and b̃1. MSEs of the vector of parameters are plotted in Figure 5.3.3. In all

the cases, we can see how the MLEs and the weighted minimum DPD estimators with small values

of tuning parameter β present the smallest MSEs for weak outliers, i.e., when ã0 is near a0 (and

respectively with the other parameters). On the other hand, large values of tuning parameter β

make the weighted minimum DPD estimators to yield the smallest MSEs, for medium and strong

outliers.

71



Table 5.3.1: Weibull distribution at multiple stress levels: parameter values used in the simulation study.

Parameters Symbols Values

Low reliability

Inspection times IT = {IT1, IT2, IT3} {5, 10, 15}
Model Par. θT=(a0,a1,b0,b1) (4.9,−0.05,−0.6, 0.03)

Outlying Par. θ̃
T

=(a0,ã1,b0,b1) (4.9,−0.025,−0.6, 0.03)

Moderate reliability

Inspection times IT = {IT1, IT2, IT3} {8, 16, 24}
Model Par. θT=(a0,a1,b0,b1) (5.3,−0.05,−0.6, 0.03)

Outlying Par. θ̃
T

=(a0,ã1,b0,b1) (5.3,−0.025,−0.6, 0.03)

High reliability

Inspection times IT = {IT1, IT2, IT3} {12, 24, 36}
Model Par. θT=(a0,a1,b0,b1) (5.7,−0.05,−0.6, 0.03)

Outlying Par. θ̃
T

=(a0,ã1,b0,b1) (5.7,−0.025,−0.6, 0.03)

Table 5.3.2: Weibull distribution at multiple stress levels: ALT plan, unbalanced data.

i xi ITi Ki

1 30 8 60

2 40 8 40

3 50 8 20

4 30 16 60

5 40 16 20

6 50 16 20

7 30 24 40

8 40 24 20

9 50 24 20

It seems clear that the weighted minimum DPD estimators can be a robust alternative to MLE

in terms of efficiency, overall when working with potential outlying data. It is important now to

confirm this robustness when working with the Wald-type tests proposed in preceding sections.

5.3.2 Wald-type tests

To compute the accuracy in terms of contrast, we now consider the testing problem

H0 : a1 = −0.05 vs. H1 : a1 6= −0.05. (5.12)

The level of significance of a test is defined as the probability of rejecting the null hypothesis

by the test when it is really true, while the power of a test is the probability of rejecting the

null hypothesis when a specific hypothesis is true. For computing the empirical test level, we

measure the proportion of test statistics exceeding the corresponding chi-square critical value. For

a nominal size α = 0.05, with the model under the null hypothesis given in (5.12), the estimated

significance test levels for different Wald-type test statistics are given by

α̂
(β)
K = P̂ r(WK(θβ) > χ2

1,0.05|H0) =
1

R

R∑
i=1

I(WK,i(θ̂β) > χ2
1,0.05|H0),

with I(S) being the indicator function (with a value of one if S is true and zero otherwise). The

simulated test powers will be obtained under H1 in (5.12) in a similar way.
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Figure 5.3.1: Weibull distribution at multiple stress levels: MAE of the estimates of parameters for

different reliabilities under pure (top) and contaminated data (bottom)
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Figure 5.3.2: Weibull distribution at multiple stress levels: MSE of the estimates of parameters for

different reliabilities under pure (top) and contaminated data (bottom)
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Table 5.3.3: Weibull distribution at multiple stress levels: MSEs of estimates of reliabilities for different

sample sizes and low reliability

Pure data Contaminated data

K = 50 R(10, 25) R(20, 25) R(30, 25) R(10, 25) R(20, 25) R(30, 25)

β = 0 0.0223 0.0264 0.0458 0.0290 0.0314 0.0670

0.1 0.0222 0.0264 0.0457 0.0281 0.0310 0.0647

0.2 0.0223 0.0264 0.0458 0.0272 0.0307 0.0629

0.3 0.0224 0.0264 0.0460 0.0266 0.0304 0.0615

0.4 0.0226 0.0265 0.0465 0.0261 0.0302 0.0605

0.5 0.0229 0.0266 0.0470 0.0257 0.0301 0.0599

0.6 0.0232 0.0268 0.0476 0.0255 0.0300 0.0594

0.7 0.0236 0.0270 0.0482 0.0253 0.0299 0.0591

0.8 0.0239 0.0272 0.0488 0.0253 0.0299 0.0589

0.9 0.0243 0.0273 0.0494 0.0252 0.0299 0.0588

1 0.0245 0.0275 0.0499 0.0253 0.0299 0.0588

K = 100

β = 0 0.0155 0.0185 0.0314 0.0198 0.1064 0.1490

0.1 0.0155 0.0185 0.0313 0.0201 0.1057 0.1479

0.2 0.0156 0.0185 0.0314 0.0205 0.1048 0.1466

0.3 0.0157 0.0185 0.0315 0.0208 0.1039 0.1450

0.4 0.0158 0.0186 0.0317 0.0212 0.1030 0.1436

0.5 0.0159 0.0186 0.0319 0.0215 0.1020 0.1419

0.6 0.0161 0.0187 0.0321 0.0219 0.1011 0.1404

0.7 0.0163 0.0187 0.0324 0.0222 0.1002 0.1389

0.8 0.0165 0.0188 0.0327 0.0226 0.0994 0.1375

0.9 0.0167 0.0188 0.0329 0.0229 0.0986 0.1363

1 0.0169 0.0189 0.0331 0.0231 0.0980 0.1352

A. Balanced data

We compute empirical Wald-type test levels under the same parameters of low reliability model

in the previous section for testing (5.12). Test powers are computed under the true parameter

vector θT = (4.9,−0.039,−0.6, 0.03) . In the contaminated scheme, first cell will be generated

from θ̃
T

= (4.9,−0.048,−0.6, 0.03), with the contrasted term nearer to the null hypothesis. This

setting is summarized in Table 5.3.4. Considering samples sizes ranging from Ki = 30 to Ki = 150,

results are shown in Figure 5.3.4.

For the pure setting, levels of the corresponding Wald-type tests based on different values of

β seem to have the same behaviour. As the sample size increases, test levels get closer (with

some exception, probably associated to empirical statistical error) to nominal level. In the case of

contaminated data, the estimated test level, of classical Wald test (β = 0) is far away from the

nominal level, while medium-high values of β have much more stable robustness properties. With

respect to the power, and focusing on the Wald-type test based on β = 0.8, the same behaviour

is observed, with an optimum classical Wald test for pure data, albeit its lack of robustness when

contamination is present. Meanwhile, Wald-type test based on weighted minimum DPD estimator

with β = 0.8 is seen to perform the best both in the pure and the contaminated sample cases.

B. Unbalanced data

For the unbalanced ALT plan presented in previous subsection, we compute empirical Wald-type

test levels for the testing problem in (5.12). For illustrating robustness, we consider again an
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Table 5.3.4: Weibull distribution at multiple stress levels: parameter values used in the simulation study

Parameters Symbols Values

Levels

Model True Parameters θT=(a0,a1,b0,b1) (4.9,−0.05,−0.6, 0.03)

Outlying Parameters θ̃
T

=(a0,ã1,b0,b1) (4.9,−0.025,−0.6, 0.03)

Powers

Model True Parameters θT=(a0,a1,b0,b1) (4.9,−0.039,−0.6, 0.03)

Outlying Parameters θ̃
T

=(a0,ã1,b0,b1) (4.9,−0.048,−0.6, 0.03)

increment of each one of the parameters of the outlying cell. Results, presented in Figure 5.3.5,

illustrate again the lack of robustness of MLE for medium and strong outliers.

5.4 Real Data Examples

5.4.1 Glass Capacitors

Zelen [1959] presented data from a life test of glass capacitors at higher than usual levels of

temperature (in ◦C), T = {170, 180}, and voltage V = {350, 300, 250, 200}. At each of the eight

combinations of temperature and voltage, eight items were tested. We adapt these data to the

one-shot device model taking the inspection times to be IT = {258, 315, 455, 1065}, respectively.

Logically, higher inspection times are needed when applying less extreme voltages. These data

and its relation with the Weibull distribution has been widely studied in the literature; see, for

example, Meeker et al. [1998] and Rigdon et al. [2012]. As suggested in these papers, we have used

the predictors as log(V ) and 1/TK , where TK is the temperature in degrees Kelvin.

Weighted minimum DPD estimators are computed for different values of the tuning parameter,

β, and predicted probabilities are compared to the observed ones (top of Figure 5.4.3). The MAEs

and RMSEs are presented in this figure as well. It is easily seen that the MLE seems to be either

the worst, or one of the worst estimators in this case.

5.4.2 Solder Joints

Lau et al. [1988] described an experiment in which the reliability of 90 solder joints was studied

under the effect of three types of printed circuit boards (PCBs) at three different temperatures.

The lifetime was measured as the number of cycles until the solder joint failed, while the failure of

a solder joint is defined as a 10% increase in measured resistance.

A simplified data set is derived from the original one and presented in Table 5.4.1. In it, the two

stress factors considered are the temperature, Temp, and a dichotomous variable, PCB, indicating

if the PCB type is “Copper-nickel-tin” (PCB = 1) or not.

Table 5.4.1: Solder Joints example

i PCBi Tempi ITi ni Ki

1 1 20 300 4 10

2 1 60 300 4 10

3 1 100 100 6 10

4 0 20 1300 10 20

5 0 60 800 3 20

6 0 100 200 4 20
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Figure 5.3.3: Weibull distribution at multiple stress levels: MSEs of the estimates of parameters. Un-

balanced data
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Figure 5.3.4: Weibull distribution at multiple stress levels: empirical levels and powers of pure (top) and

contaminated data (bottom)
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Figure 5.3.5: Weibull distribution at multiple stress levels: empirical levels for unbalanced data
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Once again, predicted probabilities are compared to the observed ones for different values of

the tuning parameter, β, (bottom of Figure 5.4.3). Both probability vectors are quite close and

also that there is not much difference in the estimates between different choices of β, although it

is seen that MLE is probably the worst estimator in this case.

5.4.3 Mice Tumor Toxicological data

Let us consider again the Mice Tumor Toxicological data (Kodell and Nelson [1980]). These data,

studied for the exponential model in Section 3.5.1, consisted of 1816 mice, of which 553 had

tumors, involving the strain of offspring (F1 or F2), gender (females or males), and concentration

of benzidine dihydrochloridem (60 ppm, 120 ppm, 200 ppm or 400 ppm) as the stress factors. For

each testing condition, the numbers of mice tested and the numbers of mice having tumors were

all recorded.

Weighted minimum DPD estimators are obtained for different values of the tuning parameter,

and expected lifetimes are computed for different values of concentration, gender and strain. As

seen in Figure 5.4.2, there is a significant difference between genders, with males having a higher

expected lifetime. This difference is even more remarkable for β = 0.8. The effect of Strain is not

so clear, with slightly better results for mice from F2 group.

5.4.4 Choice of tuning parameter

Let us think now about the problem of the choice of the optimal tuning parameter, given any

data set. We could apply the Algorithm 1 (Section 2.6.3) with Jβ(θβ) and Kβ(θβ) as given in

equations (5.6) and (5.7), respectively, in order to avoid complex computations.

We consider the unbalanced data studied in the Simulation Study and we apply this approach

for the contamination in the first component with different choices of the pilot estimator. Results

are shown in Figure 5.4.1. As contamination increases, the chosen tuning parameter tends to be

larger. It seems that a moderate low value of the pilot estimator offers the best trade-off between

pure and contaminated data. Although not presented here, similar conclusions were obtained

under the other contamination schemes. So, we suggest to use the pilot choice θP = θ̂0.4.
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Figure 5.4.1: Weibull distribution at multiple stress levels: simulated MSEs of the weighted minimum

DPD estimators at the optimally chosen β, starting from different pilot estimators
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Let us apply this procedure to the previous data sets. The corresponding results are shown in

Table 5.4.2. As can be seen, MLE is not the best choice in any case, which clearly demonstrates

the need for the proposed weighted minimum DPD estimators.

Table 5.4.2: Weibull distribution at multiple stress levels: Optimal β for different data sets

Data Glass Capacitors Solder joints Mice Tumors

βopt 0.94 0.37 0.41

β = 0 β = 0.8

Strain F1 Strain F2 Strain F1 Strain F2

Figure 5.4.2: Estimated lifetimes in Tumor Toxicological Experiment.
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Chapter 6

Robust inference for one-shot device testing

under other distributions: Lindley and lognormal

distributions

6.1 Introduction

We have studied the problem on one-shot device testing under the assumption of exponential,

gamma and Weibull distributions. However, other distributions may be considered for modeling

the lifetimes. In this chapter, we consider the Lindley and lognormal distributions.

The Lindley distribution, introduced by Lindley [1958], has shown to give better modeling

that the exponential distribution in some contexts (see Ghitany et al. [2008]). Gupta and Singh

[2013] studied the parametric estimation of Lindley distribution with hybrid censored data while

Mazucheli and Achcar [2011] applied this distribution to competing risks in lifetime data. On the

other hand, the lognormal distribution has been studied in different types of censored data. Meeker

[1984] compared accelerated life-test plans for Weibull and lognormal distributions under Type-I

censoring. Ng et al. [2002] developed EM algorithm for estimating the parameters of lognormal

distributions based on progressively censored data.

After introducing formally both distributions, the chapter is organized as follows: in Section

6.2, inference for one-shot devices under Lindley lifetimes is developed. Same is done under the

lognormal assumption in Section 6.3. Section 6.4 focuses on the development of Wald-type tests for

both cases. Extensive simulation studies are presented in Section 6.5 and Section 6.6, respectively.

Finally, some numerical examples are provided in Section 6.7.

6.1.1 The Lindley distribution

Let us suppose that the true lifetime follows a Lindley distribution with unknown failure rate λi(θ),

related to the stress factor xi in loglinear form as

λi = λi(θ) = exp(xTi θ), (6.1)

where xi = (xi0, xi1, . . . , xiJ)T , and θ = (θ0, θ1, . . . , θJ)T . Thus, here Θ = RJ+1. The correspond-

ing density function and distribution function are, respectively,

f(t;xi,θ) =
λ2
i

1 + λi
(1 + t) exp{−λit} (6.2)

and

F (t;xi,θ) = 1− 1 + λi + tλi
1 + λi

exp{−λit}. (6.3)
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On the other hand, the reliability at time t and the mean lifetime under normal operating conditions

xi are given by

R(t;xi,θ) = 1− F (t;xi,θ) =
1 + λi + tλi

1 + λi
exp{−λit} (6.4)

and

E[Ti] =
2 + λi

λi(1 + λi)
.

The hazard function, given by the ratio of the density function and the reliability function, is

h(t;xi,θ) =
λi

1 + λi + tλi
(1 + t).

Remark 6.1 The density probability function (6.2) can be expressed as

f(t;xi,θ) =
λi

1 + λi
f1(t;xi,θ) +

1

1 + λi
f2(t;xi,θ),

where

f1(t;xi,θ) = λi exp{−λit} and f2(t;xi,θ) = λ2
i t exp{−λit}.

Thus, Lindley distribution is a mixture of exponential and gamma distributions with mixing pro-

portions λi
1+λi

and 1
1+λi

, respectively.

While the gamma distribution generalizes the exponential one, it requires of numerical integra-

tion and will need of the estimation of 2(J + 1) parameters against the J + 1 parameters in the

exponential model (see Chapter 4). Lindley distribution has advantage over the exponential distri-

bution that the exponential distribution has constant hazard rate and mean residual life function

(see Figure 6.1.1) whereas the Lindley distribution has increasing hazard rate and decreasing mean

residual life function (see Shanker et al. [2015]).

6.1.2 The lognormal distribution

We can also assume that the lifetimes of the units, under the testing condition i, follow lognormal

distribution with corresponding probability density function and cumulative distribution function

f(t;xi,θ) =
1√

2πσit
exp

{
− log(λit)

2

2σ2
i

}
(6.5)

and

F (t;xi,θ) = Φ

(
log(λit)

σi

)
(6.6)

where Φ(·) is the cumulative distribution function of the standard normal distribution, and λi and

σi are, respectively, the scale and shape parameters, which we assume are related to the stress

factors in loglinear forms as

λi = exp


J∑
j=0

ajxij

 and σi = exp


J∑
j=0

bjxij

 , (6.7)

with xi0 = 1 for all i and θ = (a1, .., aJ , b1, .., bJ).
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Figure 6.1.1: Denisty, reliability and hazard functions of Lindely (top) and exponential (bottom) distri-

butions

6.2 Inference under the Lindley distribution

Theorem 6.2 Let us consider the model described in Table 3.1.1 under the Lindley distribution.

For β ≥ 0, the estimating equations are given by

I∑
i=1

Υi (KiF (ITi;xi,θ)− ni)
[
F β−1 (ITi;xi,θ) +Rβ−1 (ITi;xi,θ)

]
xi = 0J+1,

where

Υi =

(
λi

1 + λi

)2

ITi [(ITi + 1)λi + ITi + 2] exp{−λiITi}. (6.8)

Proof. Straightforward following proof of Theorem 3.2 and taking into account that

∂

∂θ
πi1(θ) =

(
λi

1 + λi

)2

ITi [(ITi + 1)λi + ITi + 2] exp{−λiITi}xi = Υixi.

In the following theorem, we establish the asymptotic distribution of the proposed weighted

minimum DPD estimators.

Theorem 6.3 Let θ0 be the true value of the parameter θ. The asymptotic distribution of the

weighted minimum DPD estimator θ̂β is given by

√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
0J+1,J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)
,

where
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Jβ(θ) =

I∑
i

Ki

K
Υ2
i

(
F β−1(ITi;xi,θ) +Rβ−1(ITi;xi,θ)

)
xix

T
i , (6.9)

Kβ(θ) =

I∑
i

Ki

K
Υ2
iF (ITi;xi,θ)R(ITi;xi,θ)

(
F β−1(ITi;xi,θ) +Rβ−1(ITi;xi,θ)

)2
xix

T
i . (6.10)

Proof. Straightforward following proof of Theorem 3.3.

6.3 Inference under the lognormal distribution

Theorem 6.4 Let us consider the model described in Table 3.1.1 under the lognormal distribution.

For β ≥ 0, the estimating system of equations is given by

I∑
i=1

∆i1 (KiF (ITi;xi,θ)− ni)
[
F β−1 (ITi;xi,θ) +Rβ−1 (ITi;xi,θ)

]
xi = 0(J+1)

I∑
i=1

∆i2 (KiF (ITi;xi,θ)− ni)
[
F β−1 (ITi;xi,θ) +Rβ−1 (ITi;xi,θ)

]
xi = 0(J+1),

with

∆i1 = φ

(
log(λiITi)

σi

)
∆i2 =

−log(λiITi)

σi
φ

(
log(λiITi)

σi

)
, (6.11)

where φ(·) is the density function of the standard normal distribution

Proof. The estimating equations are given by

I∑
i=1

Ki

K

∂

∂a
d∗β(p̂i,πi(θ)) = 0J+1,

I∑
i=1

Ki

K

∂

∂b
d∗β(p̂i,πi(θ)) = 0J+1,

with

∂

∂a
d∗β(p̂i,πi(θ)) =

(
∂

∂a
πβ+1
i1 (θ) +

∂

∂a
πβ+1
i2 (θ)

)
− β + 1

β

(
p̂i1

∂

∂a
πβi1(θ) + p̂i2

∂

∂a
πβi2(θ)

)
= (β + 1)

(
πβi1(θ)− πβi2(θ)− p̂i1πβ−1

i1 (θ) + p̂i2π
β−1
i2 (θ)

) ∂

∂a
πi1(θ)

= (β + 1)
(

(πi1(θ)− p̂i1)πβ−1
i1 (θ)− (πi2(θ)− p̂i2)πβ−1

i2 (θ)
) ∂

∂a
πi1(θ)

= (β + 1)
(

(πi1(θ)− p̂i1)πβ−1
i1 (θ) + (πi1(θ)− p̂i1)πβ−1

i2 (θ)
) ∂

∂a
πi1(θ)

= (β + 1) (πi1(θ)− p̂i1)
(
πβ−1
i1 (θ) + πβ−1

i2 (θ)
) ∂

∂a
πi1(θ),

∂

∂b
d∗β(p̂i,πi(θ)) = (β + 1) (πi1(θ)− p̂i1)

(
πβ−1
i1 (θ) + πβ−1

i2 (θ)
) ∂

∂b
πi1(θ).

Then, we have to compute ∂
∂aπi1(θ) and ∂

∂bπi1(θ). Following the chain rule

∂

∂a
πi1(θ) =

[
∂

∂a
λi

]
∂

∂λi
Φ

(
log(λiITi)

σi

)
=

[
∂

∂a
λi

] [
∂

∂log(λiITi)
Φ

(
log(λiITi)

σi

)]
∂

∂λi
log(λiITi)
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=

[
∂

∂a
λi

] [
∂

∂log(λiITi)
Φ

(
log(λiITi)

σi

)]
1

λi
=

[
∂

∂a
λi

]
φ

(
log(λiITi)

σi

)
1

λi

= φ

(
log(λiITi)

σi

)
xi = ∆i1xi (6.12)

∂

∂b
πi1(θ) =

[
∂

∂b
σi

]
∂

∂σi
Φ

(
log(λiITi)

σi

)
=

[
∂

∂b
σi

]
−log(λiITi)

σ2
i

φ

(
log(λiITi)

σi

)
=
−log(λiITi)

σi
φ

(
log(λiITi)

σi

)
xi = ∆i2xi. (6.13)

Then, the result follows.

Theorem 6.5 Let θ0 be the true value of the parameter θ. The asymptotic distribution of the

weighted minimum DPD estimator θ̂β is given by

√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
02(J+1),J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)
,

where

Jβ(θ) =

I∑
i

Ki

K
∆i

(
F β−1(ITi;xi,θ) +Rβ−1(ITi;xi,θ)

)
, (6.14)

Kβ(θ) =

I∑
i

Ki

K
∆iF (ITi;xi,θ)R(ITi;xi,θ)

(
F β−1(ITi;xi,θ) +Rβ−1(ITi;xi,θ)

)2
, (6.15)

where

∆i =

(
∆2
i1xix

T
i ∆i1∆i2xix

T
i

∆i1∆i2xix
T
i ∆2

i2xix
T
i

)
(6.16)

and ∆i1 and ∆i2 were given in (6.11).

Proof. Straightforward following proof of Theorem 4.2 and equations (6.12) and (6.13).

6.4 Wald-type tests

From Theorem 6.3 and Theorem 6.5, and following the idea on previous chapters, we can develop

Wald-type tests for testing composite null hypotheses.

Let us consider the function m : RS −→ Rr, where r ≤ S and S = J + 1 (Lindley distribution)

or S = 2(J+1) (lognormal distribution). Then, m (θ) = 0r represents a composite null hypothesis.

We assume that the S × r matrix

M (θ) =
∂mT (θ)

∂θ

exists and is continuous in θ and with rank M (θ) = r. For testing

H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0, (6.17)

where Θ0 =
{
θ ∈ RS : m (θ) = 0r

}
, we can consider the following Wald-type test statistics

WK(θ̂β) = KmT (θ̂β)
(
MT (θ̂β)Σ(θ̂β)M(θ̂β)

)−1

m(θ̂β), (6.18)

where Σβ(θ̂β) = J−1
β (θ̂β)Kβ(θ̂β)J−1

β (θ̂β) and J−1
β (θ) and Kβ(θ) are as in (6.9) and (6.10)

(Lindley distribution) or in equations (6.14) and (6.15) (lognormal distribution), respectively.
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Theorem 6.6 The asymptotic null distribution of the proposed Wald-type test statistics, given in

Equation (6.18), is a chi-squared (χ2) distribution with p degrees of freedom. This is,

WK(θ̂β)
L−→

K→∞
χ2
r.

Proof. Straightforward taking into account the asymptotic distribution of the proposed minimum

DPD estimators.

Based on Theorem 5.5, we will reject the null hypothesis in (5.10) if

WK(θ̂β) > χ2
r,α,

where χ2
r,α is the upper percentage point of order α of χ2

r distribution.

6.5 Simulation study under the Lindley distribution

In this section, we develop a simulation study in order to evaluate the performance of the proposed

weighted minimum DPD estimators and Wald-type tests under the assumption of Lindley lifetimes.

We consider different scenarios both for balanced and unbalanced data (equal or different sample

size Ki in each condition i, respectively). In the case of balanced data, different reliabilities and

sample sizes are taken for both pure and contaminated data, while in the case of unbalanced data,

the performance is evaluated under different degrees of contamination. The results are recorded

and averaged over 1000 simulation runs, in the R statistical software.

6.5.1 The weighted minimum DPD estimators

First of all, we evaluate the robustness of the estimators by means of the RMSE of the parameter

vector θ for different values of the tuning parameter β ∈ {0, 0.2, 0.4, 0.6}. The main purpose of

this study is to show how there are alternative estimators to the MLE (β = 0) that can offer a

better performance in terms of robustness.

A. Balanced data

The lifetimes of devices are simulated from the Lindley distribution, for different levels of reliability

and different samples sizes Ki ∈ (40, ..., 150), under I = 12 conditions with two stress factors at

two levels each one, tested at three different inspection times. The parameter values used in this

simulation are detailed in Table 6.5.1 and the results are shown in Figure 6.5.1.

With independence of the reliability considered, we observe how, when a pure scheme is eval-

uated, the MLE presents the highest efficiency, while in a contamination scheme, this estimator

becomes the worst, with the greatest error. Bias of estimates of reliabilities at normal conditions

and different times, as well as the RMSE of the parameter estimates, is computed with the con-

tamination of the last two cells θ̃1 = 0.026 and θ̃2 = 0.026, under medium reliability. Results are

presented in Table 6.5.2, with similar conclusions.

B. Unbalanced data

In this scheme, we consider an unbalanced data, in which each condition is evaluated under a differ-

ent sample size (Table 6.5.3). The data are generated under low reliability, with θ = (θ0, θ1, θ2)T =

(−5.5, 0.03, 0.03)T . To contaminate the data, the last cell is generated by θ̃ = (θ0, θ̃1, θ2)T or

θ̃ = (θ0, θ1, θ̃2)T , with the degree of contamination measured by 4(1 − θ̃1/θ1) ∈ (0, ..., 1) and

4(1 − θ̃2/θ2) ∈ (0, ..., 1). Results are shown in top of Figure 6.5.2. When a pure data scheme is

considered ((1− θ̃1/θ1) = 0 or (1− θ̃2/θ2) = 0), the MLE presents the lowest error. This changes

when increasing the dregree of contamination, with alternative estimators with β > 0 presenting

a much more robust behaviour. As expected, when increasing the contamination, the error also

increases, specially when β = 0.
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Table 6.5.1: Lindley distribution at multiple stress levels: parameter values used in the simulation.

Efficiency.

Reliability Parameters Symbols Values

High reliability Number of Conditions I 12

True parameters θ0, θ1, θ2 −6, 0.03, 0.03

Contamination θ̃2 0.025

First Stress factor xi1, i = 1, . . . , I {55, 85}
Second Stress factor xi2, i = 1, . . . , I {70, 100}
Inspection Time ITi, i = 1, . . . , I {2, 5, 8}

Moderate reliability Number of Conditions I 12

True parameters θ0, θ1, θ2 −5.5, 0.03, 0.03

Contamination θ̃2 0.024

First Stress factor xi1, i = 1, . . . , I {55, 85}
Second Stress factor xi2, i = 1, . . . , I {70, 100}
Inspection Time ITi, i = 1, . . . , I {1.5, 4.5, 7.5}

Low reliability Number of Conditions I 12

True parameters θ0, θ1, θ2 −5, 0.03, 0.03

Contamination θ̃2 0.023

First Stress factor xi1, i = 1, . . . , I {55, 85}
Second Stress factor xi2, i = 1, . . . , I {70, 100}
Inspection Time ITi, i = 1, . . . , I {1, 4, 7}

6.5.2 The Wald-type tests

To evaluate the performance of the proposed Wald-type tests, we consider the scenario of unbal-

anced data proposed in the previous section. We consider the testing problem

H0 : θ0 = −5.5 against H1 : θ0 6= −5.5. (6.19)

We first evaluate the empirical levels, measured as the proportion of test statistics exceeding

the corresponding chi-square critical value for a nominal size α = 0.05. The empirical powers are

computed in a similar way, with θ0
0 = −0.75. Results are shown in Figure 6.5.2.

6.6 Simulation study under the lognormal distribution

In this section, a simulation study evaluate the performance of the proposed weighted minimum

DPD estimators and Wald-type tests under the assumption of lognormal lifetimes. Once, again,

we consider different scenarios both for balanced and unbalanced data (equal or different sample

size Ki in each condition i, respectively). In the case of balanced data, different sample sizes are

taken for both pure and contaminated data, while in the case of unbalanced data, the performance

is evaluated under different degrees of contamination. The results are recorded and averaged over

1000 simulation runs, in the R statistical software.

6.6.1 The weighted minimum DPD estimators

Let us evaluate the robustness of the estimators by means of the RMSE of the parameter vector θ

for different values of the tuning parameter β ∈ {0, 0.2, 0.4, 0.6}.
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Table 6.5.2: Lindley distribution at multiple stress levels: bias of the estimates of reliabilities for pure

and contaminated data in the case of moderate reliability. Two-cells contamination

High reliability Pure data Contaminated data

True value β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0 β = 0.2 β = 0.4 β = 0.6

Ki = 50

R(10; (45, 60)) 0.7738 -0.0044 -0.0051 -0.0053 -0.0054 -0.4407 -0.4081 -0.3490 -0.1816

R(20; (45, 60)) 0.4874 -0.0023 -0.0032 -0.0035 -0.0034 -0.4188 -0.4027 -0.3675 -0.2156

R(30; (45, 60)) 0.2791 0.0024 0.0015 0.0014 0.0016 -0.2667 -0.2618 -0.2488 -0.1595

R(40; (45, 60)) 0.1512 0.0053 0.0047 0.0047 0.0050 -0.1491 -0.1479 -0.1438 -0.0982

R(45; (45, 60)) 0.1097 0.0059 0.0054 0.0055 0.0057 -0.1089 -0.1083 -0.1061 -0.0741

RMSE(θ) - 0.1329 0.1332 0.1358 0.1384 1.3142 1.2285 1.0720 0.6058

Ki = 100

R(10; (45, 60)) 0.7738 -0.0018 -0.0022 -0.0024 -0.0025 -0.4394 -0.4066 -0.3479 -0.1777

R(20; (45, 60)) 0.4874 -0.0005 -0.0010 -0.0013 -0.0012 -0.4194 -0.4033 -0.3691 -0.2196

R(30; (45, 60)) 0.2791 0.0019 0.0014 0.0013 0.0014 -0.2671 -0.2624 -0.2503 -0.1673

R(40; (45, 60)) 0.1512 0.0032 0.0029 0.0029 0.0031 -0.1493 -0.1481 -0.1446 -0.1053

R(45; (45, 60)) 0.1097 0.0034 0.0032 0.0032 0.0034 -0.1090 -0.1085 -0.1066 -0.0803

RMSE(θ) - 0.0938 0.0952 0.0981 0.1006 1.3102 1.2242 1.0696 0.5912

Ki = 150

R(10; (45, 60)) 0.7738 0.0002 0.0001 0.0000 0.0000 -0.4377 -0.4048 -0.3463 -0.1747

R(20; (45, 60)) 0.4874 0.0018 0.0016 0.0015 0.0016 -0.4191 -0.4030 -0.3690 -0.2202

R(30; (45, 60)) 0.2791 0.0031 0.0029 0.0029 0.0031 -0.2672 -0.2625 -0.2506 -0.1699

R(40; (45, 60)) 0.1512 0.0034 0.0033 0.0034 0.0036 -0.1493 -0.1482 -0.1448 -0.1079

R(45; (45, 60)) 0.1097 0.0033 0.0033 0.0033 0.0035 -0.1090 -0.1085 -0.1068 -0.0826

RMSE(θ) - 0.0720 0.0729 0.0749 0.0768 1.3079 1.2220 1.0683 0.5879

Table 6.5.3: Lindley distribution at multiple stress levels: ALT plan, unbalanced data.

i xi1 xi2 ITi Ki

1 55 70 1.5 90

2 55 100 1.5 90

3 85 70 1.5 75

4 85 100 1.5 75

5 55 70 4.5 75

6 55 100 4.5 75

7 85 70 4.5 75

8 85 100 4.5 75

9 55 70 7.5 75

10 55 100 7.5 60

11 85 70 7.5 60

12 85 100 7.5 30

A. Balanced data

The lifetimes of devices are simulated for different sample sizes, under 3 different stress conditions

with 1 stress factor at 3 levels, x ∈ {30, 40, 50}. Then, all devices under each stress condition are

inspected at 3 different inspection times, IT ∈ {12, 24, 36}. The corresponding data will then be

collected under I = 9 test conditions. A balanced data with equal sample size for each group was
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Figure 6.5.1: Lindley distribution at multiple stress levels: RMSEs of the vector of parameters for pure

(left) and contaminated (right) data at high (top), moderate (medium) and low (bottom) reliability
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Figure 6.5.2: Lindley distribution at multiple stress levels: RMSE of the vector of parameters (top)

empirical lavels (middle) and empirical powers (bottom) under different degreees of contamination
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considered. Ki was taken to range from small to large sample sizes, and the model parameters were

set to be θT = (−6, 0.03,−0.6, 0.03)T . To evaluate the robustness of the weighted minimum DPD

estimators, we studied their behavior in the presence of an outlying cell for the first testing condition

in our table. This cell was generated under the parameters θ̃
T

= (−5.7, 0.03,−0.6, 0.03)T . Bias of

model parameters, as well as bias for the reliability at normal testing conditions (IT0, x0) = (60, 25),

were then computed, for different tuning parameters, for the cases of both pure and contaminated

data and are presented in Tables 6.6.1 and 6.6.2, respectively.

For the case of pure data, MLE presents the best behaviour and an increment in the tuning

parameter β leads to a gradual loss in terms of efficiency. However, in the case of contaminated

data, MLE turns to be the worst estimator, and weighted minimum DPD estimators with β > 0

present much more robust behaviour. Note that, as expected, an increase in the sample size

improves the efficiency of the estimators, both for pure and contaminated data.

Table 6.6.1: Lognormal distribution at multiple stress levels: bias for the parameter vector.

Pure data Contaminated data

Ki β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0 β = 0.2 β = 0.4 β = 0.6

40 1.0681 1.0455 1.0455 1.0600 1.0536 0.9811 0.9811 0.9789

50 0.8710 0.8647 0.8634 0.8891 0.9420 0.8932 0.8543 0.8593

60 0.8362 0.8509 0.8534 0.9021 0.9469 0.8869 0.8685 0.8533

70 0.7518 0.7617 0.7653 0.7802 0.8977 0.8210 0.7850 0.7741

80 0.7113 0.7121 0.7225 0.7338 0.8952 0.8135 0.7651 0.7478

90 0.6781 0.6830 0.7067 0.7118 0.8597 0.7780 0.7226 0.7100

100 0.6505 0.6458 0.6571 0.6700 0.8417 0.7520 0.7032 0.6871

110 0.6026 0.6011 0.6131 0.6297 0.8394 0.7469 0.6871 0.6613

120 0.5589 0.5603 0.5766 0.5865 0.8279 0.7360 0.6746 0.6524

Table 6.6.2: Lognormal distribution at multiple stress levels: bias for the reliability under normal testing

conditions

Pure data Contaminated data

Ki β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0 β = 0.2 β = 0.4 β = 0.6

40 0.1099 0.1061 0.1083 0.1084 0.1297 0.1215 0.1193 0.1157

50 0.0918 0.0907 0.0919 0.0911 0.1072 0.1030 0.0990 0.0967

60 0.0889 0.0881 0.0869 0.0874 0.1061 0.1009 0.0968 0.0934

70 0.0796 0.0788 0.0787 0.0780 0.0909 0.0864 0.0853 0.0833

80 0.0771 0.0780 0.0776 0.0767 0.0884 0.0864 0.0836 0.0832

90 0.0702 0.0700 0.0704 0.0698 0.0771 0.0754 0.0747 0.0738

100 0.0696 0.0691 0.0689 0.0682 0.0737 0.0726 0.0721 0.0714

110 0.0680 0.0670 0.0668 0.0665 0.0703 0.0705 0.0693 0.0690

120 0.0652 0.0648 0.0640 0.0636 0.0642 0.0641 0.0642 0.0642
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B. Unbalanced data

In this scenario, an unbalanced data with different sample size in each condition is considered (see

Table 6.6.3). The data are generated with θ = (−6, 0.03,−0.6, 0.03)T . To contaminate the data,

the first cell is generated by θ̃ = (−6, ã1,−0.6, 0.03)T , with (1− ã1/a1) ∈ (0, ..., 1). Note that when

pure data are considered this value is equal to 0.

Table 6.6.3: Lognormal distribution at multiple stress levels: ALT plan, unbalanced data.

i xi1 ITi Ki

1 30 30 60

2 40 30 40

3 50 30 20

4 30 60 60

5 40 60 20

6 50 60 20

7 30 90 40

8 40 90 20

9 50 90 20

Bias of the parameter vector θ as well as bias of the reliability evaluated at (IT0, x0) = (80, 20)

are presented in top of Figure 6.6.1. While for low degrees of contamination the difference is very

slight, this becomes important when considering a high degree of contamination.

6.6.2 The Wald-type tests

To evaluate the performance of the proposed Wald-type tests, we consider the scenario of unbal-

anced data proposed in the previous section. We consider the testing problem

H0 : b1 = 0.03 against H1 : b1 6= 0.03. (6.20)

We first evaluate the empirical levels, measured as the proportion of Wald-type test statistics

exceeding the corresponding chi-square critical value for a nominal size α = 0.05. The empirical

powers are computed in a similar way, with b01 = 0.002. Results are shown in bottom of Figure

6.6.1. Similar conclusions are obtained for the empirical levels, with an increment in the robustness

for β > 0. The behaviour of the empirical powers is not so clear when a high value of β is taken.

6.7 Application of Lindley distribution to real data

6.7.1 The benzidine dihydrochloride experiment

Let us consider a simplified version of data given in Section 2.7.3. While the original study

distinguished between mice sacrificed and died without tumor, we consider them in a same category,

as our interest is focused on the carcinogenic effect of the drug. We then have an unbalanced

data set with sample sizes (K1,K2,K3,K4,K5,K6) = (72, 25, 49, 35, 46, 11) and observed failures

(n1, n2, n3, n4, n5, n6) = (0, 0, 0, 17, 7, 9). Figure 6.7.1 shows the estimated probabilities for each

one of the 6 observed conditions as well as the estimated RMSE for the probabilities, both under

the Exponential and Lindley distribution models and the MLE. The error under the Lindley

distribution is clearly inferior to the exponential one. We apply our proposed estimators and

evaluate their performance for different tuning parameters (top of Figure 6.7.2). It can be seen

how the estimated probability error decrease for β > 0.
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Figure 6.6.1: Lognormal distribution at multiple stress levels: bias for the parameter vector (top left),

bias for the reliability under normal testing conditions (top right), emepirical levels (bottom left) and

empirical powers (bottom right) for different degrees of contamination

6.7.2 Glass Capacitors

We now consider data from a life test of glass capacitors at higher than usual levels of temperature

and voltage, which was already studied in Section 5.4.1. As in the previous example, we apply

our proposed estimators and evaluate their performance for different tuning parameters (bottom

of Figure 6.7.2), observing again how the estimated probability error decrease for β > 0.
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Figure 6.7.2: Lindley distribution: estimated probabilities and their corresponding empirical errors in

the benzidine dihydrochloride experiment and glass capacitors examples
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Chapter 7

Robust inference for one-shot device testing

under proportional hazards model

7.1 Introduction

Under the classical parametric setup, product lifetimes are assumed to be fully described by a

probability distribution involving some model parameters. This has been done with some com-

mon lifetime distributions such as exponential (Balakrishnan and Ling [2012b]), gamma or Weibull

(Balakrishnan and Ling [2013]). However, as data from one-shot devices do not contain actual life-

times, parametric inferential methods can be very sensitive to violations of the model assumption.

Ling et al. [2015] proposed a semi-parametric model, in which, under the proportional hazards

assumption, the hazard rate is allowed to change in a non-parametric way. The simulation study

carried out by Ling et al. [2015] shows that their proposed method works very well. However,

this method suffer again from lack of robustness, as it is based on the (non-robust) MLE of model

parameters.

In this chapter, we extend the robust approach proposed in the above chapters and develop

here robust estimators and tests for one-shot device testing based on divergence measures under

proportional hazards model. Section 7.2 described the model and some basic concepts and results.

The estimating equations and asymptotic properties of the proposed estimators are given in Section

7.3. Wald-type tests are then developed based on the proposed estimators, as a generalization of the

classical Wald test. In Section 7.5, a simulation study is carried out to demonstrate the robustness

of the proposed method. A numerical example is finally presented in Section 7.6.

The results of this Chapter have been published in the form of a paper (Balakrishnan et al.

[2021]).

7.2 Model description and Maximum Likelihood Estimator

Consider S constant-stress accelerated life-tests and I inspection times. For the i-th life-test, Ks

devices are placed under stress level combinations with J stress factors, xs = (xs1, . . . , xsJ), of

which Kis are tested at the i-th inspection time τi, where Ks =
∑I
i=1Kis and 0 < τ1 < · · · < τI .

Then, the numbers of devices that have failed by time τi at stress xs are recorded as nis. One-shot

device testing data obtained from such a life-test can then be represented as (nis,Kis,xs, τi), for

i = 1, 2, . . . , I and s = 1, 2, . . . , S.

Under the proportional hazards assumption, the cumulative hazard function is given by

H(t,x;η,α) = H0(t;η)λ(x;α), (7.1)

whereH0(t;η) is the baseline cumulative hazard function with η = (η1, . . . , ηI), andα = (α1 . . . , αJ)

is a vector of coefficients for stress factors. We now assume a log-linear link function for relating

the stress levels to the failure times of the units in the cumulative hazard function in (7.1), as
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H(t,x;η,α) = H0(t;η) exp

 J∑
j=1

αjxsj

 .

The corresponding reliability function is given by

R(t,x;η,α) = exp (−H(t,x;η,α)) = R0(t;η)λ(x;α), (7.2)

whereR0(t;η) = exp(−H0(t;η)) is the baseline reliability function, with 0 < R0(τI ;η) < R0(τI−1;η) <

· · · < R0(τ1;η) < 1.

Instead of adopting here the parametric approach, wherein we assume a specific functional form

for the baseline hazard H0(t;η), such as exponential, Weibull or gamma, we may adopt a semi-

parametric approach in which we make mild assumptions about the baseline hazard. Specifically,

we may subdivide time into the observed intervals and assume that the baseline hazard is constant

in each interval, leading to a piece-wise exponential model. We let

γ(ηi) =

 1−R0(τI ;η) = 1− exp(− exp(ηI)), i = I,
1−R0(τi;η)

1−R0(τi+1;η)
= 1− exp(− exp(ηi)), i 6= I.

We then have

R0(τi;η) = 1−
I∏

m=i

{1− exp(− exp(ηm))} = 1−Gi,

H0(τi;η) = − log(1−Gi),

where Gi =
∏I
m=i {1− exp(− exp(ηm))} for i = 1, . . . , I.

Remark 7.1 We now present a connection between the proportional hazards model and a para-

metric model with proportional hazard rates. The two-parameter Weibull distribution is commonly

used as a lifetime distribution having proportional hazard rates. Suppose the lifetimes of one-shot

devices under test follow the Weibull distribution with the same shape parameter λ = exp(b) and

scale parameters related to the stress levels, as = exp(
∑J
j=1 cjxsj), s = 1, . . . , S. The cumulative

distribution function of the Weibull distribution is then given by

FT (t; as, λ) = 1− exp

(
−
(
t

as

)λ)
, t > 0.

If the proportional hazards assumption holds, then the baseline reliability and the coefficients of

stress factors are given by

R0(t;λ) = exp(−tλ exp(−λc0))

and αs = −λcs, s = 1, . . . , S. Furthermore, we have

ηi = log

(
− log

(
1− 1−R0(τi)

1−R0(τi+1)

))
,

ηI = λ(log(τI)− c0).

Consider the proportional hazards model for one-shot devices in (7.1). The log-likelihood func-

tion based on these data is then given by
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`(n11, . . . , nIS ;η,α) (7.3)

=

I∑
i=1

S∑
s=1

nis log [1−R(τi,xs;η,α)] + (Kis − nis) log [R(τi,xs;η,α)] + C

=

I∑
i=1

S∑
s=1

nis log
[
1− (1−Gi)exp(

∑J
j=1 αjxsj)

]
+ (Kis − nis) log (1−Gi) exp

 J∑
j=1

αjxsj

+ C,

where C is a constant not depending on η and α.

Definition 7.2 Let θ = (η,α). The MLE, θ̂, of θ, is obtained by maximization of (7.3), i.e.,

θ̂ = arg max
θ

`(n11, . . . , nIS ;η,α). (7.4)

In order to study the relation between the MLE, θ̂, in Definition 7.2, with the Kullback-Leibler

divergence measure, we introduce the empirical and theoretical probability vectors, as follows:

p̂is = (p̂is1, p̂is2)
T

=

(
nis
Kis

,
Kis − nis
Kis

)T
, (7.5)

πis(η,α) = (πis1(η,α), πis2(η,α))
T
, (7.6)

where i = 1, . . . , I, s = 1, . . . , S, πis1(η,α) = 1−R(τi,xs;η,α) and πis2(η,α) = R(τi,xs;η,α).

Definition 7.3 The Kullback-Leibler divergence measure between p̂is and πis(η,α) is given by

dKL(p̂is,πis(η,α)) =p̂is1 log

(
p̂is1

πis1(η,α)

)
+ p̂is2 log

(
p̂is2

πis2(η,α)

)
and similarly the weighted Kullback-Leibler divergence measure of all the units, where K =

∑S
s=1Ks

is the total number of devices under the life-test, is given by

I∑
i=1

S∑
s=1

Kis

K
dKL(p̂is,πis(η,α))

=
1

K

I∑
i=1

S∑
s=1

Kis

[
p̂is1 log

(
p̂is1

πis1(η,α)

)
+ p̂is2 log

(
p̂is2

πis1(η,α)

)]

=
1

K

I∑
i=1

S∑
s=1

[
nis log

( nis
Kis

1−R(τi,xs;η,α)

)
+ (Kis − nis) log

(
Kis−nis
Kis

R(τi,xs;η,α)

)]
.

For more details, one may refer to Pardo [2005]. The relation between the MLE and the

estimator obtained by minimizing the weighted Kullback-Leibler divergence measure is obtained

on the basis of the following result.

Theorem 7.4 The log-likelihood function `(n11, . . . , nIS ;η,α), given in (7.3), is related to the

weighted Kullback-Leibler divergence measure through

I∑
i=1

S∑
s=1

Kis

K
dKL(p̂is,πis(η,α)) = c− 1

K
`(n11, . . . , nIS ;η,α),

with c being a constant not dependent on η and α.

Definition 7.5 The MLE, θ̂, of θ, can then be defined as

θ̂ = arg min
θ

I∑
i=1

S∑
s=1

Kis

K
dKL(p̂is,πis(η,α)). (7.7)
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7.3 Weighted minimum DPD estimator

7.3.1 Definition

Given the probability vectors p̂is and πis(η,α) in (7.5) and (7.6), respectively, the DPD between

them, as a function of a single tuning parameter β ≥ 0, is given by

dβ(p̂is,πis(η,α)) =
(
πβ+1
is1 (η,α) + πβ+1

is2 (η,α)
)
− β + 1

β

(
p̂is1π

β
is1(η,α) + p̂is2π

β
is2(η,α)

)
+

1

β

(
p̂β+1
is1 + p̂β+1

is2

)
, if β > 0, (7.8)

and dβ=0(p̂is,πis(η,α)) = limβ→0+ dβ(p̂is,πis(η,α)) = dKL(p̂is,πis(η,α)), for β = 0.

As the term 1
β

(
p̂β+1
is1 + p̂β+1

is2

)
in (7.8) has no role in the minimization with respect to θ, we

can consider the equivalent measure

d∗β(p̂is,πis(η,α)) =
(
πβ+1
is1 (η,α) + πβ+1

is2 (η,α)
)
− β + 1

β

(
p̂is1π

β
is1(η,α) + p̂is2π

β
is2(η,α)

)
,

and then can redefine the weighted minimum DPD estimator as follows.

Definition 7.6 The weighted minimum DPD estimator for θ is given by

θ̂β = arg min
θ

I∑
i=1

S∑
s=1

Kis

K
d∗β(p̂is,πis(η,α)), for β > 0,

and for β = 0, we have the MLE, θ̂, as defined in (7.7).

7.3.2 Estimation and asymptotic distribution

The estimating equations for the weighted minimum DPD estimator are as given in the following

result.

Theorem 7.7 For β ≥ 0, the estimating equations are given by

I∑
i=1

S∑
s=1

δis(η) (Kis(1−R(τi,xs;η,α))− nis)×
[
(1−R(τi,xs;η,α))β−1 +Rβ−1(τi,xs;η,α)

]
= 0I ,

I∑
i=1

S∑
s=1

δis(α) (Kis(1−R(τi,xs;η,α))− nis)×
[
(1−R(τi,xs;η,α))β−1 +Rβ−1(τi,xs;η,α)

]
= 0J ,

where

δis(η) =
∂R(τi,xs;η,α)

∂η
= −(1−Gi)λ(xs;α)−1λ(xs;α)

∂Gi
∂η

, (7.9)

δis(α) =
∂R(τi,xs;η,α)

∂α
= (1−Gi)λ(xs;α) log(1−Gi)λ(xs;α)xs, (7.10)

with
∂Gi
∂ηu

=

{
exp(ηu) exp(− exp(ηu))Gi/γ(ηu) , i ≤ u,

0 , i > u.
(7.11)

Proof. The estimating equations are given by

∂

∂η

I∑
i=1

S∑
s=1

Kis

K
d∗β(p̂is,πis(η,α)) =

I∑
i=1

S∑
s=1

Kis

K

∂

∂η
d∗β(p̂is,πis(η,α)) = 0I ,

∂

∂α

I∑
i=1

S∑
s=1

Kis

K
d∗β(p̂is,πis(η,α)) =

I∑
i=1

S∑
s=1

Kis

K

∂

∂α
d∗β(p̂is,πis(η,α)) = 0J ,
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with

∂

∂η
d∗β(p̂is,πis(η,α))

=

(
∂

∂η
πβ+1
is1 (η,α) +

∂

∂η
πβ+1
is2 (η,α)

)
− β + 1

β

(
p̂is1

∂

∂η
πβi1(θ) + p̂is2

∂

∂η
πβis2(η,α)

)
= (β + 1)

(
πβis1(η,α)− πβis2(η,α)− p̂is1πβ−1

is1 (η,α) + p̂is2π
β−1
is2 (η,α)

) ∂

∂η
πis1(η,α)

= (β + 1)
(

(πi1(η,α)− p̂i1)πβ−1
is1 (η,α)− (πis2(η,α)− p̂is2)πβ−1

is2 (η,α)
) ∂

∂η
πis1(η,α)

= (β + 1)
(

(πis1(η,α)− p̂i1)πβ−1
is1 (η,α) + (πi1(η,α)− p̂i1)πβ−1

is2 (η,α)
) ∂

∂η
πis1(η,α)

= (β + 1) (πis1(η,α)− p̂is1)
(
πβ−1
is1 (η,α) + πβ−1

is2 (η,α)
) ∂

∂η
πis1(η,α) (7.12)

and

∂

∂α
d∗β(p̂is,πis(η,α))

= (β + 1) (πis1(η,α)− p̂is1)
(
πβ−1
i1 (η,α) + πβ−1

is2 (η,α)
) ∂

∂α
πis1(η,α). (7.13)

But, ∂
∂ηπis1(η,α) and ∂

∂απis1(η,α) are as given in (7.9) and (7.10), respectively. See equations

(25) and (26) of Ling et al. [2015] for details.

Theorem 7.8 Let θ0 be the true value of the parameter θ. Then, the asymptotic distribution of

the weighted minimum DPD estimator, θ̂β, is given by

√
K(θ̂β − θ0)

L−→
K→∞

N
(
0I+J ,J

−1
β (θ0)Kβ(θ∗)J−1

β (θ0)
)
,

where Jβ(θ) and Kβ(θ) are given by

Jβ(θ) =

I∑
i=1

S∑
s=1

Kis

K
∆is(η,α)

[
(1−R(τi,xs;η,α))β−1 +Rβ−1(τi,xs;η,α)

]
, (7.14)

Kβ(θ) =

I∑
i=1

S∑
s=1

Kis

K
∆is(η,α)R(τi,xs;η,α)(1−R(τi,xs;η,α))

×
[
(1−R(τi,xs;η,α))β−1 +Rβ−1(τi,xs;η,α)

]2
, (7.15)

with

∆is(η,α) =

(
δis(η)δTis(η) δis(η)δTis(α)

δis(α)δTis(η) δis(α)δTis(α)

)
,

and δis(η) and δis(α) are as given in (7.9) and (7.10), respectively.

Proof. We denote

uisj(η,α) =

(
∂ log πisj(η,α)

∂η
,
∂ log πisj(η,α)

∂α

)T
=

(
1

πisj(η,α)

∂πisj(η,α)

∂η
,

1

πisj(η,α)

∂πisj(η,α)

∂α

)T
=

(
(−1)j+1

πisj(η,α)
δis(η),

(−1)j+1

πisj(η,α)
δis(α)

)T
,
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with δis(η) and δis(α) as given in (7.9) and (7.10), respectively.

Now, upon using Result 3.1 of Ghosh et al. [2013], we have

√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
0I+J ,J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)
,

where

Jβ(θ) =

I∑
i=1

S∑
s=1

2∑
j=1

Kis

K
uisj(η,α)uTisj(η,α)πβ+1

isj (η,α),

Kβ(θ) =

I∑
i=1

S∑
s=1

2∑
j=1

Kis

K
uisj(η,α)uTisj(η,α)π2β+1

isj (η,α)−
I∑
i=1

S∑
s=1

Kis

K
ξis,β(η,α)ξTis,β(η,α),

with

ξi,β(η,α) =

2∑
j=1

uisj(η,α)πβ+1
isj (η,α) = (δis(η), δis(α))

T
2∑
j=1

(−1)j+1πβisj(η,α).

Now, for uisj(η,α)uTisj(η,α), we have

uisj(η,α)uTisj(η,α) =
1

π2
isj(η,α)

(
δis(η)δTis(η) δis(η)δTis(α)

δis(α)δTis(η) δis(α)δTis(α)

)
=

1

π2
ij(θ)

∆is(η,α),

with

∆is(η,α) =

(
δis(η)δTis(η) δis(η)δTis(α)

δis(α)δTis(η) δis(α)δTis(α)

)
.

It then follows that

Jβ(θ) =

I∑
i=1

S∑
s=1

Kis

K
∆is(η,α)

2∑
j=1

πβ−1
isj (η,α)

=

I∑
i=1

S∑
s=1

Kis

K
∆is(η,α)

(
πβ−1
is1 (η,α) + πβ−1

is2 (η,α)
)
.

From here on, and for simplicity, we will denote R(τi,x0;η,α) simply by R(τi,x0;θ)). Based

on Result 7.8, the asymptotic variance of the weighted minimum DPD estimator of the reliability

at inspection time τi under normal operating condition x0 is given by

V ar(R(τi,x0; θ̂β)) ≡ V ar(R(θ̂β)) = P TΣβ(θ̂β)P ,

where

Σβ(θ̂β) = J−1
β (θ̂β)Kβ(θ̂β)J−1

β (θ̂β), (7.16)

Jβ (θ), Kβ (θ) are as given in (7.14) and (7.15), respectively, and P is a vector of the first-

order derivatives of R(τi,x0;θ)) with respect to the model parameters (see (7.9) and (7.10)).

Consequently, the 100(1 − α)% asymptotic confidence interval for the reliability function R(θ) is

given by (
R(θ̂β)− z1−α/2se(R(θ̂β)), R(θ̂β) + z1−α/2se(R(θ̂β))

)
,

where se(R(θ̂β)) =

√
̂

V ar(R(θ̂β)) and zγ is the uppper γ percentage point of the standard normal

distribution.
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However, an asymptotic confidence interval may be satisfactory only for large sample sizes as it

is based on the asymptotic properties of the estimators. Balakrishnan and Ling [2013] found that,

in the case of small sample sizes, the distribution of the MLE of reliability is quite skewed, and

so proposed a logit-transformation for obtaining a confidence interval for the reliability function,

which can be extended to the case of the weighted minimum DPD estimators of the reliabilities as

well to obtain a confidence interval of the form(
R(θ̂β)

R(θ̂β) + (1−R(θ̂β))T
,

R(θ̂β)

R(θ̂β) + (1−R(θ̂β))/T

)
, (7.17)

where T = exp
(
z1−α/2

se(R(θ̂β))

R(θ̂β)(1−R(θ̂β))

)
.

7.3.3 Study of the Influence Function

Theorem 7.9 Let us consider the one-shot device testing under proportional hazards model defined

in (7.2) and let us define the statistical functional Uβ(·) corresponding to the weighted minimum

DPD estimator as the minimizer of the weighted sum of DPDs between the true and model densities.

The IF with respect to the k−th observation of the i0s0−th group is given by

IF (ti0s0,k,Uβ , Fθ∗) =J−1
β (θ∗)

Ki0s0

K

(
F β−1(τi0 ;xs0 ,θ

∗) +Rβ−1(τi0 ,xs0 ;θ∗)
)

× (δTi0s0(η∗), δTi0s0(α∗))T
(
F (τi0 ,xs0 ;θ∗)−∆

(1)
ti0s0,k

)
, (7.18)

where ∆
(1)
ti0s0,k

is the degenerating function at point ti0s0,k.

The IF with respect to all the observations is given by

IF (t,Uβ , Fθ∗) =J−1
β (θ∗)

I∑
i=1

S∑
s=1

Kis

K

[(
F β−1(τi,xs;θ

∗) +Rβ−1(τi,xs;θ
∗)
)

×(δTis(η
∗), δTis(α

∗))T
(
F (τi,xs;θ

∗)−∆
(1)
tis

)]
, (7.19)

where ∆
(1)
tisi =

∑Ki
k=1 ∆

(1)
tis,k

.

Derivations of equations (7.18) and (7.19) require some heavy computations that are quite

similar to those developed in Chapter 2.

Remark 7.10 Let

h1,i(τi0 ,xs0 ,θ) =
1

R0(τi0 ,η)

∂Gi0
∂ηi

λ(xs0 ;α)
[
R(τi0 ,xs0 ;θ)(1−R(τi0 ,xs0 ;θ))β−1 +Rβ(τi0 ,xs0 ;θ)

]
h2,j(τi0 ,xs0 ,θ) = log(R0(τi0 ,η))λ(xs0 ;α)xs0j

[
R(τi0 ,xs0 ;θ)(1−R(τi0 ,xs0 ;θ))β−1 +Rβ(τi0 ,xs0 ;θ)

]
be the factors of the influence function of θ given in (7.18) and (7.19). Based on this, it may be

mentioned that conditions for boundedness of the influence functions presented in this paper, either

with respect to an observation or with respect to all the observations, are bounded on ti0s0,k or t,

but if β = 0 the norm of the IFs can be very large, in comparison to β > 0, since it can be deduced

that

lim
xs0j→+∞

h1,i(τi0 ,xs0 ,θ) = lim
xs0j→+∞

h2,j(τi0 ,xs0 ,θ) =

{
=∞, if β = 0

<∞, if β > 0
. (7.20)

This implies that the proposed weighted minimum DPD estimators with β > 0 are robust against

leverage points, but the classical MLE is clearly non-robust.
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7.4 Wald-type tests

Let us consider the function m : RI+J −→ Rr, where r ≤ (I + J) and

m (θ) = 0r, (7.21)

which corresponds to a composite null hypothesis. We assume that the (I+J)×r matrix M(θ) =
∂mT (θ)
∂θ exists and is continuous in θ and rank M (θ) = r. Then, for testing

H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0, (7.22)

where Θ0 =
{
θ ∈ R(I+J) : m (θ) = 0r

}
, we can consider the following Wald-type test statistics:

WK(θ̂β) = KmT (θ̂β)
(
MT (θ̂β)Σ(θ̂β)M(θ̂β)

)−1

m(θ̂β), (7.23)

where Σβ(θ̂β) is as given in (7.16).

Theorem 7.11 Under (7.21), we have

WK(θ̂β)
L−→

K→∞
χ2
r,

where χ2
r denotes a central chi-square distribution with r degrees of freedom.

Proof. Let θ0 ∈ Θ0 be the true value of the parameter θ. It is clear that

m
(
θ̂β

)
= m

(
θ0
)

+MT
(
θ̂β

)(
θ̂β − θ0

)
+ op

(∥∥∥θ̂β − θ0
∥∥∥)

= MT
(
θ̂β

)(
θ̂β − θ0

)
+ op

(
K−1/2

)
.

But, under H0,
√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
0(I+J),Σβ

(
θ0
))

. Therefore, under H0,

√
Km

(
θ̂β

)
L−→

K→∞
N
(
0r,M

T
(
θ0
)
Σβ

(
θ0
)
M
(
θ0
))

and taking into account that rank(M
(
θ0
)
) = r, we obtain

KmT
(
θ̂β

)(
MT

(
θ0
)
Σβ

(
θ0
)
M
(
θ0
))−1

m
(
θ̂β

)
L−→

K→∞
χ2
r.

Because
(
MT

(
θ̂β

)
Σβ

(
θ̂β

)
M
(
θ̂β

))−1

is a consistent estimator of
(
MT

(
θ0
)
Σβ

(
θ0
)
M
(
θ0
))−1

,

we get

WK

(
θ̂β

)
L−→

K→∞
χ2
r.

Based on Theorem 7.11, we shall reject the null hypothesis in (7.22) if

WK(θ̂β) > χ2
r,α, (7.24)

where χ2
r,α is the upper α percentage point of χ2

r distribution.

7.5 Simulation Study

In this section, an extensive simulation study is carried out for evaluating the proposed weighted

minimum DPD estimators and Wald-type tests. The simulations results are computed based

on 1, 000 simulated samples in the R statistical software. Mean square error (MSE) and bias are

computed for evaluating the estimators in both balanced and unbalanced data sets, while empirical

levels and powers are computed for evaluating the tests.
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7.5.1 The weighted minimum DPD estimators

Suppose the lifetimes of test units follow a Weibull distribution (see Remark 7.1). All the test

units were divided into S = 4 groups, subject to different acceleration conditions with J = 2 stress

factors at two elevated stress levels each, that is, (x1, x2) = {(55, 70), (55, 100), (85, 70), (85, 100)},
and were inspected at I = 3 different times,

(τ1, τ2, τ3) = (2, 5, 8).

Balanced data

We assume (c1, c2) = (−0.03,−0.03), c0 ∈ {6, 6.5} for different degrees of reliability and b ∈
{0, 0.5}. Note that the exponential distribution will be included as a special case when we take

b = 0. In this framework, we consider “outlying cells” rather than “outlying observations”. A cell

which does not follow the one-shot device model will be called an outlying cell or outlier. In this

cell, the number of devices failed will be different than what is expected. This is in the spirit of

principle of inflated models in distribution theory. This outlying cell (taken to be i = 3, s = 4), is

generated under the parameters (c̃1, c̃2) = (−0.027,−0.027) and b̃ ∈ {0.05, 0.45}.
Bias of estimates are then computed for different (equal) samples sizes Kis ∈ {50, 70, 100} and

tuning parameters β ∈ {0, 0.2, 0.4, 0.6} for both pure and contaminated data. The obtained results

are presented in Tables 7.5.1, 7.5.2, 7.5.3 and 7.5.4. As expected, when the sample size increases,

errors tend to decrease, while in the contaminated data set, these errors are generally greater than

in the case of uncontaminated data. Weighted minimum DPD estimators with β > 0 present a

better behaviour than the MLE in terms of robustness. Note that reliabilities are underestimated

and that the estimates are quite precise in all the cases.

Unbalanced data

In this setting, we consider an unbalanced data set, in which at each inspection time i,

(Ki1,Ki2,Ki3,Ki4) = (10r, 15r, 20r, 30r) for different values of the factor r ∈ {1, 2, . . . , 10}. We

then assume (c0, c1, c2) = (6, 5,−0.03,−0.03), b = 0.5, and c̃2 = −0.027. MSEs of the parameter θ

are then computed and the obtained results are presented in Figure 7.5.1.

As expected, when the sample size increases, the MSE decreases, but lack of robustness of the

MLE (β = 0) as compared to the weighted minimum DPD estimators with β > 0 becomes quite

evident.

7.5.2 Confidence Intervals

We now study the performance of the proposed methods for the estimation of reliabilities and their

confidence intervals. Let us consider the scenario of balanced data with (c0, b) = (6, 0.5) described

previously. We estimate the bias for the reliability at the inspection times under the normal

operating conditions x0 = (25, 35) for different values of the tuning parameter β ∈ {0, 0.2, 0.4, 0.6}.
Coverage Probabilities (CP) and Average Widths (AW), both in their basic form and based on the

logit-transformation, are also computed and presented in Table 7.5.5, Table 7.5.6 and Table 7.5.7

for Kis ∈ {50, 70, 100}, respectively.

It is clear that each estimate tends to the true value accurately, and the coverage probability

is close to the nominal level with a larger sample size resulting in a smaller width. The tuning

parameter is not very significant when an uncontaminated data-set is considered, while in case

of contaminated data, estimates and confidence intervals based on MLE are improved by those

based on β > 0. Confidence intervals obtained through the logit transformation are generally more

satisfactory.
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Table 7.5.1: Proportional hazards model: Bias for the semi-parametric model with b = 0 and c0 = 6.

Pure data Contaminated data

Kis = 50 True value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

η1 -0.66688 -0.00494 -0.00276 -0.00053 -0.00372 0.09898 0.06722 0.03547 0.01708

η2 -0.01304 -0.00228 -0.00078 0.00109 -0.00131 0.06902 0.04716 0.02531 0.01286

η3 -3.92056 -0.02788 -0.01810 -0.01389 -0.01982 0.34916 0.23252 0.12087 0.05402

α1 0.03000 0.00010 0.00002 -0.00001 0.00002 -0.00281 -0.00193 -0.00107 -0.00056

α2 0.03000 0.00033 0.00027 0.00025 0.00030 -0.00259 -0.00167 -0.00081 -0.00028

Pure data Contaminated data

Kis = 70 True value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

η1 -0.66688 -0.00780 -0.00675 -0.00716 -0.00802 0.09876 0.06233 0.03209 0.01278

η2 -0.01304 -0.00459 -0.00386 -0.00410 -0.00465 0.06810 0.04315 0.02257 0.00948

η3 -3.92056 -0.03954 -0.03763 -0.04073 -0.04458 0.35084 0.21624 0.10254 0.03023

α1 0.03000 0.00027 0.00025 0.00026 0.00029 -0.00276 -0.00173 -0.00086 -0.00030

α2 0.03000 0.00035 0.00034 0.00038 0.00041 -0.00267 -0.00163 -0.00075 -0.00017

Pure data Contaminated data

Kis = 100 True value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

η1 -0.66688 -0.00778 -0.00682 -0.00711 -0.00785 0.09857 0.06207 0.03231 0.01320

η2 -0.01304 -0.00477 -0.00412 -0.00429 -0.00477 0.06776 0.04275 0.02248 0.00952

η3 -3.92056 -0.02739 -0.02332 -0.02387 -0.02586 0.36315 0.23019 0.12013 0.04993

α1 0.03000 0.00031 0.00028 0.00029 0.00031 -0.00271 -0.00169 -0.00084 -0.00029

α2 0.03000 0.00016 0.00013 0.00013 0.00015 -0.00287 -0.00185 -0.00099 -0.00045
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Table 7.5.2: Proportional hazards model: Bias for the semi-parametric model with b = 0.5 and c0 = 6.

Pure data Contaminated data

Kis = 50 True value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

η1 -1.38827 -0.01224 -0.00988 -0.03700 -0.07648 0.03590 -0.00540 -0.03356 -0.08611

η2 -0.48138 -0.00687 -0.00537 -0.02153 -0.04394 0.02362 -0.00239 -0.01962 -0.04962

η3 -6.46391 -0.05973 -0.05148 -0.19693 -0.40632 0.14538 -0.03531 -0.17304 -0.47276

α1 0.04946 0.00032 0.00023 0.00124 0.00274 -0.00125 0.00010 0.00106 0.00325

α2 0.04946 0.00061 0.00056 0.00174 0.00361 -0.00097 0.00043 0.00155 0.00410

Pure data Contaminated data

Kis = 70 True value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

η1 -1.38827 -0.02188 -0.01955 -0.05972 -0.10800 0.03391 -0.01254 -0.06567 -0.12770

η2 -0.48138 -0.01318 -0.01171 -0.03481 -0.06298 0.02199 -0.00731 -0.03817 -0.07423

η3 -6.46391 -0.06923 -0.06287 -0.27869 -0.55900 0.16868 -0.03493 -0.30595 -0.67033

α1 0.04946 0.00062 0.00055 0.00202 0.00446 -0.00121 0.00033 0.00217 0.00530

α2 0.04946 0.00054 0.00051 0.00235 0.00433 -0.00128 0.00029 0.00260 0.00520

Pure data Contaminated data

Kis = 100 True value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

η1 -1.38827 -0.01771 -0.01652 -0.06256 -0.08467 0.04334 -0.01518 -0.06228 -0.08025

η2 -0.48138 -0.01071 -0.00996 -0.03610 -0.04904 0.02774 -0.00875 -0.03612 -0.04659

η3 -6.46391 -0.05209 -0.04718 -0.27304 -0.41072 0.21133 -0.04194 -0.27462 -0.38078

α1 0.04946 0.00057 0.00053 0.00204 0.00340 -0.00145 0.00048 0.00226 0.00316

α2 0.04946 0.00034 0.00030 0.00217 0.00315 -0.00168 0.00026 0.00204 0.00295
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Table 7.5.3: Proportional hazards model: Bias for the semi-parametric model with b = 0.5 and c0 = 6.5.

Pure data Contaminated data

Kis = 50 True value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

η1 -0.66879 0.00223 0.00097 0.00020 -0.00900 0.17046 0.14959 0.12180 0.11436

η2 -0.01553 0.00320 0.00227 0.00156 -0.00465 0.11845 0.10401 0.08415 0.08029

η3 -4.42056 -0.01196 -0.00948 -0.01543 -0.03474 0.56481 0.50586 0.43705 0.36957

α1 0.03000 0.00004 0.00001 0.00004 0.00021 -0.00437 -0.00389 -0.00336 -0.00286

α2 0.03000 0.00014 0.00013 0.00018 0.00030 -0.00426 -0.00379 -0.00324 -0.00274

Pure data Contaminated data

Kis = 70 True value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

η1 -0.66879 0.00050 -0.00537 -0.00598 -0.00468 0.16516 0.14230 0.12082 0.10748

η2 -0.01553 0.00166 -0.00294 -0.00333 -0.00217 0.11371 0.09772 0.08279 0.07497

η3 -4.42056 -0.03260 -0.03492 -0.03697 -0.04026 0.55639 0.49446 0.42414 0.36377

α1 0.03000 0.00016 0.00017 0.00019 0.00021 -0.00434 -0.00386 -0.00329 -0.00322

α2 0.03000 0.00029 0.00032 0.00034 0.00036 -0.00418 -0.00367 -0.00314 -0.00318

Pure data Contaminated data

Kis = 100 True value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

η1 -0.66879 -0.00302 -0.00428 -0.00423 -0.00453 0.15788 0.14182 0.12319 0.10443

η2 -0.01553 -0.00136 -0.00242 -0.00237 -0.00256 0.10788 0.09716 0.08443 0.07154

η3 -4.42056 -0.02671 -0.02485 -0.02528 -0.02720 0.55329 0.49534 0.43019 0.36647

α1 0.03000 0.00019 0.00018 0.00019 0.00020 -0.00422 -0.00376 -0.00325 -0.00276

α2 0.03000 0.00014 0.00014 0.00014 0.00015 -0.00427 -0.00381 -0.00331 -0.00281
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Table 7.5.4: Proportional hazards model: Bias for the semi-parametric model with b = 0.5 and c0 = 6.5.

Pure data Contaminated data

Kis = 50 True value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

η1 -1.38845 -0.00292 -0.02634 -0.06961 -0.10441 0.28565 0.19158 0.13289 0.07420

η2 -0.48171 -0.00007 -0.01454 -0.03906 -0.08819 0.18184 0.12322 0.12394 0.12467

η3 -7.28827 -0.08460 -0.15057 -0.34018 -0.97897 1.21433 0.81382 0.14850 0.33555

α1 0.04946 0.00058 0.00102 0.00237 -0.08206 -0.00889 -0.00592 -0.00116 -0.32679

α2 0.04946 0.00057 0.00108 0.00246 -0.10152 -0.00891 -0.00594 -0.00112 -0.39906

Pure data Contaminated data

Kis = 70 True value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

η1 -1.38845 -0.01510 -0.03564 -0.05629 -0.08443 0.28682 0.18935 0.03294 0.02196

η2 -0.48171 -0.00878 -0.02069 -0.03247 -0.11914 0.18302 0.12036 0.02563 0.04542

η3 -7.28827 -0.06124 -0.15643 -0.22439 -0.99978 1.24650 0.87564 0.14490 -0.01407

α1 0.04946 0.00041 0.00110 0.00155 -0.01596 -0.00916 -0.00637 -0.00104 -0.15771

α2 0.04946 0.00047 0.00111 0.00168 -0.02075 -0.00910 -0.00631 -0.00113 -0.19334

Pure data Contaminated data

Kis = 100 True value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

η1 -1.38845 -0.00904 -0.01105 -0.05924 -0.23063 0.28616 0.19928 0.05644 0.03762

η2 -0.48171 -0.00531 -0.00635 -0.03368 -0.12308 0.18172 0.12619 0.03911 -0.01015

η3 -7.28827 -0.06888 -0.07584 -0.29436 -0.96654 1.22401 0.87425 0.21922 -0.38512

α1 0.04946 0.00048 0.00053 0.00202 -0.00879 -0.00897 -0.00635 -0.00168 -0.09403

α2 0.04946 0.00041 0.00047 0.00207 -0.01198 -0.00904 -0.00642 -0.00164 -0.11596

109



Table 7.5.5: Proportional hazards model: Bias, Coverage Probabilities (CP) and the Average Widths

(AW) of 95% confidence intervals for the reliability with b = 0.5, c0 = 6 and Kis = 50

Uncontaminated data Contaminated data

R(2,x0) 0 0.2 0.4 0.6 0 0.2 0.4 0.6

Bias 0.00028 0.00032 0.00035 0.00037 0.00116 0.00043 0.00036 0.00038

CP 0.90400 0.90500 0.89718 0.89898 0.90800 0.90891 0.89627 0.89867

AW 0.00646 0.00666 0.00691 0.00716 0.00780 0.00684 0.00693 0.00718

CPlogit 0.93800 0.93500 0.93347 0.93571 0.85100 0.92993 0.93152 0.93552

AWlogit 0.00749 0.00776 0.00814 0.00852 0.00895 0.00796 0.00815 0.00853

Uncontaminated data Contaminated data

R(5,x0) 0 0.2 0.4 0.6 0 0.2 0.4 0.6

Bias 0.00081 0.00095 0.00103 0.00107 0.00343 0.00129 0.00105 0.00110

CP 0.92100 0.91700 0.91734 0.91224 0.92100 0.91592 0.91541 0.91198

AW 0.02385 0.02436 0.02508 0.02585 0.02725 0.02483 0.02511 0.02589

CPlogit 0.93900 0.93600 0.93649 0.93980 0.87900 0.93293 0.93555 0.93961

AWlogit 0.02638 0.02700 0.02794 0.02898 0.02993 0.02750 0.02797 0.02901

Uncontaminated data Contaminated data

R(8,x0) 0 0.2 0.4 0.6 0 0.2 0.4 0.6

Bias 0.00147 0.00169 0.00183 0.00191 0.00585 0.00228 0.00186 0.00196

CP 0.92600 0.92200 0.92137 0.91939 0.92300 0.91992 0.91944 0.91914

AW 0.04710 0.04814 0.04930 0.05017 0.05207 0.04886 0.04934 0.05023

CPlogit 0.93900 0.93800 0.93952 0.94490 0.88400 0.93894 0.93756 0.94473

AWlogit 0.05098 0.05222 0.05362 0.05469 0.05601 0.05295 0.05366 0.05475
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Table 7.5.6: Proportional hazards model: Bias, Coverage Probabilities (CP) and the Average Widths

(AW) of 95% confidence intervals for the reliability with b = 0.5, c0 = 6 and Kis = 70

Uncontaminated data Contaminated data

R(2,x0) 0 0.2 0.4 0.6 0 0.2 0.4 0.6

Bias 0.00016 0.00019 0.00022 0.00022 0.00108 0.00029 0.00023 0.00022

CP 0.89800 0.90090 0.90389 0.90071 0.90800 0.90891 0.90276 0.90051

AW 0.00531 0.00546 0.00568 0.00586 0.00654 0.00560 0.00570 0.00585

CPlogit 0.95000 0.94795 0.94785 0.94630 0.84500 0.93894 0.94882 0.94619

AWlogit 0.00593 0.00612 0.00640 0.00665 0.00724 0.00627 0.00642 0.00664

Uncontaminated data Contaminated data

R(5,x0) 0 0.2 0.4 0.6 0 0.2 0.4 0.6

Bias 0.00046 0.00057 0.00070 0.00066 0.00333 0.00088 0.00073 0.00065

CP 0.91500 0.91992 0.92638 0.92097 0.91200 0.92392 0.92426 0.91980

AW 0.01981 0.02021 0.02087 0.02139 0.02302 0.02057 0.02090 0.02137

CPlogit 0.94600 0.94695 0.95399 0.95339 0.86600 0.93794 0.95496 0.95330

AWlogit 0.02132 0.02178 0.02258 0.02325 0.02465 0.02217 0.02261 0.02323

Uncontaminated data Contaminated data

R(8,x0) 0 0.2 0.4 0.6 0 0.2 0.4 0.6

Bias 0.00086 0.00106 0.00133 0.00122 0.00576 0.00160 0.00138 0.00119

CP 0.92400 0.93093 0.93047 0.92908 0.91800 0.93293 0.92835 0.92792

AW 0.03933 0.04018 0.04129 0.04175 0.04415 0.04076 0.04135 0.04172

CPlogit 0.95400 0.95295 0.95297 0.94934 0.88900 0.94695 0.95292 0.94924

AWlogit 0.04169 0.04266 0.04392 0.04448 0.04657 0.04324 0.04398 0.04445

111



Table 7.5.7: Proportional hazards model: Bias, Coverage Probabilities (CP) and the Average Widths

(AW) of 95% confidence intervals for the reliability with b = 0.5, c0 = 6 and Kis = 100

Uncontaminated data Contaminated data

R(2,x0) 0 0.2 0.4 0.6 0 0.2 0.4 0.6

Bias 0.00008 0.00009 0.00010 0.00010 0.00105 0.00019 0.00011 0.00010

CP 0.93100 0.93594 0.92995 0.93394 0.91200 0.93800 0.93219 0.93516

AW 0.00437 0.00447 0.00461 0.00475 0.00546 0.00458 0.00462 0.00475

CPlogit 0.96200 0.95996 0.95939 0.96037 0.80900 0.95600 0.96053 0.96150

AWlogit 0.00472 0.00484 0.00502 0.00520 0.00587 0.00496 0.00503 0.00520

Uncontaminated data Contaminated data

R(5,x0) 0 0.2 0.4 0.6 0 0.2 0.4 0.6

Bias 0.00022 0.00026 0.00029 0.00025 0.00324 0.00056 0.00031 0.00025

CP 0.93300 0.93193 0.93604 0.93496 0.91200 0.93700 0.93725 0.93617

AW 0.01636 0.01661 0.01704 0.01747 0.01923 0.01692 0.01706 0.01747

CPlogit 0.95300 0.95996 0.96041 0.96240 0.83900 0.95700 0.95951 0.96454

AWlogit 0.01724 0.01753 0.01802 0.01854 0.02018 0.01784 0.01805 0.01854

Uncontaminated data Contaminated data

R(8,x0) 0 0.2 0.4 0.6 0 0.2 0.4 0.6

Bias 0.00041 0.00047 0.00053 0.00047 0.00559 0.00099 0.00057 0.00046

CP 0.94200 0.93994 0.94010 0.93598 0.92100 0.94200 0.94130 0.93718

AW 0.03259 0.03318 0.03387 0.03428 0.03691 0.03365 0.03391 0.03428

CPlogit 0.95000 0.95696 0.96142 0.95833 0.86000 0.95400 0.96255 0.96049

AWlogit 0.03397 0.03463 0.03541 0.03588 0.03834 0.03511 0.03545 0.03588
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7.5.3 Wald-type tests

To evaluate the performance of the proposed Wald-type tests, we consider the scenario of unbal-

anced data proposed discussed above. We consider the testing problem

H0 : α1 = 0.04946 against H1 : α1 6= 0.04946, (7.25)

Under the same simulation scheme as used above in Section 7.5.1, we first evaluate the empirical

levels, measured as the proportion of Wald-type test statistics exceeding the corresponding chi-

square critical value for a nominal size of 0.05. The empirical powers are computed in a similar

manner, with α0
1 = 0.05276 (c1 = −0.032, c2 = −0.028). The obtained results are shown in

Figure 7.5.1. In the case of uncontaminated data, the conventional Wald test has level to be

close to nominal value and also has good power performance. The robust tests, however, has

a slightly inflated level values (as compared to the nominal value), but possesses similar power

as the conventional Wald test (which is evident from the Figure 7.5.1). But, when the data is

contaminated, the level of the conventional Wald test turns out to be quite non-robust and takes

on very high values as compared to the nominal level. This, in turn, results in higher power (see

Figure 7.5.1). However, the proposed robust tests maintain levels close to the nominal value and

also possesses good power values (as can be seen in the Figure 7.5.1). Thus, taking both level and

power into account, the robust tests, though is slightly inferior to the conventional Wald test in

the case of uncontaminated data, turn out to be considerably more efficient than the conventional

Walk test in the case of contaminated data

7.6 Application to Real Data

7.6.1 Testing on proportional Hazard rates

Based on Balakrishnan and Ling [2012b], we suggest a distance-based statistic on the form

Mβ = maxi,s

∣∣∣nis −Kis(1−R(ITi,xs; θ̂β))
∣∣∣ (7.26)

as a discrepancy measure for evaluating the fit of the assumed model to the observed data. If the

assumed model is not a good fit to the data, we will obtain a large value of Mβ . In fact, under the

assumed model, we have

nis ∼ Binomial(Kis, 1−R(ITi,xs;θ)),

and so, by denoting Φis = dKis(1−R(ITi,xs; θ̂β))−Mβe and Ψis = bKis(1−R(ITi,xs; θ̂β))+Mβc,
the corresponding exact p-value is given by

p− value = Pr
(
maxi,s

∣∣∣nis −Kis(1−R(ITi,xs; θ̂β))
∣∣∣ > Mβ

)
= 1− Pr

(
maxi,s

∣∣∣nis −Kis(1−R(ITi,xs; θ̂β))
∣∣∣ ≤Mβ

)
= 1−

I∏
i=1

S∏
s=1

Pr
(∣∣∣nis −Kis(1−R(ITi,xs; θ̂β))

∣∣∣ ≤Mβ

)
= 1−

I∏
i=1

S∏
s=1

Pr (Φis ≤ nis ≤ Ψis) . (7.27)

From (7.27), we can readily validate the proportional hazards assumption if the p-value is suffi-

ciently large.

7.6.2 Choice of the tuning parameter

In the preceding discussion, we have seen how weighted minimum DPD estimators with β > 0

tend to be more robust than the classical MLE overall when contamination is present in the data.
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Figure 7.5.1: Proportional hazards model: MSEs and estimated levels and powers for unbalanced data
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MLE has been shown to be more efficient when there is no contamination in the data. It is then

necessary to provide a data-driven procedure for the determination of the optimal choice of the

tuning parameter that would provide a trade-off between efficiency and robustness. One way to do

this is as follows: In a grid of possible tuning parameters, apply a measure of discrepancy to the

data. Then, the tuning parameter that leads to the minimum discrepancy-statistic can be chosen

as the “optimal” one.

A possible choice of the discrepancy measure could be Mβ , given in (7.26). Another idea may

be by minimizing the estimated mean square error, as suggested in Warwick and Jones [2005] and

in previous chapters. The need for a pilot estimator became the major drawback of this procedure,

as will be seen in the next section.

7.6.3 Electric Current data

We now consider the Electric Current data (Ling et al. [2015]), in which 120 one-shot devices were

divided into four accelerated conditions with higher-than-normal temperature and electric current,

and inspected at three different times (see Table 7.6.1). In Table 7.6.3, estimates of the model

parameters by the use of the proportional hazards model and the Weibull distribution are provided,

for different values of the tuning parameter. Estimates of reliabilities and confidence intervals under

the proportional hazards assumption are given in Table 7.6.2. Table 7.6.3 also presents the dvalues

of the distance-statistic Mβ and the corresponding p-values. From these values, it seems that the

proportional hazards assumption fits the data at least as well as the Weibull model. The best fit

is obtained for β = 0.5. To complete the study, Warwick and Jones [2005] approach is achieved for

different values of the pilot estimator in a grid of width 100. However, as pointed out before, the

final choice of the optimal tuning parameter depends too much on the pilot estimator used (see

Figure 7.6.1).

Table 7.6.1: Electric Current data

Inspection Time τi 2 2 2 2 5 5 5 5 8 8 8 8

Temperature xs1 55 80 55 80 55 80 55 80 55 80 55 80

Electric current xs2 70 70 100 100 70 70 100 100 70 70 100 100

Number of failures nis 4 8 9 8 7 9 9 9 6 10 9 10

Number of tested items Kis 10 10 10 10 10 10 10 10 10 10 10 10
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Figure 7.6.1: Electric Current data: estimation of the optimal tuning parameter depending on a pilot

estimator by Warwick and Jones procedure
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Table 7.6.2: Electric Current data: estimates of reliabilities and corresponding confidence intervals

β R(2, 25, 35; θ̂β) R(5, 25, 35; θ̂β) R(8, 25, 35; θ̂β)

0 0.817 (0.516, 0.949) 0.739 (0.397, 0.924) 0.689 (0.336, 0.907)

0.1 0.824 (0.526, 0.952) 0.751 (0.412, 0.928) 0.704 (0.353, 0.912)

0.2 0.833 (0.535, 0.956) 0.765 (0.427, 0.934) 0.721 (0.370, 0.919)

0.3 0.843 (0.545, 0.960) 0.780 (0.442, 0.941) 0.740 (0.387, 0.927)

0.4 0.855 (0.555, 0.965) 0.797 (0.457, 0.948) 0.760 (0.405, 0.936)

0.5 0.868 (0.566, 0.971) 0.816 (0.474, 0.956) 0.782 (0.423, 0.946)

0.6 0.884 (0.581, 0.976) 0.837 (0.493, 0.965) 0.807 (0.445, 0.956)

0.7 0.901 (0.601, 0.982) 0.861 (0.516, 0.973) 0.836 (0.471, 0.967)

0.8 0.918 (0.626, 0.987) 0.885 (0.544, 0.980) 0.863 (0.503, 0.975)

0.9 0.931 (0.649, 0.990) 0.902 (0.570, 0.985) 0.884 (0.533, 0.981)

Table 7.6.3: Electric Current data: one-shot device testing data analysis by using the proportional

hazards model and the Weibull distribution

Proportional Hazards model Weibull distribution

β Mβ p-value T ◦ current η1 η2 η3 Mβ p-value intercept T ◦ current shape

0 1.80 0.695 0.023 0.018 0.123 0.543 -2.182 1.80 0.695 7.022 -0.053 -0.040 -0.817

0.1 1.72 0.745 0.024 0.018 0.141 0.555 -2.283 1.72 0.745 7.398 -0.055 -0.043 -0.845

0.2 1.65 0.796 0.024 0.019 0.156 0.565 -2.399 1.65 0.796 7.803 -0.057 -0.046 -0.869

0.3 1.58 0.833 0.025 0.020 0.167 0.572 -2.534 1.57 0.833 8.254 -0.060 -0.050 -0.890

0.4 1.49 0.931 0.026 0.022 0.177 0.579 -2.695 1.49 0.931 8.747 -0.064 -0.054 -0.906

0.5 1.40 0.942 0.027 0.023 0.183 0.582 -2.887 1.40 0.942 9.324 -0.068 -0.058 -0.920

0.6 1.51 0.892 0.029 0.025 0.187 0.585 -3.130 1.51 0.892 10.026 -0.073 -0.063 -0.931

0.7 1.64 0.876 0.031 0.027 0.190 0.586 -3.438 1.64 0.876 10.868 -0.079 -0.069 -0.938

0.8 1.76 0.861 0.033 0.030 0.189 0.586 -3.798 1.76 0.861 11.827 -0.086 -0.076 -0.942

0.9 1.84 0.750 0.036 0.032 0.185 0.582 -4.106 1.84 0.750 12.575 -0.091 -0.082 -0.938
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Chapter 8

Robust inference for one-shot device testing under

exponential distribution and competing risks

8.1 Introduction

In lifetime data analysis, it is often the case that the products under study can experience one

of different types of failure. For example, in the context of survival analysis, we can have several

different types of failure (death, relapse, opportunistic infection, etc.) that are of interest to us,

leading to the so-called “competing risks” scenario. A competing risk is an event whose occurrence

precludes the occurrence of the primary event of interest. In a study examining time to death

attributable, for instance, to cardiovascular causes, death attributable to noncardiovascular causes

would be a competing risk. Crowder [2006] has presented review of this competing risks problem

for which one needs to estimate the failure rates for each cause. Balakrishnan et al. [2015a,b] and

So [2016] have discussed the problem of one-shot devices under competing risk for the first time.

However, in previous chapters, it was assumed that there is only one survival endpoint of interest,

and that censoring is independent of the event in interest. The main purpose of this chapter is to

develop weighted minimum DPD estimators as well as Wald-type test statistics under competing

risk models for one-shot device testing assuming exponential lifetimes.

In Section 8.2, we present the model formulation as well as the notation to be used the rest

of the chapter. The weighted minimum DPD estimators for one-shot device testing exponential

model under competing risks are then developed in Section 8.3. Their asymptotic distribution

and a new family of Wald-type test statistics based on them are also presented in this section. In

Section 8.4, an extensive Monte Carlo simulation study is carried out for demonstrating the robust

behaviour of the proposed estimators as well as the testing procedures. The developed methods

are then applied to a pharmacology data for illustrative purposes.

The results of this Chapter have been writen in the form of a paper (Balakrishnan et al. [2020d]).

8.2 Model description and MLE

In this section, we shall introduce the notation necessary for the developments in this chapter,

paying special attention to the MLE of the model, as well as its relation with the minimization of

Kullback-Leibler divergence.

The setting for an accelerate life-test for one-shot devices under competing risks considered

here is stratified in I testing conditions as follows:

1. The tests are checked at inspection times ITi, for i = 1, . . . , I;

2. The devices are tested under J different stress levels, xi = (xi1, . . . , xiJ)T , for i = 1, . . . , I;

3. Ki devices are tested in the ith test condition, for i = 1, . . . , I;
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4. The number of devices failed due to the r-th cause under the i-th test condition is denoted

by nir, for i = 1, . . . I, r = 1, . . . , R;

5. The number of devices that survive under the i-th test condition is denoted by ni0 = Ki −∑R
r=1 nir.

Table 8.2.1: One-shot device testing under competing risks.

Failures Stress levels

Condition Times Devices Survivals Cause 1 · · · Cause R Stress 1 · · · Stress J

1 IT1 K1 n10 n11 · · · n1R x11 · · · x1J

2 IT2 K2 n20 n21 · · · n2R x21 · · · x2J

...
...

...
...

...
...

...

I ITI KI nI0 nI1 · · · nIR xI1 · · · xIJ

This setting is summarized in Table 8.2.1. For simplicity, and as considered in Balakrishnan

et al. [2015a], we will limit in this chapter, the number of stress levels to J = 1 and the number of

competing causes to R = 2, even though inference for the general case when J > 1 and R > 2 can

be presented in an analogous manner.

Let us denote the random variable for the failure time due to causes 1 and 2 as Tirk, for

r = 1, 2, i = 1, . . . , I, and k = 1, . . . ,Ki, respectively. We now assume that Tirk follows an

exponential distribution with failure rate parameter λir(θ) and its probability density function

fr(t;xi,θ) = λir(θ)e−λir(θ)t, t > 0,

λir(θ) = θr0 exp(θr1xi),

θ = (θ10, θ11, θ20, θ21)T , θr0, θr1 > 0, r = 1, 2,

where xi is the stress factor of the condition i and θ is the model parameter vector, with θ ∈ R4.

We shall use πi0(θ), πi1(θ) and πi2(θ) for the survival probability, failure probability due to

cause 1 and failure probability due to cause 2, respectively. Their expressions are

πi0(θ) = (1− F1(ITi;xi,θ))(1− F2(ITi;xi,θ)) = exp(−(λi1 + λi2)ITi),

πi1(θ) =
λi1

λi1 + λi2
(1− exp(−(λi1 + λi2)ITi)),

πi2(θ) =
λi2

λi1 + λi2
(1− exp(−(λi1 + λi2)ITi)),

where λir = λir(θ), r = 1, 2. Derivations of these expressions can be found in So [2016] (pp. 151).

Now, the likelihood function is given by

L(n01, . . . , nI2;θ) ∝
I∏
i=1

πi0(θ)ni0πi1(θ)ni1πi2(θ)ni2 , (8.1)

where n0i + n1i + n2i = Ki, i = 1, . . . , I.

Now, we present the classical definition of the MLE.

Definition 8.1 The MLE of θ, denoted by θ̂, is obtained by maximizing the likelihood function in

(8.1) or, equivalently, its logarithm.

We will present an alternative definition of the MLE later on (see Definition 8.3). Let us

introduce the following probability vectors:

p̂i = (p̂i0, p̂i1, p̂i2)T =
1

Ki
(ni0, ni1, ni2)T , i = 1, . . . , I, (8.2)
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πi(θ) = (πi0(θ), πi1(θ), πi2(θ))T , i = 1, . . . , I. (8.3)

The Kullback-Leibler divergence measure (see, for instance, Pardo [2005]), between p̂i and πi(θ),

is given by

dKL(p̂i,πi(θ)) =

2∑
r=0

p̂ir log

(
p̂ir

πir(θ)

)
= p̂i0 log

(
p̂i0

πi0(θ)

)
+ p̂i1 log

(
p̂i1

πi1(θ)

)
+ p̂i2 log

(
p̂i2

πi2(θ)

)
=
ni0
Ki

log

(
ni0/Ki

πi0(θ)

)
+
ni1
Ki

log

(
ni1/Ki

πi1(θ)

)
+
ni2
Ki

log

(
ni2/Ki

πi2(θ)

)
=

1

Ki

{
ni0 log

(
ni0/Ki

πi0(θ)

)
+ ni1 log

(
ni1/Ki

πi1(θ)

)
+ ni2 log

(
ni2/Ki

πi2(θ)

)}
,

and the weighted Kullback-Leibler divergence measure is given by

dWKL(θ) =

I∑
i=1

Ki

K
dKL(p̂i,πi(θ))

=
1

K

I∑
i=1

{
ni0 log

(
ni0/Ki

πi0(θ)

)
+ ni1 log

(
ni1/Ki

πi1(θ)

)
+ ni2 log

(
ni2/Ki

πi2(θ)

)}
,

with K = K1 + · · ·+KI .

Theorem 8.2 The likelihood function L(n01, . . . , nI2;θ), given in (8.1), is related to the weighted

Kullback-Leibler divergence measure through

dWKL(θ) =

I∑
i=1

Ki

K
dKL(p̂i,πi(θ)) = c− 1

K
logL(n01, . . . , nI2;θ), (8.4)

with c being a constant, not dependent on θ.

Proof. We have

I∑
i=1

Ki

K
dKL(p̂i,πi(θ)) =

1

K

I∑
i=1

{
ni0 log

(
ni0/Ki

πi0(θ)

)
+ ni1 log

(
ni1/Ki

πi1(θ)

)
+ ni2 log

(
ni2/Ki

πi2(θ)

)}

=
1

K

I∑
i=1

{
ni0 log

(
ni0
Ki

)
+ ni1 log

(
ni1
Ki

)
+ ni2 log

(
ni2
Ki

)}

− 1

K

I∑
i=1

{ni0 log (πi0(θ)) + ni1 log (πi1(θ)) + ni2 log (πi2(θ))}

= c− 1

K
log

(
I∏
i=1

πi0(θ)ni0πi1(θ)ni1πi2(θ)ni2

)

= c− 1

K
log (L(θ|δ, IT ,x)) ,

where c = 1
K

∑I
i=1

∑2
r=0

{
nir log

(
nir
Ki

)}
and it does not depend on the parameter vector θ.

Based on Theorem 8.2 we can give the following alternative definition for the MLE.

Definition 8.3 The MLE of θ, θ̂, can be obtained by the minimization of the weighted Kullback-

Leibler divergence measure given in (8.4).
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8.3 Weighted minimum DPD estimator

8.3.1 Definition

Given the probability vectors p̂i and πi(θ), defined in (8.2) and (8.3), respectively, the DPD

between both probability vectors is given by

dβ(p̂i,πi(θ)) =
(
πβ+1
i0 (θ) + πβ+1

i1 (θ) + πβ+1
i2 (θ)

)
− β + 1

β

(
p̂i0π

β
i0(θ) + p̂i1π

β
i1(θ) + p̂i2π

β
i2(θ)

)
+

1

β

(
p̂β+1
i0 + p̂β+1

i1 + p̂β+1
i2

)
, if β > 0,

and dβ=0(p̂i,πi(θ)) = limβ→0+ dβ(p̂i,πi(θ)) = dKL(p̂i,πi(θ)), for β = 0.

The weighted DPD is given by

dWβ (θ) =

I∑
i=1

Ki

K

[(
πβ+1
i0 (θ) + πβ+1

i1 (θ) + πβ+1
i2 (θ)

)
−β + 1

β

(
p̂i0π

β
i0(θ) + p̂i1π

β
i1(θ) + p̂i2π

β
i2(θ)

)
+

1

β

(
p̂β+1
i0 + p̂β+1

i1 + p̂β+1
i2

)]
but the term 1

β

(
p̂β+1
i0 + p̂β+1

i1 + p̂β+1
i2

)
, i = 1, ..., I, does not have any role in its minimization with

respect to θ. Therefore, in order to minimize dWβ (θ), we can consider the equivalent measure

∗dWβ (θ) =

I∑
i=1

Ki

K

[(
πβ+1
i0 (θ) + πβ+1

i1 (θ) + πβ+1
i2 (θ)

)
−β + 1

β

(
p̂i0π

β
i0(θ) + p̂i1π

β
i1(θ) + p̂i2π

β
i2(θ)

)]
. (8.5)

Definition 8.4 We can define the weighted minimum DPD estimator of θ as

θ̂β = arg min
θ∈Θ

∗dWβ (θ), for β > 0

and for β = 0 we get the weighted maximum likelihood estimator.

8.3.2 Estimation and asymptotic distribution

Theorem 8.5 The weighted minimum DPD estimator of θ, with tuning parameter β ≥ 0, θ̂β, can
be obtained as the solution of the following system of four equations:

I∑
i=1

Ki

{
−πi0(θ)ITi

[
πi0(θ)β−1(πi0(θ)− pi0)− (1− πi0(θ))β−1Γi,β

]
li + (1− πi0(θ))βΓ∗

i,β

}
= 04,

where

Γi,β =
λβi1

[
λi1

λi1+λi2
(1− πi0(θ))− pi1

]
+ λβi2

[
λi2

λi1+λi2
(1− πi0(θ))− pi2

]
(λi1 + λi2)β

,

Γ∗i,β =
λβ−1
i1

[
λi1

λi1+λi2
(1− πi0(θ))− pi1

]
− λβ−1

i2

[
λi2

λi1+λi2
(1− πi0(θ))− pi2

]
(λi1 + λi2)β−1

,

li = (λi1/θ10, λi1xi, λi2/θ20, λi2xi)
T and ri = λi1λi2

(λi1+λi2)2 (1/θ10, xi,−1/θ20,−xi)T .
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Proof. The estimating equations are given by

∂

∂θ
∗dWβ (θ) = 04, (8.6)

where ∗dWeighted
β (θ) is as given in (8.5). Equation (8.6) is equivalent to

1

β + 1

∂

∂θ

I∑
i=1

2∑
r=0

Kiπ
β+1
ir (θ)− 1

β

∂

∂θ

I∑
i=1

2∑
r=0

Kipirπ
β
ir(θ) = 04; (8.7)

that is,

1

β + 1

I∑
i=1

2∑
r=0

Ki(β + 1)πβir(θ)
∂πir(θ)

∂θ
− 1

β

I∑
i=1

2∑
r=0

Kipirβπ
β−1
ir (θ)

∂πir(θ)

∂θ
= 04,

or, equivalently
I∑
i=1

2∑
r=0

Kiπ
β−1
ir (θ)

∂πir(θ)

∂θ
[πir(θ)− pir] = 04.

But,

πi0(θ) = exp(−(λi1 + λi2)ITi),

πi1(θ) =
λi1

λi2 + λ2i
(1− exp(−(λi1 + λi2)ITi)) =

λi1
λi2 + λ2i

(1− πi0(θ)),

πi2(θ) =
λi2

λi1 + λi2
(1− exp(−(λi1 + λi2)ITi)) =

λi2
λi1 + λi2

(1− πi0(θ)),

and so

∂πi0(θ)

∂θ
= −ITiπi0(θ)

∂

∂θ
[λi1 + λi2] = −ITiπi0(θ)(λi1/θ10, λi1xi, λi2/θ20, λi2xi)

T = −ITiπi0(θ)li,

∂πi1(θ)

∂θ
= (1− πi0(θ))

[
∂

∂θ

λi1
λi1 + λi2

]
− λi1
λi1 + λi2

∂πi0(θ)

∂θ
,

∂πi2(θ)

∂θ
= (1− πi0(θ))

[
∂

∂θ

λi2
λi1 + λi2

]
− λi2
λi1 + λi2

∂πi0(θ)

∂θ
,

where [
∂

∂θ

λi1
λi1 + λi2

]
= −

[
∂

∂θ

λi2
λi1 + λi2

]
=

λi1λi2
(λi1 + λi2)2

(1/α10, xi,−1/α20,−xi)T .

We then obtain the desired result.

Now, by using (1.11), we can obtain the asymptotic distribution of the above weighted minimum

DPD estimator.

Theorem 8.6 Let θ0 be the true value of the parameter θ. The asymptotic distribution of the

weighted minimum DPD estimator of θ, θ̂β, is given by

√
K
(
θ̂β − θ0

)
L−→

K→∞
N
(
04,J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)
,

where

Jβ(θ) =

I∑
i=1

2∑
r=0

Ki

K
u∗ir(θ)u∗Tir (θ)πβ−1

ir (θ), (8.8)
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Kβ(θ) =

I∑
i=1

2∑
r=0

Ki

K
u∗ir(θ)u∗Tir (θ)π2β−1

ir (θ)−
I∑
i=1

Ki

K
ξi,β(θ)ξTi,β(θ), (8.9)

with ξi,β(θ) =
∑2
r=0 u

∗
ir(θ)πβir(θ) and u∗ir(θ) = ∂πir(θ)

∂θT
, where

∂πi0(θ)

∂θ
= −ITiπi0(θ)li,

∂πi1(θ)

∂θ
=

λi1
λi1 + λi2

ITiπi0(θ)li + (1− πi0(θ))ri,

∂πi2(θ)

∂θ
=

λi2
λi1 + λi2

ITiπi0(θ)li − (1− πi0(θ))ri,

li = (λi1/θ10, λi1xi, λi2/θ20, λi2xi)
T and ri = λi1λi2

(λi1+λi2)2 (1/θ10, xi,−1/θ20,−xi)T .

Proof. Directly from (1.11) and proof of Theorem 8.5.

8.3.3 Wald-type tests

Let us consider the function m : RJ+1 −→ Rr, where r ≤ 4. Then

m (θ) = 0r, (8.10)

with 0r being the null column vector of dimension r, which represents the null hypothesis. We

assume that the 4× r matrix

M (θ) =
∂mT (θ)

∂θ

exists and is continuous in “θ ” and that rank(M (θ)) = r. For testing

H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0, (8.11)

where

Θ0 = {θ ∈ Θ0 : m (θ) = 0r} ,

we can consider the following Wald-type test statistics:

WK

(
θ̂β

)
= KmT

(
θ̂β

)(
MT

(
θ̂β

)
Σ
(
θ̂β

)
M
(
θ̂β

))−1

m
(
θ̂β

)
,

where

Σβ

(
θ̂β

)
= J−1

β

(
θ̂β

)
Kβ

(
θ̂β

)
J−1
β

(
θ̂β

)
,

and Jβ (θ) and Kβ (θ) are as given in (8.8) and (8.9), respectively.

Theorem 8.7 Under the null hypothesis, we have

WK

(
θ̂β

)
L−→

K→∞
χ2
r.

Based on Theorem 8.7 , we can reject the null hypothesis, in (8.11), if

WK

(
θ̂β

)
> χ2

r,α, (8.12)

where χ2
r,α is the upper α percentage point of χ2

r distribution.

Remark 8.8 (Robustness properties) In Chapters 2 and 3, the robustness of the weighted

minimum DPD estimators and Wald-type tests, for β > 0, was theoretically derived through local

dependence under the exponential assumption but in a non-competing risk framework, for large

leverages xis. Analogous computations would result in the same conclusion for the competing risks

scenario. However, we could not directly infer about the robustness against outliers in the response

variable which are, in fact, the misspecification errors. In the next section, a simulation study is

carried out in order to empirically illustrate the robustness of the proposed statistics with β > 0,

and the non-robustness when β = 0, also against such misspecification errors.
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8.4 Simulation Study

In this section, a Monte Carlo simulation study that examines the accuracy of the proposed

weighted minimum DPD estimators is presented. Section 8.4.1 focuses on the efficiency, mea-

sured in terms of root of mean square error (RMSE), mean bias error (MBE) and mean absolute

error (MAE), of the estimators of model parameters, while Section 8.4.2 examines the behavior of

Wald-type tests developed in preceding sections. Every step of simulation was tested under S =

5,000 replications with R statistical software. The main purpose of this study is to show that within

the family of weighted minimum DPD estimators, developed in the preceding sections, there are

estimators with better robustness properties than the MLE, and the Wald-type tests constructed

based on them are at the same time more robust than the classical Wald test constructed based

on the MLE.

8.4.1 The weighted minimum DPD estimators

The lifetimes of devices are simulated for different levels of reliability and different sample sizes,

under 4 different stress conditions with 1 stress factor at 4 levels. Then, all devices under each

stress condition are inspected at 3 different inspection times, depending on the level of reliability.

The corresponding data will then be collected under I = 12 test conditions.

A. Balanced data: Effect of the sample size

Firstly, a balanced data with equal sample size for each group was considered. Ki was taken

to range from small to large sample sizes, two causes of failure were considered, and the model

parameters were set to be θ = (θ10, 0.05, θ20, 0.08)T with θ10 ∈ {0.008, 0.004, 0.001} and θ20 ∈
{0.0008, 0.0004, 0.0001} for devices with low, moderate and high reliability, respectively. To prevent

many zero-observations in test groups, the inspection times were set as IT ∈ {5, 10, 20} for the

case of low reliability, IT ∈ {7, 15, 25} for the case of moderate reliability, and IT ∈ {10, 20, 30} for

the case of high reliability. To evaluate the robustness of the weighted minimum DPD estimators,

we studied their behavior in the presence of an outlying cell for the first testing condition in our

table. This cell was generated under the parameters θ̃ = (θ10, 0.05, θ20, 0.15)T . See Table 8.4.1 for

a summary of these scenarios. RMSEs, MAEs and MBEs of model parameters were then computed

for the cases of both pure and contaminated data and are plotted in Figures 8.5.1, 8.5.2 and 8.5.3,

respectively, with similar conclusions for the three error measures.

For the case of pure data, MLE presents the best behaviour (overall in the model with high

reliability) and an increment in the tuning parameter β leads to a gradual loss in terms of effi-

ciency. However, in the case of contaminated data, MLE turns to be the worst estimator, and

weighted minimum DPD estimators with β > 0 present much more robust behaviour. Note that,

as expected, an increase in the sample size improves the efficiency of the estimators, both for pure

and contaminated data.

B. Unbalanced data: Effect of the degree of contamination

Now, we consider an unbalanced data with unequal sample sizes for the test conditions. This data

set, which consists a total of K = 300 devices, is presented in Table 8.4.2. A competing risks model,

with two different causes of failure, was generated with parameters θ = (0.001, 0.05, 0.0001, 0.08)T .

To examine the robustness in this accelerated life test (ALT) plan (in which the devices are tested

under high stress levels, so that more failures can be observed), we increased each of the parameters

of the outlying first cell (Figure 8.4.1). The contaminated parameters are expressed by θ̃10, θ̃11, θ̃20

and θ̃21, respectively.

When there is no contamination in the cell or the degree of contamination is very low, and

in concordance with results obtained in the previous scenario, MLE is observed to be the most

efficient estimator. However, when the degree of contamination increases, there is an increase in

123



Table 8.4.1: Parameter values used in the simulation. Study of efficiency.

Reliability Parameters Symbols Values

Risk 1 θ10, θ11 0.008, 0.05

Low reliability Risk 2 θ20, θ21 0.0008, 0.08

Contamination θ̃21 0.15

Temperature (◦C) xT = (x1, x2, x3, x4) (35, 45, 55, 65)

Inspection Time (days) IT = {IT1, IT2, IT3} {5, 10, 20}
Risk 1 θ10, θ11 0.004, 0.05

Moderate reliability Risk 2 θ20, θ21 0.0004, 0.08

Contamination θ̃21 0.15

Temperature (◦C) xT = (x1, x2, x3, x4) (35, 45, 55, 65)

Inspection Time (days) IT = (IT1, IT2, IT3) {7, 15, 25}
Risk 1 θ10, θ11 0.001, 0.05

High reliability Risk 2 θ20, θ21 0.0001, 0.08

Contamination θ̃21 0.15

Temperature (◦C) xT = (x1, x2, x3, x4) (35, 45, 55, 65)

Inspection Time (days) IT = (IT1, IT2, IT3) {10, 20, 30}

Table 8.4.2: ALT plan, unbalanced data.

i xi ITi Ki

1 35 10 50

2 45 10 40

3 55 10 20

4 65 10 40

5 35 20 20

6 45 20 20

7 55 20 30

8 65 20 20

9 35 30 20

10 45 30 20

11 55 30 10

12 65 30 10

the error for all the estimators, but weighted minimum DPD estimators are shown to be much more

robust. This is also the case for whatever choice of the contamination parameters we considered.

8.4.2 Wald-type tests

Let us consider the balanced data under moderate reliability defined in the previous section. To

compute the accuracy in terms of contrast, we consider the testing problem

H0 : θ21 = 0.08 vs. H1 : θ21 6= 0.08. (8.13)

For computing the empirical test level, we measured the proportion of test statistics exceeding

the corresponding chi-square critical value. The simulated test powers were also obtained under

H1 in (8.13) in a similar manner. We used a nominal level of 0.05. Table 8.4.3 summarizes the

model considered for this purpose. As in the previous section, an outlying cell with θ̃21 = 0.15 is

considered to illustrate the robustness of the proposed Wald-type tests (Figure 8.4.2).

In the case of pure data, we see how a big sample size is needed to obtain empirical tests close

to the nominal level. In the case of contaminated data, empirical test levels are far away from the

nominal level, with the MLE again presenting the least robust behaviour.
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Figure 8.4.1: RMSEs of the weighted minimum DPD estimators of θ for different contamination param-

eter values. Unbalanced data.

Table 8.4.3: Parameter values used in the simulation study of Wald-type tests.

Study Parameters Symbols Values

Levels Model True Parameters θT = (θ10, θ11, θ20, θ21) (0.004, 0.05, 0.0004, 0.08)

Powers Model True Parameters θT = (θ10, θ11, θ20, θ21) (0.004, 0.05, 0.0004, 0.09)

This simulation study has illustrated well the robust properties of the weighted minimum DPD

estimators for β > 0, which is inevitably accompanied with a loss of efficiency in a the case of

pure data. It seems that a moderate low value of the tuning parameter can be a good choice

when applying the estimators to a real data set. However, when dealing with specific data sets,

especially when we have small data sets, a data driven procedure for the choice of tuning parameter

will become necessary.
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Figure 8.4.2: Levels and Powers of the weighted minimum DPD estimators-based Wald-type tests for

different values of Ki with pure (left) and contaminated data (right), for the case of moderate reliability.

8.4.3 Choice of tuning parameter

Let us consider again the problem of choosing the optimal tuning parameter in a DPD-based family

of estimators, which has been extensively discussed in the literature; see, for example, Hong and

Kim [2001], Warwick and Jones [2005], and Ghosh and Basu [2015], which consisted on minimizing

the estimated mean square error of the estimators, computed as the sum of estimated squared bias

and variance; that is,

M̂SEβ = (θ̂β − θP )T (θ̂β − θP ) +
1

K
trace

[
J−1
β (θ̂β)Kβ(θ̂β)J−1

β (θ̂β)
]
,

where θP is a pilot estimator, whose choice will be empirically discussed, since the overall proce-

dure depends on this choice. We consider again the balanced scenario under moderate reliability

discussed earlier. For different pilot estimators and a grid of 100 points, optimal tuning parameters

and their corresponding RMSEs are computed (see Figure 8.4.3). The optimal tuning parameter

increases when the contamination level increases in the data, and it seems that a moderate value

of β is the best choice for the pilot estimator, as suggested also in previous chapters.
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Figure 8.4.3: Estimated optimal β and the corresponding RMSEs for different pilot estimators in the

proposed ad-hoc approach for the case of moderate reliabiulity.

8.5 Benzidine dihydrochloride experiment

Let us reconsider our example in Section 2.7.3, the Benzidine dihydrochloride experiment, to study

the performance of the proposed procedures. As noted in Section 2.7.3, this experiment considers

two different doses of drug induced in the mice: 60 parts per million (x = 1) and 400 parts per

million (x = 2) and two causes of death are recorded: died without tumor (r = 1) and died with

tumor (r = 2). The data are presented in Table 2.7.6.

Estimators of parameters were obtained for different choices of tuning parameters. We then

computed the expected mean lifetime of the devices under the two doses of drug, both for the whole

population (Ex=1 and Ex=2) and particularly for the mice that died without tumor (E1
x=1 and

E1
x=2). We have also computed the probability of failure due to cause 1 (die without tumor) given

failure, for both doses of drug (P 1
x=1 and P 1

x=2). We applied the procedure described in Section

8.4.3 to determine the optimal tuning parameter for this data set, over a grid of 100 points. The

resulting optimal tuning parameter, 0.37, and its corresponding estimators are presented in Table

8.5.1. Finally, we estimate the errors, as given by
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1

3I

I∑
i=1

2∑
r=0

∣∣∣∣∣nir −Kiπir(θ̂)

Ki

∣∣∣∣∣ , (8.14)

for different tuning parameters β, and the corresponding results in Table 8.5.2. The minimum is

obtained for β = 0.8, while β = 0.37 also presents a lower estimated error, which is in concordance

with the estimate obtained earlier.

Table 8.5.1: Estimations for the BDC experiment for different hoices of tuning parameters

β θ10 θ11 θ20 θ21 E1
x=1 E1

x=2 Ex=1 Ex=2 P 1
x=1 P 1

x=2

0 0.00089 1.3191 0.00028 2.493 300.545 80.355 150.203 18.952 0.4997 0.2358

0.1 0.00091 1.3072 0.00029 2.465 297.876 80.593 146.984 18.872 0.4934 0.2341

0.2 0.00094 1.2844 0.00031 2.441 295.010 81.658 144.138 18.869 0.4885 0.2310

0.3 0.00097 1.2627 0.00033 2.408 291.902 82.572 140.528 18.818 0.4814 0.2279

0.4 0.00281 0.5329 0.00027 2.531 208.917 122.608 122.893 19.891 0.5882 0.1622

0.5 0.00104 1.2150 0.00036 2.367 285.233 84.626 135.755 18.859 0.4759 0.2228

0.6 0.00285 0.5253 0.00028 2.511 207.847 122.908 121.491 19.884 0.5845 0.1617

0.7 0.00282 0.5277 0.00028 2.503 209.051 123.322 121.277 19.824 0.5801 0.1607

0.8 0.00112 1.1412 0.00041 2.313 284.037 90.723 130.889 18.988 0.4608 0.2093

0.9 0.00271 0.5458 0.00029 2.496 213.458 123.669 122.077 19.741 0.5719 0.1596

1 0.00263 0.5514 0.00030 2.488 219.303 126.339 123.241 19.715 0.5619 0.1560

0.37 0.00279 0.5378 0.00026 2.537 209.275 122.221 123.529 19.946 0.5902 0.1632

Table 8.5.2: Estimated errors for the BDC experiment

β 0 0.1 0.2 0.3 0.37 0.4 0.6 0.7 0.8 0.9

est. error 0.1051 0.1049 0.1047 0.1044 0.1043 0.1051 0.1052 0.1050 0.1040 0.1048
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Figure 8.5.1: RMSEs of the weighted minimum DPD estimators of θ for different values of reliability

with pure (left) and contaminated data (right)
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Figure 8.5.2: MAEs of the weighted minimum DPD estimators of θ for different values of reliability with

pure (left) and contaminated data (right).
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Figure 8.5.3: MBEs of the weighted minimum DPD estimators of θ for different values of reliability with

pure (left) and contaminated data (right).
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Chapter 9

Conclusions and further work

9.1 Notes and Comments

In this Thesis, an overview on divergence-based robust methodology for one-shot device testing is

done. The development of this work followed different phases.

First of all, we developed robust inference for one-shot device testing under exponential lifetimes

and one single stress factor in a non-competing risks setting (see Chapter 2). Despite the apparent

simplicity of this model, this was the first and necessary step in order to develop a complete

divergence-based robust theory on one-shot device testing. The choice of DPD as our divergence

candidate, the computation of the asymptotic distribution of the resulted estimators, or the study

of the influence function in this non-homogeneous setup were some of the major challenges we

faced. Boundedness of the IF, accompanied with an illustrative simulation study, were not only

excellent results, but also a motivation to continue with this research. In this point, it may be

important to note that in the original study, presented in the corresponding paper of Balakrishnan

et al. [2019b], a quite different notation to that used in Chapter 2 was used. We considered a

balanced setting, with same number of observations in each condition, let say K. On the other

hand, as only one stress factor was considered, we could see our data as a I × J contingency

table, in which at each time, ITi, i, j = 1, 2, ..., I, K devices are placed under temperatures xj ,

j = 1, . . . , J . At each combination of temperature and inspection time, nij failures were observed.

Then, the likelihood function, based on the observed data was given by

L(n11, . . . , nIJ ;θ) =

I∏
i=1

J∏
j=1

Fnij (ITi;xj ,θ)RK−nij (ITi;xj ,θ) .

In this case, we defined the minimum DPD estimator as the minimizer of

dβ(p̂,π(θ)) =
1

(IJ)β+1

I∑
i=1

J∑
j=1

[
F β+1 (ITi;xj ,θ) +Rβ+1 (ITi;xj ,θ) (9.1)

− β + 1

β

(
nij
K
F β (ITi;xj ,θ) +

K − nij
K

Rβ (ITi;xj ,θ)

)
+

1

β

[(nij
K

)β+1

+

(
K − nij
K

)β+1
]]

.

The following step was to extend the model considered in Chapter 2 to the case of multiple

stress factors. This was done in Chapter 3. The first difficulty found here was the formulation of

the problem, as the introduction of more stress factors and the possibility of unbalanced data did

not allow the original formulation in (9.1). Once this problem was solved with the introduction of

the weighted minimum DPD estimators more general results, which includes the single-stress setup

as a particular case, were developed. In this case, we could not talk any more about Z-type tests,

but Wald-type tests with asymptotically chi-square distribution instead of normal distribution.
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Once this extension to the multiple-stress factors setting was completed, it was necessary to

consider other more realistic distributions for the lifetimes, although computation of estimating

equations and asymptotic variances became more complicated. For example, gamma and Weibull

distributions, presented in Chapter 4 and Chapter 5, respectively, or Lindley and Lognormal dis-

tributions, studied in Chapter 6. Finally, we extended our robust methods to develop robust

estimators and tests for one-shot device testing based on divergence measures under proportional

hazards model and competing risks model, in Chapter 7 and Chapter 8, respectively. However,

many problems remain still open. We present some of them in the following section.

9.2 Some challenges

9.2.1 On the choice of the tuning parameter

Along this Thesis, we have discussed the problem of choosing the optimal tuning parameter given

a data set. Different procedures are discussed for this purpose, all of them based on the following

idea: in a grid of possible tuning parameters, apply a measure of discrepancy to the data. Then, the

tuning parameter that leads to the minimum discrepancy-statistic can be chosen as the “optimal”

one. A possible choice of the discrepancy measure could be Mβ , given in (7.26). Another idea

may be by minimizing the estimated mean square error, as suggested in Warwick and Jones [2005].

However, as noted in Section 7.6.3, the need for a pilot estimator became the major drawback

of this procedure, as the final result will depend excessively on this choice. This problem was

also highlighted recently in Basak et al. [2020], where an “iterative Warwick and Jones algorithm”

(IWJ algorithm) is proposed. Application of the IJW algorithm and other possible approaches is

an interesting issue to be faced in the future.

9.2.2 Robust inference for one-shot devices with competing risks under

gamma or Weibull distribution

In Chapter 8, robust inference for one-shot device testing under competing risks is developed,

under the assumption of exponential lifetime distribution. However, the competing risks model

has been also considered in literature under other distributions. For example, in Balakrishnan

et al. [2015c], an expectation maximization (EM) algorithm is developed for the estimation of

model parameters with Weibull lifetime distribution. For further work, we can also develop robust

inference for one-shot devices with competing risks under gamma or Weibull distributions.

For example, let us consider the setting described in Table 8.2.1, limiting, for simplicity, the

number of competing causes to R = 2. Let us denote the random variable for the failure time due

to causes 1 and 2 as Tirk, for r = 1, 2, i = 1, . . . , I, and k = 1, . . . ,Ki, respectively. We now assume

that Tirk follows a Weibull distribution with scale parameter αir and shape parameter ηir, with

probability and cumulative density functions as

fTr (t;xi,θ) =

(
ηir

αir(θ)

)(
t

αir

)ηir−1

exp

(
−
(

1

αir

)ηir(θ)
)
, t > 0,

FTr (t;xi,θ) = 1− exp

(
−
(

1

αir

)ηir)
, t > 0,

respectively, where xi is the stress factor of the condition i, related to shape and scale parameters

by a log-link function

αir ≡ αir(θ) = exp(arxi),
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ηir ≡ ηir(θ) = exp(brxi),

where ar = (ar0, ar1, . . . , arJ), br = (br0, br1, . . . , brJ) and θ = (a1,a2, b1, b2)T ∈ R4(J+1) is the

model parameter vector. As it happened in the non-competing-risks model (Chapter 5), instead

of working with Weibull lifetimes, it is more convenient to work with the log-transformed lifetime

Wirk = log(Tirk), which follows an extreme value (Gumbel) distribution (see Meeker et al. [1998]).

The corresponding probability and cumulative density functions of the extreme value distribution

are

fWr (t;xi,θ) =

(
ηir

αir(θ)

)(
t

αir(θ)

)ηir(θ)−1

exp

(
−
(

1

αir(θ)

)ηir(θ)
)
, t > 0,

FWr
(t;xi,θ) = 1− exp

(
− exp

(
ω − µir
σir

))
, t > 0,

respectively, where −∞ < ω < ∞, µir = log(αir) and σir = η−1
ir . We define correspondingly

the log-transformed inspection times lITi = log(ITi). We shall use πi0(θ), πi1(θ) and πi2(θ) for

the survival probability, failure probability due to cause 1 and failure probability due to cause 2,

respectively. Their expressions are

πi0(θ) = exp

(
− exp

(
lITi − µi1

σi1

)
− exp

(
lITi − µi2

σi2

))
,

πi1(θ) =

∫ lITi

−∞
exp

{
− exp

(
ω − µi1
σi1

)
− exp

(
ω − µi2
σi2

)}
exp

(
ω − µi1
σi1

)
1

σi1
dω,

πi2(θ) =

∫ lITi

−∞
exp

{
− exp

(
ω − µi1
σi1

)
− exp

(
ω − µi2
σi2

)}
exp

(
ω − µi2
σi2

)
1

σi2
dω,

Then, the likelihood function is given by

L(n01, . . . , nI2;θ) ∝
I∏
i=1

πi0(θ)ni0πi1(θ)ni1πi2(θ)ni2 , (9.2)

where n0i + n1i + n2i = Ki, i = 1, . . . , I; and MLE is obtained by minimizing 9.2 on θ. Following

the same spirit of previous chapters, we can define the weighted minimum DPD estimator of θ as

θ̂β = arg min
θ∈Θ

∗dWβ (θ), for β > 0,

where ∗dWβ (θ) is as in (8.5). For β = 0, we have the MLE. Estimating equations and asymptotic

distribution of proposed estimators may need to be obtained. We are currently working on this

problem and hope to report the findings in a future paper.

9.2.3 EM algorithm for one-shot device testing under the lognormal

distribution

Chapter 6 deals with the problem of one-shot device testing under lognormal distribution, in

particular, new estimators and tests are proposed based on divergence measures and are shown

to present a better behaviour than classical MLE in terms of robustness. However, up to our

knowledge, no previous literature was done in relation of one-shot device testing under log-normal

distribution. It would be of interest to develop an Expectation Maximization (EM) algorithm for

the estimation of the MLE in this context.

EM algorithm, (Dempster et al. [1977]), is a very popular tool to handle any missing or incom-

plete data situation. This iterative method has two steps. In the E-step, it replaces any missing
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data by its expected value and in the M-step the log-likelihood function is maximized with the

observed data and expected value of the incomplete data, producing an update of the parameter

estimates. The MLEs of the parameters are obtained by repeating the E- and M-steps until con-

vergence occurs. Note that, in the case of lognormal lifetimes, it would be very helpful to work

with the logarithm of lifetimes, so in the E-step, which will need of the conditional expectation

of the log-likelihood of complete data, we could use the left-truncated and right-truncated normal

distributions (see Basak et al. [2009] for progressively censored data).

9.2.4 Model selection in one-shot devices by means of the generalized

gamma distribution

Let us assume, without loss of generality, the multiple stress factors setting presented in Table

2.2.1. We may assume that the lifetimes follow a generalized gamma distribution, f(t, xi; q, λi, σi),

where t > 0 is the lifetime, −∞ < q < ∞ and σi > 0 are shape parameters and λi > 0 is a scale

parameter, related to the stress level xi in a log-linear form. The generalized gamma distribution

has been widely studied in recent years because its flexibility. It contains many distributions as

special cases. For example, is the lognormal distribution when q = 0, the Weibull distribution when

q = 1 and the gamma distribution when q/σi = 1. Other well known probability distributions,

such as the half-normal or spherical normal distributions, can be obtained as special cases. For

more details, see Stacy and Mihram [1965] and Balakrishnan and Peng [2006].

The advantage of using the generalized gamma distribution as the lifetime distribution is also

demonstrate by the flexible tails of its density function, which can determine the type of depen-

dence among the correlated observations (see Hougaard [1986]). However, the generalized gamma

distribution has not been considered so far for one-shot device models. Model discrimination within

the generalized gamma distribution, by means of information-based criteria, likelihood ratio tests

or Wald tests, will be a challenging and interesting problem for further consideration.

9.3 Productions

During the PhD a total of 16 manuscripts have been produced, 13 of which are already accepted in

JCR impact factor journals, while the others are currently under revision. Furthermore, 2 chapters

of book have been also published. These are numerated as follows, following the order they appear

in the Thesis.1
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Appendix A

Optimal design of CSALTs for one-shot devices

and the effect of model misspecification

Along this Thesis, we have focused our efforts on developing robust inference for one-shot device

testing by means of divergence measures. So far, however, we have little discussed about optimal

design, which is another problem of great importance in reliability, as it would result in great

savings in both time and cost. Note that there are many types of ALTs. For example, constant-

stress ALTs (CSALTs) assume that each device is subject to only one pre-specified stress level,

while step-stress ALTs (SSALTs) apply stress to devices in such a way that stress levels will get

changed at prespecified times. To design efficient CSALTs for one-shot devices under Weibull

lifetime distribution, subject to a prespecified budget and a termination time, Balakrishnan and

Ling [2014b] considered the minimization of the asymptotic variance of the MLE of reliability at

a mission time under normal operating conditions. In a similar manner, Ling [2019] and Ling and

Hu [2020] designed optimal SSALTs for one-shot devices under exponential and Weibull lifetime

distributions, respectively. In this Appendix, we briefly present the problem of optimal design of

CSALTs in one-shot device testing. This problem, as well as the effect of model misspecification,

have been extensively studied in Balakrishnan et al. [2020a].

Let us suppose, that the data are stratified into I testing conditions S1, . . . , SI , and that in

testing condition Si, Ni individuals are tested with J types of stress factors being maintained at

certain levels, and inspected at Ki equally-spaced time points. Specifically, Nik items are drawn

and inspected at a specific time Tik with
∑Ki
k=1Nik = Ni. Then, nik failure items are collected from

the test at inspection time Tik. Let xi = (1, xi1, . . . , xiJ)T be the vector of stress factors associated

to testing condition Si (i = 1, . . . , I). The MLE of θ, θ̂, is then determined by maximizing the

log-likelihood function of the data, with respect to the model parameter θ.

We want to describe an algorithm for the determination of the best ALT plan, by minimizing

the asymptotic variance of the MLE of reliability at a specific mission time under normal operating

conditions. Then, we would need the Fisher information matrix for model parameters. Let us con-

sider the inspection plan ζ = (f,Ki, Nik), consisting of inspection frequency, number of inspections

at each condition, and allocation of the products. The Fisher information matrix under ζ, is given

by

I(θ; ζ) =

I∑
i=1

Ki∑
k=1

Nik

(
1

R(Tik;Si)
+

1

1−R(Tik;Si)

)(
∂R(Tik;Si)

∂θ

)(
∂R(Tik;Si)

∂θT

)
,

where Tik = k × f , for k = 1, . . . ,Ki, for equi-spaced time points, and R(Tik;Si) denotes the

reliability function. The asymptotic covariance matrix of the MLEs of the model parameters can

be obtained by inverting the observed Fisher information matrix.
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V ≡ V (θ; ζ) = (I(θ; ζ))−1.

Using these expressions, the asymptotic variance of the MLE of reliability under normal oper-

ating conditions at a specific mission time t0 can be computed by the delta method

VR(ζ) ≡ AV (R̂(t0;x0)) = P T
RV PR,

where PR = ∂R(t0;x0)
∂θ

∣∣∣
θ̂
, and x0 is the vector of stress factors associated to the normal operating

condition.

Suppose the budget for conducting a CSALT for one-shot device testing, the operation cost

at testing condition Si, the cost of devices (including the purchase of and testing cost), and the

termination time are specified as Cbudget, Coper,i, Citem and Tter, respectively. Then, for a given test

plan, ζ, that includes the inspection frequency, f , the number of inspections at testing condition

Si, Ki ≥ 2, and the allocation of devices, Nik, for i = 1, 2, ..., I, the total cost of conducting the

experiment is seen to be

TC(ζ) = Citem

I∑
i=1

Ki∑
k=1

Nik + f

(
I∑
i=1

KiCoper,i

)
.

In Balakrishnan et al. [2020a], an algorithm for the determination of an optimal CSALT subject

to a specified budget (TC(ζ) ≤ Cbudget) and termination time is presented, by minimizing the

asymptotic variance of the MLE of reliability; and applied to the case that the lifetimes of the

devices follow a gamma or a Weibull distribution. In an extensive simulation study, this algorithm

is evaluated, as well as its sensitivity over parameter misspecification. It is seen that, within

moderate errors of the parameters, the designs of optimal CSALTs are quite robust. In this paper,

the effect of model misspecification between gamma, Weibull, lognormal and BS distributions in

the design of optimal CSALTs is also examined. Results do reveal that the assumption of life-

time distribution to be Weibull seems to be the more robust to model misspecification, while the

assumption of lifetime distribution to be gamma seems to be the more non-robust or more sensitive.
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Appendix B

Robust Inference for some other Statistical

Models based on Divergences

This appendix briefly presents a series of results in the area of robust statistical information theory,

which have also been obtained by the candidate during her Ph.D. studies. Section B.1 summarizes

the results given in Castilla et al. [2020d]. Section B.2 deals with the diveregnce-based estimators

in the logistic regression model. See Castilla et al. [2018a,b,c, 2020c] and Castilla and Chocano

[2020]. Finally, Section B.3 contains three results (Castilla et al. [2018d, 2019, 2020b]) related with

composite likelihood methods.

B.1 Multiple Linear Regression model

The multiple regression model (MRM) is one of the most known statistical models. Mathematically,

let (Xi1, ..., Xip, Yi), i = 1, ..., n, be (p + 1)-dimensional independent and identically distributed

random variables verifying the condition

Yi = XT
i β+ εi, (B.1)

with XT
i = (Xi1, ..., Xip) and β = (β1, ..., βp)

T
and ε′is are i.i.d. normal random variables with

mean zero and variance σ2 and independent of the Xi. The n × p matrix with elements Xij will

be denoted by X, i.e., X = (X1, ...,Xn)
T

. We can use the matrix and vector notation

Y = Xβ + ε, (B.2)

with Y = (Y1, . . . , Yn)
T

and ε = (ε1, . . . , εn)
T

.

As we have seen along the development of this Thesis, minimum distance estimators have been

presented in different statistical models as an alternative to the classical MLE, which is known

to have good efficiency properties, but not so good robustness properties. With this motivation,

Durio and Isaia [2011] studied the minimum DPD estimators for the MRM. In the cited paper, the

robustness of DPD estimators was analyzed from a simulation study, with no theoretical support.

Minimum DPD estimators have also been used in order to define Wald-type tests as, for example,

in Basu et al. [2016] and Ghosh et al. [2016]. Broniatowski et al. [2012] considered the RP in order

to give robust estimators, minimum RP estimators, for the MRM.

Let X1, . . . , Xn be a random sample from a population having true density g which is being

modeled by a parametric family of densities fθ with θ ∈ Θ ⊂ Rp. The RP between the densities

g and fθ is given by

Rα (g, fθ) =
1

α+ 1
log

(∫
fθ(x)α+1dx

)
+

1

α (α+ 1)
log

(∫
g(x)α+1dx

)
− 1

α
log

(∫
fθ(x)αg(x)dx

)
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for α > 0, whereas for α = 0 it is given by

R0 (g, fθ) = lim
α↓0

Rα (g, fθ) =

∫
g(x) log

g(x)

fθ(x)
dx,

i.e., the Kullback-Leibler divergence, DKullback(g, fθ), between g and fθ (see Pardo [2005]). In

Broniatowski et al. [2012] it was established that Rα (g, fθ) ≥ 0, with Rα (g, fθ) = 0 if and only if

fθ = g.

The minimum RP estimator is obtained by minimizing the RP, Rα (ĝ, fθ), with respect to

θ ∈ Θ where ĝ is an empirical estimator of g based on the available data.

In Castilla et al. [2020d], a new family of Wald-type tests was introduced, based on minimum

Rényi pseudodistance estimators, for testing general linear hypotheses and the variance of the

residuals in the multiple regression model. The classical Wald test, based on the maximum likeli-

hood estimator, can be seen as a particular case inside this family. Theoretical results, supported

by an extensive simulation study, point out how some tests included in this family have a better

behaviour, in the sense of robustness, than the Wald test.

B.2 Multinomial Logistic Regression model

The multinomial logistic regression model, also known as polytomous logistic regression model

(PLRM) is widely used in health and life sciences for analyzing nominal qualitative response vari-

ables (e.g., Daniels and Gatsonis [1997], Bertens et al. [2016], Dey and Raheem [2016] and the

references therein). Such examples occur frequently in medical studies where disease symptoms

may be classified as absent, mild or severe, the invasiveness of a tumor may be classified as in

situ, locally invasive, or metastatic, etc. The qualitative response models specify the multinomial

distribution for such a response variable with individual category probabilities being modeled as a

function of suitable explanatory variables. One such popular model is the PLRM, where the logit

function is used to link the category probabilities with the explanatory variables.

Mathematically, let us assume that the nominal outcome variable Ỹ has d + 1 categories

C1, ..., Cd+1 and we observe Ỹ together with k explanatory variables with given values xh, h =

1, ..., k. In addition, assume that βTj = (β0j , β1j , ..., βkj) , j = 1, ..., d, is a vector of unknown

parameters and βd+1 is a (k+ 1)-dimensional vector of zeros; i.e., the last category Cd+1 has been

chosen as the baseline category. Since the full parameter vector βT = (βT1 , ...,β
T
d ) is ν-dimensional

with ν = d(k + 1), the parameter space is Θ = Rd(k+1). Let

πj (x,β) = P (Ỹ ∈ Cj | x,β)

denote the probability that Ỹ belongs to the category Cj for j = 1, ..., d + 1, when the vector of

explanatory variable takes the value xT = (x0, x1, . . . , xk), with x0 = 1 being associated with the

intercept β0j . Then, the PLRM is given by

πj (x,β) =
exp(xTβj)

1 +
∑d
h=1 exp(xTβh)

, j = 1, ..., d+ 1. (B.3)

Now assume that we have observed the data on N individuals having responses ỹi with as-

sociated covariate values (including intercept) xi ∈ Rk+1, i = 1, ..., N , respectively. For each

individual, let us introduce the corresponding tabulated response yi = (yi1, ..., yi,d+1)
T

with yir
= 1 and yis = 0 for s ∈ {1, ..., d+ 1} − {r} if ỹi ∈ Cr.

The most common estimator of β under the PLRM is the MLE, which is obtained by maximizing

the loglikelihood function,

logL (β) ≡
N∑
i=1

d+1∑
j=1

yij log πj (xi,β) .

142



One can then develop all the subsequent inference procedures based on the MLE β̂ of β.

In Castilla et al. [2018a], a new family of estimators is defined as a generalization of the MLE for

the PLRM. Based on these estimators, a family of Wald-type test statistics for linear hypotheses

is introduced. Robustness properties of both the proposed estimators and the test statistics are

theoretically studied through the classical influence function analysis and illustrated by real life

examples and an extensive simulation study.

Note that in Castilla et al. [2018c] and Castilla et al. [2020c] new estimators and Wald-type

tests are developed, in the context of Logistic Regression analysis with complex sample survey

data, based on phi-divergence measures.

B.2.1 Robust inference for the multinomial logistic regression model

with complex sample design based on divergence measures

In many practical applications, we come across data which have been collected through a complex

survey scheme, like stratified sampling or cluster sampling, etc., rather than the simple random

sampling. Such situations are quite common in large scale data collection, for example, within

several states of a country or even among different countries. Suitable statistical methods are

required to analyze these data by taking care of the stratified structure of the data; this is because

there often exist several inter and intra-class correlations within such stratification and ignoring

then may often lead to erroneous inference. Further, in many such complex surveys, stratified

observations are collected on some categorical responses having two or more mutually exclusive

unordered categories along with some related covariates and inference about their relationship is of

up-most interest for insight generation and policy making. Polytomous logistic regression (PLR)

model is a useful and popular tool in such situations to model categorical responses with associated

covariates. However, most of classical literature deal with the cases of simple random sampling

scheme. (e.g. McCullagh [1980], Agresti [2002]). The application of PLR model under complex

survey setting can be found, for example, in Binder [1983], Roberts et al. [1987], Morel [1989]

and Castilla et al. [2018b]; most of them, except the last one, are based on the quasi maximum

likelihood approach.

Let us assume that the whole population is partitioned into H distinct strata and the data

consist of nh clusters in stratum h for each h = 1, . . . ,H. Further, for each cluster i = 1, . . . , nh
in the stratum h, we have observed the values of a categorical response variable (Y ) for mhi units.

Assuming Y has (d + 1) categories, we denote these observed responses by a (d + 1)-dimensional

classification vector

yhij = (yhij1, ...., yhij,d+1)
T
, h = 1, ...,H, i = 1, ..., nh, j = 1, ...,mhi,

with yhijr = 1 if the j-th unit selected from the i-th cluster of the h-th stratum falls in the r-th

category and yhijl = 0 for l 6= r. It is very common when working with dummy or qualitative

explanatory variables to consider that the k + 1 explanatory variables are common for all the

individuals in the i-th cluster of the h-th stratum, being denoted as xhi = (xhi0, xhi1, ...., xhik)
T

,

with the first one, xhi0 = 1, associated with the intercept.

Let us denote the sampling weight from the i-th cluster of the h-th stratum by whi. For each i,

h and j, the expectation of the r-th element of the random variable Y hij = (Yhij1, ..., Yhij,d+1)T ,

corresponding to the realization yhij , is determined by

πhir (β) = E [Yhijr|xhi] = Pr (Yhijr = 1|xhi) =


exp{xThiβr}

1 +
∑d
l=1 exp{xThiβl}

, r = 1, ..., d

1

1 +
∑d
l=1 exp{xThiβl}

, r = d+ 1
, (B.4)

with βr = (βr0, βr1, ..., βrk)
T ∈ Rk+1, r = 1, ..., d and the associated parameter space given by

Θ = Rd(k+1).
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Note that, under homogeneity, the expectation of Y hij does not depend on the unit number j,

so from now we will denote by

Ŷ hi =

mhi∑
j=1

Y hij =

mhi∑
j=1

Yhij1, ...,

mhi∑
j=1

Yhij,d+1

T

= (Ŷhi1, ..., Ŷhi,d+1)T

the random vector of counts in the i-th cluster of the h-th stratum and by πhi (β) the (d + 1)-

dimensional probability vector with the elements given in (B.4), πhi (β) = (πhi1 (β) , ..., πhi,d+1 (β))
T

.

Even though the quasi weighted maximum likelihood estimator, is the main base of most of the

existing literature on logistic models under complex survey designs, it is known to be non-robust

with respect to the possible outliers in the data. In practice, with such a complex survey design, it

is quite natural to have some outlying observations that make the likelihood based inference highly

unstable. So, we often may need to make additional efforts to find and discard the outliers from

the data before their analysis. A robust method providing stable solution even in presence of the

outliers will be really helpful and more efficient in practice.

The cited work by Castilla et al. [2018b] has developed an alternative minimum divergence esti-

mator based on φ-divergences, as well as new estimators for the intra-cluster correlation coefficient.

A simulation study shows that the Binder’s method for the intra-cluster correlation coefficient ex-

hibits an excellent performance when the pseudo-minimum Cressie–Read divergence estimator (by

considering the Cressie-Read family of φ-divergences), with λ = 2/3, is plugged. However, this

paper does not lead with the problem of robustness. In Castilla et al. [2020a], the minimum quasi

weighted DPD estimators for the multinomial logistic regression model with complex survey. This

family of semiparametric estimators is a robust generalization of the maximum quasi likelihood

estimator, by using the DPD measure. Their asymptotic distribution and accurate robustness

properties are theoretically studied and empirically validated through a numerical example and

an extensive Monte Carlo study. Recently, Castilla and Chocano [2020] studied the robustness of

negative φ-divergences, through the boundedness of the influence function and extensive simulation

experiments.

B.3 Composite Likelihood

The classical likelihood function requires exact specification of the probability density function but

in most applications the true distribution is unknown. In some cases, where the data distribution

is available in an analytic form, the likelihood function is still mathematically intractable due to

the complexity of the probability density function. There are many alternatives to the classical

likelihood function; one of them is the composite likelihood. Composite likelihood is an inference

function derived by multiplying a collection of component likelihoods; the particular collection

used is a conditional determined by the context. Therefore, the composite likelihood reduces the

computational complexity so that it is possible to deal with large datasets and very complex mod-

els even when the use of standard likelihood methods is not feasible. Asymptotic normality of the

composite maximum likelihood estimator (CMLE) still holds with Godambe information matrix to

replace the expected information in the expression of the asymptotic variance-covariance matrix.

This allows the construction of composite likelihood ratio test statistics, Wald-type test statistics

as well as Score-type statistics.

We adopt here the notation by Joe et al. [2012], regarding composite likelihood function and

the respective CMLE. In this regard, let {f(·;θ),θ ∈ Θ ⊆ Rp, p ≥ 1} be a parametric identifiable

family of distributions for an observation y, a realization of a random m-vector Y . In this setting,

the composite density based on K different marginal or conditional distributions has the form
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CL(θ,y) =

K∏
k=1

fwkAk (yj , j ∈ Ak;θ)

and the corresponding composite log-density has the form

c`(θ,y) =

K∑
k=1

wk`Ak(θ,y),

with `Ak(θ,y) = log fAk(yj , j ∈ Ak;θ), where {Ak}Kk=1 is a family of random variables associated

either with marginal or conditional distributions involving some yj , j ∈ {1, ...,m} and wk, k =

1, ...,K are non-negative and known weights. If the weights are all equal, then they can be ignored.

In this case all the statistical procedures produce equivalent results.

Let also y1, ...,yn be independent and identically distributed replications of y. We denote by

c`(θ,y1, ...,yn) =

n∑
i=1

c`(θ,yi)

the composite log-likelihood function for the whole sample. In complete accordance with the

classical MLE, the CMLE, θ̂c, is defined by

θ̂c = arg max
θ∈Θ

n∑
i=1

c`(θ,yi) = arg max
θ∈Θ

n∑
i=1

K∑
k=1

wk`Ak(θ,yi). (B.5)

It can be also obtained by solving the equations.

u(θ,y1, ...,yn) = 0p, (B.6)

where

u(θ,y1, ...,yn) =
∂c`(θ,y1, ...,yn)

∂θ
=

n∑
i=1

K∑
k=1

wk
∂`Ak(θ,yi)

∂θ
.

Composite likelihood methods have been successfully used in many applications concerning, for

example, genetics (Fearnhead and Donnelly [2002]), generalized linear mixed models (Renard et al.

[2004]), spatial statistics (Varin et al. [2005]), frailty models (Henderson and Shimakura [2003]),

multivariate survival analysis (Li and Lin [2006]), etc.

B.3.1 Composite likelihood methods based on divergence measures

Let us consider the DPD measure, between the density function g (y) and the composite density

function CL(θ,y), i.e.,

dβ(g (.) , CL(θ, .)) =

∫
Rm

{
CL(θ,y)1+β −

(
1 +

1

β

)
CL(θ,y)βg(y) +

1

β
g(y)1+β

}
dy (B.7)

for β > 0, while for β = 0 we have,

lim
β→0

dβ(g (.) , CL(θ, .)) = dKL(g (.) , CL(θ, .)).

The composite minimum DPD estimator, θ̂
β

c , is defined by

θ̂
β

c = arg min
θ∈Θ

dβ(g (.) , CL(θ, .)).

In the case of β = 0 it can be shown that it coincides with the CMLE.
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In the case of testing composite null hypothesis is however, necessary to get and study the

composite minimum DPD estimator which is restricted by some constraints of the type m(θ) = 0r,

where m is a function m : Θ ⊆ Rp → Rr, r is an integer, with r < p, and 0r denotes the null

vector of dimension r. The function m is a vector valued function such that the p× r matrix

M(θ) =
∂mT (θ)

∂θ
,

exists and it is continuous in θ with rank(M(θ)) = r. In this context the restricted composite

minimum DPD estimator is defined by

θ̃
β

c = arg min
{θ∈Θ:m(θ)=0r}

dβ(g (.) , CL(θ, .)), (B.8)

where dβ(g (.) , CL(θ, .)) is defined by (B.7).

Composite minimum DPD estimators were defined in Castilla et al. [2018d], where the associ-

ated estimating system of equations and the asymptotic distribution were also provided. It was

shown that the composite minimum DPD estimator is an M-estimator and it is asymptotically

distributed as a normal with a variance-covariance matrix depending on the tuning parameter β.

In this same paper, a robust family of Wald-type tests was introduced, based on the composite min-

imum DPD estimators, for testing both simple and a composite null hypothesis. The robustness

of this new family of tests was studied on the basis of a simulation study.

Following this idea, Rao-type tests were also developed in Castilla et al. [2019]. In this case,

when considering a composite null hypothesis, the restricted composite minimum DPD estima-

tor will be needed. A simulation study was developed based on two numerical examples, and a

comparison is done between these proposed Rao-type tests and the Wald-type tests developed in

Castilla et al. [2018d]. Based on this simulation study, it seems that Wald-type tests are slightly

better than the Rao-type tests, but due on the good behavior of both test statistics in relation to

the robustness, we may select in each moment the easier test statistic.

B.3.2 Model selection in a composite likelihood framework based on

divergence measures

Model selection criteria, for summarizing data evidence in favor of a model, is a very well studied

subject in statistical literature, overall in the context of full likelihood. The construction of such

criteria requires a measure of similarity between two models, which are typically described in

terms of their distributions. This can be achieved if an unbiased estimator of the expected overall

discrepancy is found, which measures the statistical distance between the true, but unknown

model, and the entertained model. Therefore, the model with smallest value of the criterion is the

most preferable model. The use of divergence measures, in particular Kullback-Leibler divergence

(Kullback [1997]), to measure this discrepancy, is the main idea of some of the most known criteria:

Akaike Information Criterion (AIC, Akaike [1973, 1974]), the criterion proposed by Takeuchi (TIC,

Takeuchi [1976]) and other modifications of AIC Murari et al. [2019]. DIC criterion, based on the

density power divergence (DPD), was presented in Mattheou et al. [2009] and, recently, Avlogiaris

et al. [2019] presented a local BHHJ power divergence information criterion following Avlogiaris

et al. [2016]. In the context of the composite likelihood there are some criteria based on Kullback-

Leibler divergence, see for instance Varin and Vidoni [2005] and references therein.

In Castilla et al. [2020b] a new information criterion was presented, for model selection in the

framework of composite likelihood based on DPD measure, which depends on a tuning parameter

β. This criterion, called composite likelihood DIC criterion (CLDIC) coincides as an special case

with the criterion given in Varin and Vidoni [2005] as a generalization of the classical criterion

of Akaike. After introducing such a criterion, some asymptotic properties were established. A

simulation study and two numerical examples were presented in order to point out the robustness

properties of the introduced model selection criterion.
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the indian journal of statistics, pages 401–406, 1946.

D. A. Binder. On the variances of asymptotically normal estimators from complex surveys. Inter-

national Statistical Review/Revue Internationale de Statistique, pages 279–292, 1983.

L. M. Bregman. The relaxation method of finding the common point of convex sets and its appli-

cation to the solution of problems in convex programming. USSR computational mathematics

and mathematical physics, 7(3):200–217, 1967.

M. Broniatowski, A. Toma, and I. Vajda. Decomposable pseudodistances and applications in

statistical estimation. Journal of Statistical Planning and Inference, 142(9):2574–2585, 2012.

E. Castilla and P. J. Chocano. A new robust approach for multinomial logistic regression with

complex design model. Under revision, 2020.

E. Castilla, A. Ghosh, N. Martin, and L. Pardo. New robust statistical procedures for the polyto-

mous logistic regression models. Biometrics, 74(4):1282–1291, 2018a.

E. Castilla, N. Mart́ın, and L. Pardo. Pseudo minimum phi-divergence estimator for the multi-

nomial logistic regression model with complex sample design. AStA Adv. Stat. Anal., 102(3):

381–411, 2018b.

E. Castilla, N. Mart́ın, and L. Pardo. A logistic regression analysis approach for sample survey

data based on phi-divergence measures. In The Mathematics of the Uncertain, pages 465–474.

Springer, 2018c.

E. Castilla, N. Mart́ın, L. Pardo, and K. Zografos. Composite likelihood methods based on mini-

mum density power divergence estimator. Entropy, 20(1):18, 2018d.

E. Castilla, N. Mart́ın, L. Pardo, and K. Zografos. Composite likelihood methods: Rao-type tests

based on composite minimum density power divergence estimator. Statistical Papers, pages 1–39,

2019.
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When you make the finding yourself – even if you’re the last person

on Earth to see the light – you’ll never forget it.
CARL SAGAN
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