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ABSTRACT  13 

Preliminary studies are an imperative when determining the impact of conservation treatments on 14 

historical materials. The Romanesque apse on a church at Talamanca de Jarama, Madrid, Spain, 15 

whose dolostone was severely decayed by rainwater and salts, was treated in the past with 16 

substances that ravaged the restored area. Petrological techniques showed that salts leached out of 17 

the cement under the roof onto the stone cornice whose surface had been coated with synthetic 18 

resins. During evaporation, the salts precipitated in the stone and underneath the resin, inducing 19 

blistering, fissuring, flaking, scaling and detachment of part of the restored decorative elements. 20 
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1. INTRODUCTION 26 

Time and weathering (water, wind, solar radiation, temperature variations, air pollution...) are the 27 

chief agents of decay in most stone materials comprising the built heritage. The impact of such 28 

decay varies depending on the composition and texture of the materials involved [1-3].  29 

The need to conserve the cultural heritage has driven the appearance on the market of many 30 

restoration products, designed and manufactured primarily to retard stone decay and increase its 31 

durability [4-7]. These products may be: inorganic (such as “lime wash” - Ca(OH)2 (aq) used in the 32 

nineteenth century and presently recovered in the form of nanolime - Ca(OH)2 alcoholic colloidal 33 

nanoparticles [8]) or organic, which may in turn be divided into natural (scantly processed animal or 34 

plant substances) or synthetic (primarily highly processed petroleum derivatives) compounds. A 35 

third group of products, organosiliceous derivatives such as ethyl silicates or alcoxysilanes, 36 

combines organic and inorganic compounds. All three groups are designed to: a) consolidate the 37 

internal components of the stone (consolidants); b) waterproof surfaces (water repellents); or c) 38 

rendering surfaces or fill in joints, cracks, fissures, or gaps in the stone itself (restoration mortars). 39 
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Further to international recommendations, the use of such restoration products should be limited and 40 

controlled, and only applied if they are clearly beneficial, their long-term efficacy is proven and they 41 

entail no risk whatsoever for people or the environment [9-11]. 42 

Synthetic resin and cement restoration mortars have been used profusely in recent years, for they 43 

bond well to the substrate and are highly weatherproof [4-7, 12-15]. Nonetheless, several ICOMOS 44 

Charters [9-11]) advise against using such restoration mortars in any form unless a detailed study 45 

has been conducted of their long-term performance and durability. The rationale for such 46 

recommendations may lie in these compounds’ possible failure to meet the aims for which they 47 

were initially designed (render, infill, restitution of lost material,…): when combined with other 48 

construction materials they may respond in unintended ways, even generating undesirable by-49 

products such as salts. The composition of synthetic restoration mortar varies depending on its 50 

intended purpose and the construction materials with which it is to be in contact. As a general rule, 51 

such mortars comprise a binder (cement, lime/hydraulic lime or gypsum), siliceous or carbonaceous 52 

sand aggregate, pigments for colour and admixtures such as polymeric resins, silicone or siloxane 53 

resins, acrylic resins, epoxy resins, fluorinated polymers or unsaturated polyesters [12, 14-15].  54 

Like decay itself, conservation and restoration products perform differently depending on the type 55 

of stone to which they are applied and on environmental conditions. Hence the need for preliminary 56 

studies [6, 12, 16-18], firstly to characterise the composition and texture of the stone substrate. In 57 

particular its porosity must be determined (pore percentage, shape, size and distribution) and its 58 

condition assessed (forms, causes, processes and agents of decay), paying close heed to local 59 

environmental factors or microclimatic conditions inside the building to be conserved [6-7, 12, 19-60 

20]. That should be followed by a field or/and laboratory study of the restoration products and 61 

application techniques to establish their efficacy, their compatibility with and suitability for the 62 

stone substrate, and their durability in the prevailing climate [1, 7, 12-14, 16-17, 20].  63 

While preliminary studies are called for in international recommendations and protocols for action 64 

on world cultural heritage conservation (e.g., Athens 1931, Venice 1964, Restauro 1987 Charters, to 65 

name a few; ICOMOS), they are often absent in restoration project design and implementation. The 66 

distressing result has been that many interventions in heritage buildings have accelerated decay in 67 

the materials they set out to protect [1, 12, 14, 17, 21]. 68 

Moreover, since the full chemical formulation of market products is normally unknown, preliminary 69 

trials provide information from which to more or less accurately predict their possible long-term 70 

behaviour [7, 16-18, 21-23]. This is of particular relevance because the original chemical 71 

composition of these products may vary with time, depending on their interaction with the material 72 

to be restored and the local environment, and may become irreversible for disposal. In a similar 73 

vein, gaining a subsequent understanding of the product applied and the application technique used 74 

may be a complex task if no documentary record of the intervention is available [12, 14, 17].  75 
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1.1. San Juan Bautista Church at Talamanca de Jarama, Madrid, Spain: apse construction and 76 

restoration 77 

San Juan Bautista Church is located at Talamanca de Jarama, a village 45 km NNE of Madrid, 78 

Spain. Characterised by two architectural styles, Romanesque (twelfth-thirteenth centuries) and 79 

Renaissance (sixteenth century), the church is made of dolostone, limestone and quartzite ashlars 80 

and rubble stones; brick masonry; earthen infills; and mortars, both as jointing and as renser. The 81 

rectangular presbytery and semi-circular apse (Fig. 1) are all that is left of the original Romanesque 82 

dolostone building. The rectangular nave or main body of the church, consisting of three aisles with 83 

varying heights, was rebuilt in Renaissance style in the sixteenth century with a wide variety of 84 

construction materials (stone, brick and mortars). In 1885, with the church in ruins, the south wall 85 

and bell tower were rebuilt. The building was listed as a historic-artistic monument in 1931 and has 86 

been protected as such ever since. 87 

The semi-circular apse was built around four pilasters that delimit five walls or infills. Its three 88 

windows are located in alternate infills (Fig. 1). The stone masonry consists of rough ashlars at the 89 

base and more refined ashlars in the upper areas. The floral, geometric and human forms carved out 90 

of the stone modillions and cornice, are of significant historic and artistic value (Figs 2 and 3). The 91 

dolostone on the apse, traditionally used in the area, was quarried from nearby Upper Cretaceous 92 

geological formations [24].  93 

The two types of dolostone were quarried from different geological strata. One, beige-coloured, 94 

compact and scantly porous, is found in the rough ashlars at the base, while the other, a yellowish 95 

and more porous stone, is found in the upper walls ashlars, including the decoratively carved 96 

modillions and cornice (Figs 1 and 2). The former is known as Piedra de Torrelaguna 97 

(Torrrelaguna stone) and the latter and more workable, Piedra de Redueña (Redueña stone) [2]. 98 

Some of the stone in the dado and underneath the modillions was replaced (possibly in the 1885 99 

intervention) with the same varieties of dolostone as the original material. The lighter tone cladding 100 

visible in the same areas was laid during the 1990 restoration (Fig. 1). 101 

In the late nineteen seventies, the apse was observed to be largely decayed, due primarily to the 102 

damp accumulating in the dado, cornice and windows, attributed respectively to capillary moisture 103 

rising from the subsoil, rainwater leakage and surface runoff. The main causes of decay in the 104 

cornice were the poor condition of the roof and the lack of any means to evacuate rainwater. The 105 

effect of rainfall (475 mm/year) is more conspicuous in the spring and autumn. A design for 106 

intervention proposed in 1982, rather vaguely and with no mention of preliminary studies, called for 107 

“repairing the roof, chipping away the mortar-patina covering the entire apse and replacing the 108 

ashlars and other architectural elements with stone similar in appearance to the original material”. 109 
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The design specified that the walls were to be cleaned with spray-dried water and scoured with 110 

ammonium bi-fluoride, after which protective treatment (Primal AC-234 acrylic resin with methyl 111 

methacrylate and ethyl acrylate co-polymers) would be applied. The joints and cracks were also to 112 

be cleaned and filled with cement or/and (Araldite BY-154) epoxy resin and (AFA 55/60) siliceous 113 

sand. In the most damaged part of the cornice, some of the carved decorative elements had fallen 114 

away and many others were severely decayed. Restoration was to consist of the application first of a 115 

pure epoxy resin consolidant and then of (Araldite BY-154) epoxy and (Primal AC-33) acrylic 116 

resins mortars containing siliceous sand to restitute forms and textures.  117 

The visual inspection undertaken on the occasion of the present study, in the absence of written 118 

records on whether this restoration design was implemented as envisaged or partially or fully 119 

modified, revealed that the intervention conducted in 1990 primarily affected the Romanesque apse. 120 

One of the measures adopted at the time was to replace a few ashlars with white limestone quarried 121 

outside the region that differs from the original stone (Fig. 1). The roof was weatherproofed with a 122 

grey portland cement mortar under the arabic roof tiles, that was also laid directly on the cornice 123 

(Figs 2 and 3); joints and cracks were filled in with cement and synthetic mortars (Fig. 3); and a 124 

number of conservation products were applied in an attempt to protect the decorative elements on 125 

the cornice as far as possible (Fig. 3). By 2005, the restored stone exhibited conspicuous and 126 

troubling signs of decay: the decorative elements on the cornice were severely deteriorated, with 127 

risk of detachment [25].  128 

 129 

The present study aimed to: a) assess the state of decay in the carved stone on the Romanesque 130 

cornice prior to the 1990 intervention; b) ascertain the type of restoration products used in that 131 

intervention; c) establish the degree of interaction with and the suitability of these products for the 132 

stone and other materials; and d) define the mechanisms involved and the type of decay induced by 133 

these products. Petrological techniques, regarded as one of the first analytical methods to be 134 

deployed prior to restoration, were applied to meet these objectives. The observation, description 135 

and direct and objective classification of decay to small-scale in a material constitute a sound basis 136 

for defining the agents, causes and processes of damage and for endorsing the findings of other 137 

more complex and subjective analytical approaches. 138 

2. MATERIALS AND METHODS 139 

The samples studied were taken from the yellow dolostone on the upper area of the original apse, 140 

and primarily from the elements carved into the modillions and cornice. Three 5 cm diameter, 141 

15-cm long core samples were taken from an ashlar underneath the cornice (Fig. 4a), along with 142 

fragments of varying size from the cornice itself (Fig. 4b).  143 
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Petrological, mineralogical and chemical composition were analysed with the techniques described 144 

below to characterize the cornice materials and determine its state of conservation, and theorise 145 

about the causes and mechanisms involved in the poor response of the stone to the treatments 146 

applied. 147 

- Polarised light optical microscopy (PM) was conducted to Spanish and European standard 148 

UNE-EN 12407 [26] on an Olympus BX51 petrographic microscope fitted with an Olympus 149 

DP12 digital camera. The samples were so severely segregated that they had to be consolidated 150 

with epoxy resin prior to preparing the 3x2-cm, 30-m thick thin sections, dyed with alizarin 151 

red [27] to differentiate calcite from dolomite. PM afforded information on the composition, 152 

texture and microstructure of the materials sampled.  153 

- Electron microscopy (SEM-EDS) studies were performed on a JOEL JSM 6400 scanning 154 

electron microscope fitted with an Oxford-Link Pentafet energy dispersive X-ray microanalyser. 155 

Small fragments (~1.7 cm
3
) and thin sections of the samples were scanned under a secondary 156 

electron (SE) beam. Both types of samples were graphite-coated with a BALZERS MED 010 157 

deposition system, to make them conductive. SEM revealed component microstructure and 158 

texture on a smaller and more detailed scale than PM. In addition, the use of EDS in point mode 159 

furnished a semi-quantitative chemical analysis of the components.  160 

-  Crystalline minerals were identified on a PHILIPS PW 1752 X-ray diffractometer fitted with a 161 

copper anode tube and PC-ADP diffraction software. XRD patterns were acquired operating at 162 

40 kV and 30 mA at 2θ angles of 2–65° with a 0.02-step scan, a speed of 2° per minute, CuKα 163 

radiation and a graphite monochromator. The powder fraction (particle size under 50 µm) of the 164 

total samples, were analysed.  165 

- Solid samples were exposed to micro X-ray diffraction (µXRD) to identify certain mineral 166 

phases on a micrometric scale. The facility used was a PHILIPS X’Pert MPD diffractometer 167 

with a double goniometer, CuKα radiation and a curved Cu monochromator. Measurements 168 

were taken at 45 kV and 40 mA. µXRD patterns were acquired in the 2–65° 2 range using a 169 

0.02-step scan at a rate of 1° per minute. 170 

- The chemical composition of the conservation treatments was found with Fourier transform 171 

infrared spectroscopy (FTIR) on a NICOLET Magna FTIR 750 analyser at a resolution of 172 

0.5 cm
-1

 and a working range of 4 000-350 cm
-1

. The samples were powdered and pressed into 173 

potassium bromide (KBr) pellets. Qualitative analysis was based on the specifications and 174 

recommendations proposed by Derrick et al. [28]. 175 

- Dolostone petrophysical characterisation and evolution were determined from density, open 176 

porosity, water absorption (UNE-EN 1936 [29]) and ultrasonic P-wave pulse velocity (Vp) 177 
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(UNE-EN 14579 [30]) findings. These physical properties were measured at normal 178 

atmospheric pressure and ambient temperature. The tests were conducted on both the outer and 179 

inner areas of the cores. The Vp values were found on a PUNDIT CNS ELECTRONICS LTS 180 

portable analyser, fitted with 54 kHz, 50-mm diameter transducers.  181 

 182 

3. RESULTS 183 

3.1. Cornice: state of conservation 184 

The yellow dolostone on the cornice was found to be severely decayed and many of its decorative 185 

elements to have been totally or partially lost after the 1990 restoration (Fig. 3). Some of the 186 

conservation treatments contributed to the decay of the dolomite substrate (Fig. 5). The main forms 187 

of decay detected were: a) surface gloss and change in hue from yellow to grey in the carved stone 188 

due to the presence of a viscous film (Figs 4b and 5); b) blistering, fissuring, flaking and scaling 189 

both in the surface treatment and the carved stone, resulting on occasion in detachment (Fig. 5); c) 190 

saline sub-efflorescence and crypto-efflorescence beneath the treatments, affecting the carved stone; 191 

and d) surface wear (Figs 2, 3 and 5).  192 

3.2. Characterisation and condition of the stone substrate 193 

The dolostone on the cornice is a carbonate rock, uniform in appearance whose ~20-% porosity 194 

consisted of pores of < 500 µm in diameter (visual estimate; Fig. 4a). The sub-parallel cracks up to 195 

1.5 cm deep on the surface exposed to the elements induced scaling and detachment with the 196 

concomitant loss of the figures carved in the stone (Figs 5 and 6). 197 

The PM study revealed that this massive dolostone is characterised by rhomboid micritic dolomite 198 

crystals measuring <10 m on average and 20-25-% intercrystalline porosity (Figs 7a and 7b).  199 

Some of these subrounded (mean diameter = 225 m) or irregularly shaped (mean diameter = 975 200 

m) pores were filled with 30-m sparry calcite crystals. Disperse monocrystalline quartz grains 201 

(±5 %) with a mean size of <150 µm (very fine sand) were observed inside the dolomicritic mass 202 

(Fig. 7a). The numerous dark iron gel spots also observed were partially responsible for the yellow-203 

golden tone of this variety of stone (Fig. 7a), classifiable as a dolomudstone [31]. The mineralogy 204 

detected under the PM (dolomite and some quartz) was confirmed by the XRD findings. 205 

The intense cracking on the sample surfaces increased in the outward direction (Fig. 7b). These 206 

cracks, parallel and sub-parallel to one another and to the outer surface of the sample, were 75 µm 207 

thick on average and over 250 µm thick in the outer-most areas. 208 

Further to the petrophysical findings (Table 1) this is a dense (>2 800-kg m
-3

) but highly open 209 

porosity (24-26 %) stone, properties that were observed to vary from the outer-most decayed 210 
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(0-5 cm) to the inner (5-10 cm) intact inner area of the cores. The porosity in the outer stone was up 211 

to 8 % higher than in the inner stone, which translated into 10 % greater water sorptivity. Such 212 

higher surface porosity was confirmed by the nearly 1 000-m·s
-1

 lower ultrasonic P-wave velocity 213 

(Vp) in that area than in the inner stone. 214 

3.3. Characterisation of conservation treatments 215 

This study detected the presence of three types of conservation treatments. 216 

A- The cornice has a 1 to 8-mm thick grey mortar rendering containing white particles that adapts 217 

to the surface irregularities in the intensely cracked stone substrate (Fig. 6). This mortar bonded 218 

apparently well to the stone, although not uniformly, for the non-filled millimetric pores found in 219 

some areas may have facilitated detachment (Figs 6 and 8).  220 

From the petrological (PM) standpoint, this mortar was observed to be a dark, granular, uniform and 221 

massive mix of crypto-crystalline (crystal size <4 m), sub-angular limestone aggregate of varying 222 

size (0.125-0.250 and 0.5-1 mm) agglutinated in a partially carbonated, light colour matrix-binder 223 

with a microcrystalline texture (crystal size <10 m) (area A in Fig. 8a). The aggregate-binder 224 

interface was well-defined with no chemical reactions taking place around the edges. Porosity was 225 

<5 % and characterised by circular to semi-circular pores with a mean diameter of 0.5 mm. The 226 

XRD mineralogical analysis confirmed that the aggregate was calcite and the binder calcite with 227 

some quartz (Fig. 8b).   228 

Under SEM (area A in Fig. 8c, and Fig. 9), the mortar exhibited dark, dense, viscous areas (matrix-229 

binder) sharply interfaced with lighter micro-granulated areas (aggregate). EDS revealed that the 230 

chemical composition of the two areas differed clearly. Despite the graphite coating on the samples, 231 

the dark binder area (point A in Fig. 9) exhibited a much higher C (organic component) 232 

concentration than the lighter aggregate area (point B in Fig. 9), which in contrast had more Ca 233 

(calcite) than the binder. Other chemical elements present in the two areas, although more 234 

prominently in the binder, included Si, Mg, Al, Na and Cl (neither Cl nor Na were found in the 235 

aggregate). A detailed study of the binder revealed the presence of small (3-5-µm) Ca (calcite) 236 

particles inside a C-high dark, dense gel with some Si.  237 

The FTIR spectrum for this mortar (Fig. 10) contained a vibration band in the 1 740-cm
-1

 region 238 

associated with carbonyl (C=O) and an especially intense vibration band at around 1 440 cm
-1

 239 

attributed to carbonate groups (-CO
=

3). The bands detected at around 714, 730, 876, 1 440, 1 800 240 

and 2 530 cm
-1

 were attributed to calcite (CO3Ca). The intense vibration band in the 3 430 to 241 

3 540 cm
-1

 region as well as the absorption band at around 1 620 cm
-1 

were associated with 242 

hydroxyl (structural O-H) and amine (N-H) groups. The bands at 1 440 and 2 890 to 3 030 cm
-1

 243 
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were attributed to the C-H group and the ones at 1020-1250 cm
-1

 with C-N and C-O groups. The 244 

weak vibration band at 1 080 cm
-1

 was associated with the presence of silicic acid (Si-O-Si).  245 

B - This restoration mortar and at times the stone itself were found to bear a 25 to 50-µm thick 246 

coating (area A in Fig. 11a). A viscous film adapted to the surface irregularities of the substrate, it 247 

explained the surface gloss observed (Fig. 4b and area A in Fig. 11b). According to EDS analysis, 248 

its chemical composition included Ca, C (less than in the mortar) and some Si (point A in Fig. 11b).  249 

The FTIR spectrum for the coating (Fig. 12) differed clearly from the pattern for the restoration 250 

mortar. The very intense vibration band in the 1 740 cm
-1

 region associated with a carbonyl group 251 

(C=O) predominated over the band at 1 450 cm
-1

 attributed to carbonates (-CO
=

3). The bands 252 

detected in the 714-, 876-, 1450- and 2 530-cm
-1

 regions were generated by calcite (CO3Ca). The 253 

intense vibration band at around 3 430 to 3 540 cm
-1

 as well the band at 1 630 cm
-1

 were associated 254 

with hydroxyl (structural O-H) groups. The intense bands at 1 450 and 2 880 to 2 970 cm
-1

 were 255 

attributed to the C-H group and the ones at 750 to 800, 1 070, 1 160, and 1 250 to 1 270 cm
-1 

to C-O 256 

groups. Silicic acid (Si-O-Si group) appeared in the form of weak bands in the 471-, 523-, 675- and 257 

1 070-cm
-1

 regions. C-O and C-H groups were also prominent in this film. 258 

C - In the cracked stone substrate (areas C in Fig. 8 and D in Fig. 13), the Ca-, Mg- and Fe-bearing 259 

dolomite crystals and the inter-crystalline and fracture porosity were covered with a thin film only 260 

detectable under SEM. Its main (EDS-analysed) chemical composition included Si and Al, while C 261 

was scantly present. PM observation (Figs 7 and 8) revealed the presence of this treatment 262 

indirectly, for the fracture porosity was not filled with the salts detected. 263 

3.4. Characterisation of saline degradation products 264 

According to the petrographic (PM, XRD and SEM-EDS) findings, appears a new mineralogical 265 

component, micro-crystalline gypsum - SO4Ca·2H2O (areas B in Fig. 8 and C in Fig. 13). It was 266 

detected below the conservation surface treatments, primarily at the interface between the 267 

restoration mortar and the cracked dolostone, where it formed a massive irregular layer 0.5 to 1 mm 268 

thick (Figs 8 and 14a). It also appeared inside the cracked stone where it formed subspherical 269 

growth nodules (Figs 8 and 14) up to 300 m in diameter, interconnected by thin capillaries (Fig. 270 

14b). The gypsum nodules were observed at depths of up to 1.5 cm and to migrate outward to the 271 

stone surface where they formed the layer of variable thickness under the restoration mortar (Fig. 272 

14a). No gypsum fill was found in the cracks in the stone substrate. 273 

4. DISCUSSION   274 

The main type of decay found in the Piedra de Redueña [2] dolostone forming the carved cornice 275 

on the Romanesque apse was intense inner cracking parallel to the surface, at depths of up to 1.5 cm 276 

(Figs 6 and 8). On the surface, this cracking translated into flaking and scaling liable to detachment. 277 
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The main agents of decay identified were rainwater and soluble salts due to continuous leaking and 278 

surface runoff, by the poor pre-1990 condition of the roof and the total absence of gargoyles and 279 

gutters to evacuate rainwater. Cracking, characteristic of this variety of stone when exposed to 280 

water and salts [32], was the type of decay exhibited by the dolostone in the cornice prior to the 281 

1990 restoration [25].  282 

This stone’s high open porosity (~25 %, Table 1) makes it a readily workable and easy to carve but 283 

at the same time scantly durable material [2, 32]. For that reason, it was used on the upper areas of 284 

the apse, including the cornice, while a similar but less porous and hence more durable variety 285 

(Piedra de Torrelaguna, [2]) was laid in the lower areas. 286 

The mortar covering the carved dolostone in the cornice, applied in 1990 to restitute the lost stone 287 

(Figs 6, 8, 9 and 13), appeared to be a mix of lime powder with at least two types (epoxy and 288 

acrylic) of synthetic resins and mudstone-like limestone aggregate [31] (Figs 8 and 9). The 289 

restoration design drafted in 1982 specified neither the lime (actually calcite - CO3Ca) binder nor 290 

the limestone aggregate (Fig. 9). The synthetic resins in this mortar were identified on the grounds 291 

of the vitreous and viscous appearance of the binder under SEM-SE (Figs 9 and 13) [17-18], the 292 

EDS-detected presence of high levels of carbon (C) (Figs 9, 11 and 13) and the carbonyl group 293 

(C=O) revealed by FTIR analysis (Fig. 10) [4, 27]. Inasmuch as the resins were mixed, their 294 

chemical composition would be very difficult to ascertain with absolute certainty. One of the resins 295 

may be regarded as acrylic given the FTIR identification of C-O and C-H groups, while the 296 

presence of N-H and C-N groups in the other denotes an epoxide composition [4, 27]. The existence 297 

of the epoxy was also confirmed by the EDS detection of NaCl (point A in Fig. 9), which may have 298 

arisen during hardening [4]. Both types of resins were called for in the 1982 design. The quartz 299 

(µXRD – Fig. 8b), Si and Al (EDS - point A in Fig. 9) and Si-O-Si groups (FTIR – Fig.10) found in 300 

this restoration mortar, in turn, suggested the possible presence of a third, silica compound-based 301 

consolidant [12, 17-18] or a possible chemical change in one of the synthetic resins used. No 302 

written information was available to corroborate the presence of such a third conservation product.  303 

The viscous, glossy film covering both the aforementioned restoration mortar and at times the 304 

dolostone itself contained both Ca and C (Figs 11 and 13). The identification of C=O, C-O and C-H 305 

groups was an indication that it may have been an acrylic resin [5, 28] mixed with lime powder 306 

(Fig. 12). 307 

In another vein, the treatment applied prior to the restitution mortar in 1990 was designed to 308 

consolidate the decayed dolostone by sealing its cracks (Figs 8 and 13). The EDS identification of 309 

silicon (Si) and aluminium (Al) with very little carbon (C) may have been the result of the presence 310 

of a silica compound-based product [12, 17-18] similar to the substance detected in the mortar, 311 
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rather than the epoxy resin specified in the 1982 design. This product appeared (PM-SEM) to have 312 

penetrated to a suitable depth (1.5-2 cm), filling most of the cracks in the stone. Proof of such 313 

effective penetration was that the gypsum that appeared as an undesirable by-product of decay did 314 

not precipitate into these cracks (Figs 8 and 14a). Good penetration is an essential feature of 315 

consolidants used in restoration [6-7, 12, 16, 33].  316 

The gypsum (SO4Ca·2H2O) present in this area was generated after the 1990 restoration and 317 

appeared to be the direct cause of the accelerated decay observed in the restored cornice. It adopted 318 

the form of sub-efflorescence underneath the treatments used to restore the cornice ornaments and 319 

crypto-efflorescence inside the cracked stone (Figs 8, 13 and 14). While internal, this mineral was 320 

not attributable to the dolostone, for the salts originated during stone decay, such as epsomite or  321 

hexahydrite, are magnesium sulfate-based [34]. Rather, its origin was associated with the grey 322 

portland cement mortar laid in 1990 both underneath the apse roof tiles and directly on the carved 323 

cornice, filling joints and cracks between the ashlars comprising the cornice (Fig. 3). After 1990, 324 

dissolved sulfur and calcium salt-laden rainwater leaking through the roof generated an ionic charge 325 

in the underlying cement mortar [14, 35]. These ionic solutions seeped into the dolostone beneath 326 

the cornice and flowed fairly freely inside the highly porous stone, working their way outward to 327 

the surface during the evaporation induced by the local climate (dry and very warm summers 328 

>30 ºC [20]). The restoration treatments used to restitute and conserve the outer ornaments 329 

prevented these solutions from exiting the stone, however (Fig. 15) [25].   330 

Prevented by the presence of silicate consolidant inside the cracks, gypsum precipitated in the pores 331 

not penetrated by the conservation product. These pores were inter-connected by capillaries running 332 

across the treatment (Figs 14b and 15). Gypsum precipitation in the pores induced the growth of 333 

sub-spherical nodules up to 300 m in diameter and internal stress as a result of crystallisation 334 

(Figs 8 and 14). These gypsum nodules were the saline crypto-efflorescences observed inside the 335 

dolostone, and whose formation could be explained in a similar way to the formation (controlled by 336 

substrate porosity) of evaporite nodules in sebkha zones (current geological environments 337 

characterised by climatic intense evaporation) [36-37]. 338 

During saline solution migration toward the stone surface, the salts precipitated, clustering under 339 

the surface treatments (restoration mortar or surface film) that they were unable to permeate (Figs 8, 340 

13, 14a and 15). As a result, a layer of gypsum of varying thickness appeared between the surface 341 

treatments and the cracked-consolidated stone, especially where the bond between them was weak. 342 

The continuous crystallisation-induced stress of salts destabilised the restored ornament. These sub-343 

efflorescent clusters underneath the coating film (acrylic resin) caused swelling, fissuring, flaking 344 

and detachment in both layers. When saline sub-efflorescence was located under the (epoxy and 345 
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acrylic resins) restoration mortar, scaling and surface detachment prevailed. Such types of decay 346 

affected the restoration mortar, the gypsum layer and even part of the cracked dolostone, with the 347 

total or partial loss of the restored ornament (Fig. 5). 348 

After part of the treatments and the carved stone surface fell away, the rest of the carved stone 349 

substrate (ornament) was weakened by the presence of salt efflorescence, which continued to induce 350 

powdering and crumbling stone. The resulting detachment entailed the disappearance of valuable 351 

decorative elements on the cornice restituted in 1990 [25]. 352 

In 2006 the apse was the object of further intervention, in which the cement bedding mortar was 353 

replaced with lime mortar in the joints and cracks in the cornice, although the cement mortar 354 

underneath the roof tiles was not removed. The cantilever was also enlarged slightly to protect the 355 

cornice from the sun and rain, but no alternative system was devised to prevent rainwater from 356 

leaking into the cement mortar and generating salts (gypsum). The cornice and its decorative 357 

elements were again treated. The salts were eliminated with cellulose poultice; the most severely 358 

damaged areas were consolidated with a mix of epoxy resin, marble powder and acetone; hydraulic 359 

lime mortars physically similar to the stone were used to restitute the detached elements; and the 360 

entire monument was consolidated by spraying its surface with an organo-siliceous product. Decay 361 

may re-appear in the area, however, inasmuch as water will continue to leak across the cement in 362 

the roof and evaporate outward to the surface of the cornice. Is a decay mechanism which acts from 363 

the inside to outside. That notwithstanding, in the 2006 restoration preliminary studies were 364 

conducted to determine the condition of the apse and how restoration might best be broached. A 365 

number of restoration products and application techniques were tested, which to date (2015) have 366 

not posed any conservation problems. On that occasion, the preliminary studies and restoration 367 

works, conducted in 2005 and 2006, were well documented for use as guidance in future 368 

interventions. 369 

 370 

5. CONCLUSIONS 371 

- The alarming decay on the ornamental part of the upper area of the Romanesque apse to San Juan 372 

Bautista Church, restored in 1990, was the result of misguided intervention design and 373 

implementation, in turn due to the want of a preliminary study that would have helped identify the 374 

type of stone substrate, its conservation state and possible response to certain conservation 375 

treatments. 376 

- The variety of stone on the ornament-bearing apse modillions and cornice was identified as a very 377 

porous, scantly durable dolostone decayed by rainwater leakage and surface runoff, along with the 378 
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concomitant salts. The forms of decay observed were internal cracking, flaking, scaling and surface 379 

detachment. 380 

- The use of cements and synthetic resins on a poorly conserved porous stone failed to meet the 381 

general standards of effectiveness, suitability and durability required of conservation and restoration 382 

treatments to ensure the physical stability of the restored area.  383 

- Most of the ornaments restored in 1990 decayed and were lost in very short order due to the 384 

appearance of an undesirable by-product (salts) of the restoration treatments applied. 385 

- The use of portland cement mortars on the cornice and its joints led to the presence of ionic saline 386 

solutions (gypsum) inside the dolostone. 387 

- The silicate consolidant used to seal the cracks in the stone substrate on the cornice penetrated to a 388 

suitable depth (1.5-2 cm) but was not 100 % effective, for some pores remained connected, 389 

providing channels for the water and dissolved salts to migrate toward the surface. The salts 390 

precipitating in these pores formed nodules that constituted saline crypto-efflorescences which, 391 

while not the direct cause of decay, may have induced internal stress that weakened the surface 392 

structure of the cracked stone. 393 

- The epoxy and acrylic resins mortar used to restitute the lost ornamental elements stiffened and 394 

hardened, obstructing the exit of the dissolved salts inside the stone. These salts precipitated 395 

between the stone and the synthetic mortar, forming a layer of gypsum of varying thickness (saline 396 

sub-efflorescence). The decay in these areas consisted primarily of scaling and possible detachment 397 

either around the gypsum layer or the cracks in the dolostone, disfiguring the restored ornament. 398 

- The acrylic resin water repellent applied rendered the surface glossy and changed the yellowish-399 

gold hue of the original dolostone to a greyish tone. Moreover, it blistered, fissured, flaked and 400 

became detached, detracting from the appearance and condition of the cornice. 401 

- The use of petrological techniques such as PM and SEM revealed the processes and agents 402 

involved in the progressive decay of the Romanesque cornice restored in 1990 and the respective 403 

mechanisms. 404 
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FIGURE CAPTIONS 512 

Fig. 1. Twelfth-thirteenth century Romanesque apse on church at Talamanca de Jarama, Madrid, 513 

Spain, whose upper stone ashlars are yellow and lower rough ashlars beige dolostone; occasional 514 

white limestone cladding 515 

Fig. 2. Richly carved cornice and modillions on the upper part of the church, restored in 1990: 516 

cement mortar filling in inter-ashlar joints and laid directly on the cornice underneath the Spanish 517 

tile roof 518 

Fig. 3. Decaying cornice and modillions in 2004, showing substantial amounts of cement on the 519 

cornice and the near total loss of ornaments on modillions and cornice 520 

Fig. 4. Samples of dolostone on around the cornice: a) cross-section of yellow dolostone core: b) 521 

decayed fragment from cornice surface, showing the obvious contrast between the glossy grey 522 

treatments and the yellowish dolostone 523 

Fig. 5. Grey treatment scaling and flaking on cornice and modillions, baring the yellow stone 524 

substrate and inducing the loss of the original restored ornament 525 

Fig. 6. Cross-section of scale removed from cornice, showing three zones: upper grey layer with 526 

white particles and varying depth (restoration mortar), middle layer where the stone substrate 527 

exhibits cracks parallel to the surface and a few white spots, and lower layer where the yellow 528 

substrate is compact 529 

Fig. 7. PM images of yellow dolostone on the upper part of the apse: a) no decay but substantial 530 

original porosity (left: parallel nicols; right: crossed nicols); and b) cracks and nodules indicative of 531 

decay (parallel nicols) 532 

Table 1. Petrophysical properties of decayed (outer 5 cm) and undecayed (at depths of 5-10 cm) 533 

dolostone 534 

Fig. 8. Scaling on cornice: a) PM image with parallel nicols; b) XRD diffractogram showing the 535 

mineralogy of the two components of the restoration mortar; c) SEM-SE image of a thin section: A 536 

- restoration mortar, B – gypsum layer, C - cracked stone substrate with gypsum nodules  537 

Fig. 9. SEM-SE image of a fragment of restoration mortar and EDS point chemical composition: A 538 

- binder; B – aggregate 539 

Fig. 10. FTIR spectrum of restoration mortar 540 

Fig. 11. Fragment of restoration mortar surface, showing: A - surface acrylic, B - binder and C - 541 

aggregate (both in the underlying restoration mortar), under: a) PM (parallel nicols) and b) SEM-542 

SE. EDS point chemical composition of synthetic resins (A - acrylic and B - epoxy+acrylic) 543 

forming part of the two treatments (with Ca as the sole chemical element in the C - aggregate) 544 

Fig. 12. FTIR spectrum of resin film 545 



 17 

Fig. 13. SEM-SE image and EDS point chemical composition of a scaling fragment, showing: A - 546 

surface treatment, B - restoration mortar, C - gypsum layer and D - cracked stone substrate 547 

Fig. 14. PM (parallel nicols) images of: a) gypsum nodules inside the cracked dolostone; and b) 548 

capillary connections. 549 

Fig. 15. Mechanism governing post-1990 intervention decay in cornice and modillions: 1 - acrylic 550 

surface treatment; 2 - synthetic restoration mortar; 3 - gypsum layer; 4 - cracked dolostone with 551 

gypsum nodules; A - rainwater leakage; B - surface runoff. 552 

 553 

Highlights 554 

Long-term effectiveness, suitability and durability of conservation treatments 555 

Need for preliminary studies to ensure successful restoration 556 

Use of petrological techniques to determine treatment mechanisms 557 

Unsuitable use of cements and synthetic resins on decayed dolostone 558 

Salt-induced loss of restored ornaments 559 

 560 
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Table 1 

    

  Dolostone 

  outer area inner area 

Real density (kg m-3) 2 821 2 824 

Bulk density (kg m-3)  2 077 2 237 

Open porosity (%) 26.36 24.31 

Water absorption (%) 12.69 11.38 

Vp (m s-1) 1 843 2 873 

Vp - ultrasonic P-waves pulse velocity 
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