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1 Introduction

The access to non-perturbative gluon distributions from experiments is notoriously chal-
lenging. This is also the case of gluon transverse momentum distributions (TMDs). Gluons
enter directly in Higgs production in hadronic colliders [1–5] that has a relatively high mass
and low production rates, and quarkonium production both at EIC and LHC [3, 6–25] that
is sensitive also to the heavy quark hadronization effects [20, 21]. Recent studies (see for
example [26, 27]) suggest that the experimental observation of the dijet imbalance is pos-
sible at the future EIC. In a recent work [28] we have proposed the dijet and hadron pair
production at electron-ion colliders (EIC) to probe gluon TMD. Previous studies on these
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dijet LO process:

heavy meson pair at LO:

(�⇤g)
<latexit sha1_base64="J8coPN5hkT51PA5EvkXIytYySMA=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItSPZTdKuix4MVjBfsB3bXMptltaJJdkqxQSv+GFw+KePXPePPfmLZ70OqDgcd7M8zMC1POtHHdL6ewsrq2vlHcLG1t7+zulfcP2jrJFKEtkvBEdUPQlDNJW4YZTrupoiBCTjvh6Gbmdx6p0iyR92ac0kBALFnECBgr+VU/BiHg4RzHZ/1yxa25c+C/xMtJBeVo9suf/iAhmaDSEA5a9zw3NcEElGGE02nJzzRNgYwgpj1LJQiqg8n85ik+scoAR4myJQ2eqz8nJiC0HovQdgowQ73szcT/vF5moutgwmSaGSrJYlGUcWwSPAsAD5iixPCxJUAUs7diMgQFxNiYSjYEb/nlv6Rdr3kXtfrdZaVxmsdRREfoGFWRh65QA92iJmohglL0hF7Qq5M5z86b875oLTj5zCH6BefjG4NckJk=</latexit>
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<latexit sha1_base64="hxhjwwKSLwfAqWdYud89cC8OwLk=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItSPZTdKuix4MVjBfsB3bXMptk2NMkuSVYoS/+GFw+KePXPePPfmLZ70OqDgcd7M8zMCxPOtHHdL6ewsrq2vlHcLG1t7+zulfcP2jpOFaEtEvNYdUPQlDNJW4YZTruJoiBCTjvh+Gbmdx6p0iyW92aS0EDAULKIETBW8qv+EISAh3McnfXLFbfmzoH/Ei8nFZSj2S9/+oOYpIJKQzho3fPcxAQZKMMIp9OSn2qaABnDkPYslSCoDrL5zVN8YpUBjmJlSxo8V39OZCC0nojQdgowI73szcT/vF5qousgYzJJDZVksShKOTYxngWAB0xRYvjEEiCK2VsxGYECYmxMJRuCt/zyX9Ku17yLWv3ustI4zeMooiN0jKrIQ1eogW5RE7UQQQl6Qi/o1UmdZ+fNeV+0Fpx85hD9gvPxDYHXkJg=</latexit>

+ + . . . 
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pµ1
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qµ =
Qp
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(nµ � n̄µ) = (0, 0, 0, Q)
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kµ =
⇠p
2x

Qn̄µ =
⇠

2x
(Q, 0, 0,�Q)

<latexit sha1_base64="xn1t+/hv2JPZ1N8LvPoygrkyK8E="></latexit>

Figure 1. Example LO diagrams for the two processes. The momenta qµ and kµ (corresponding
to the photon and incoming parton momenta respectively) are expressed in the Breit frame.

processes were performed in refs. [29, 30] for dijet and in refs. [31–33] for heavy-meson pair
production in an electron-hadron collider. The relevant processes for our case are

`+ h→ `′ + J1 + J2 +X, and `+ h→ `′ +H + H̄ +X , (1.1)

where ` and `′ are the initial and final state leptons, h is the colliding hadron, Ji and
H/H̄ are the jets and heavy mesons respectively and X represent undetected particles.
At leading order (LO), and ignoring the intrinsic momentum of partons inside the target
hadron, the two hard-scattering processes are schematically shown in figure 1. We have
shown that these processes are factorizable when considering the cross-section

dσ

dxdη1dη2dpTdrT
, (1.2)

where x is the Bjorken variable, and ηi, rT and pT are respectively the rapidity, the
sum of the transverse momenta (with respect to the beam axis) and the average scalar
transverse momenta of the two final jets. The factorization condition is |rT | � pT in the
Breit frame, as the virtual photon and target-hadron directions are back-to-back. These
conditions are certainly fulfilled in the Breit frame for pT ∈ [5, 40] GeV and in the central
rapidity region. We also demand that there are no hierarchies among partonic Mandelstam
variables, ŝ ∼ |t̂| ∼ |û|. On the experimental side recent studies [26] suggest that the
measurement of dijet imbalance is possible at EIC. For the heavy-meson case monte-carlo
generator studies suggest that charmed mesons can be reconstructed [34, 35]. The charm
production rates have been considered at the LO and NLO QCD for ep → c/c̄ + X in
ref. [36]. For our case in principle we require the transverse momenta of the heavy mesons,
p
H/H̄
T , be parametrically larger than their mass, mH , i.e. pH/H̄T � mH .

At leading order (LO) the jet processes can be initiated by either a gluon or a quark,
while in the heavy-meson case only the gluon initial state is relevant. The factorized
cross-section results in products/convolutions of several fundamental functions as TMDs,
jet/heavy quark distributions, soft function and a new evolution kernel, detailed in [28].
The purpose of the present paper is to provide a phenomenological study of these processes,
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including theoretical errors. In order to achieve this, we have used the code Artemide [37,
38], introducing new moduli necessary to describe the present cases. The code already
includes quark TMDPDF and the TMD evolution kernel extracted from Drell-Yan and
semi-inclusive DIS experiments [39].

The factorization of the cross-section is produced in position space, described by the
variable b, conjugate of the momentum rT . In order to Fourier transform the factorized
cross-section from b space to momentum space one has to perform an angular integration
on φb (i.e. d2b = b db dφb and vJ · b = vJb cosφb) that results non trivial because the
anomalous dimensions of several functions depend on this angle and are complex valued.
We show that this integration can be performed in resummed perturbation theory and that
this addresses the problem of complex values in all anomalous dimensions. As a result the
φb-angle integrated cross-section is then factorized into distributions that are b-rotation
invariant. The φb-angle integrated dijet evolution kernel is derived integrating a system
of coupled differential equations similar to the TMD case. We show and discuss here a
specific scale choice prescription that is analogue to the ζ-prescription already discussed
in [40], which was already implemented in Artemide.

The factorization theorem and the detailed definition of the observables is provided
in section 2. The cross-sections subtleties discovered when comparing to other groups are
discussed in section 3. The resummation of logs involves angular integrations as explained
in section 4, which leads to the evolution kernels detailed in section 5. The phenomenolog-
ical results obtained with the codes that we have developed are summarized in section 6,
after which the conclusions are drawn.

2 Factorization theorem, frame choice and modulations

2.1 Notation and kinematics

In order to define angles and to deduce a factorized cross-section we need to establish some
kinematics. The direction of the beam is fixed along the ẑ axis. It is useful to define the
four-vectors nµ = 1√

2(1, 0, 0, 1), n̄µ = 1√
2(1, 0, 0,−1), so that n2 = n̄2 = 0, n̄ · n = 1. Then

any other four vector can be decomposed into its light-cone components,

pµ = p+n̄
µ + p−n

µ + pµ⊥ = (p+, p−, p⊥)n, (2.1)

with

p+ = n · p, p− = n̄ · p, p2 = 2p+p− + p2
⊥ = 2p+p− − p2. (2.2)

The direction of the two jets are v1 and v2, normalized as

v2
J = v̄2

J = 0, vJ · v̄J = 1, with J = 1, 2 , (2.3)

and v̄J are defined by reversing the sign of the spacial components. We have then the
standard Lorentz-invariants,

Q2 = −q2, x = Q2

2P · q , (2.4)
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where qµ is the momentum of the virtual photon, Pµ is the momentum of the target
hadron. In the Breit frame we have qµ = (0, 0, 0, Q) and neglecting mass corrections
Pµ = 1

2x(Q, 0, 0,−Q) . The ratio of the longitudinal momenta of the incoming parton
and the target hadron is ξ = k+

P+ .with kµ the momentum of the parton entering hard
process. We can then express the variables Q and ξ in terms of the Born level kinematics
using the pseudo-rapidities, η1 and η2, and the transverse momentum, pT , of the two
outgoing partons,

Q = 2pT cosh(η−) exp(η+), ξ = 2x cosh(η+) exp(−η+) , (2.5)

where, neglecting corrections from the target hadron mass, η± = η1±η2
2 . The partonic

Mandelstam variables can be written using the same variables,

ŝ = (q + k)2 = 4p2
T cosh2(η−) ,

t̂ = (q − p2)2 = −4p2
T cosh(η−) cosh(η+) exp(η1) ,

û = (q − p1)2 = −4p2
T cosh(η−) cosh(η+) exp(η2) , (2.6)

with pµ1 and pµ2 the momenta of the outgoing partons. At partonic level they satisfy

ŝ+ t̂+ û = −Q2 . (2.7)

Finally, the transverse momentum imbalance of the two jets, rT , and the hard trans-
verse momentum, pT , are defined through

rT = p1T + p2T , pT = p1T − p2T
2 , (2.8)

where the sub-index 1, 2 refers to the final jets. At Born level p1T = −p2T and thus
rT = 0. It must be taken into account that the hadronization of the outgoing partons
will form jet-like configurations along similar directions and wide angle radiation that can
escape the jet clustering algorithm, affecting the imbalance.

2.2 Factorization theorem for dijet and heavy hadron pair production

The factorization of dijet and heavy hadron pair production at leading power (LP) for semi-
inclusive deep inelastic experiments has already been provided in [28]. The cross-sections
reported here do not take into account any leptonic fiducial cuts, which however could be
implemented once the experimental conditions are established (especially at EIC). In this
section we recall the main formulas that are used in our phenomenological description. We
start with the dijet cross-section which can be written as a sum of terms depending on the
parton that initiates the hard process (quark or gluon)

dσ2J = dσ(γ∗g) + dσU (γ∗f), (2.9)
dσ(γ∗g) = dσU (γ∗g) + dσL(γ∗g). (2.10)
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For an unpolarized hadronic process, the cross-section is made out of hard contributions
from unpolarized initial quarks dσU (γ∗f), unpolarized initial gluons dσU (γ∗g), and linearly
polarized gluons dσL(γ∗f). The quark contribution to the cross-section is

dσU (γ∗f)
dxdη1dη2dpTdrT

=
∑
f

σfU0 HU
γ∗f→gf (ŝ, t̂, û, µ)

∫
d2b

(2π)2 exp(ib · rT ) ff1 (ξ, b, µ, ζ1) (2.11)

× Sγf (b, ζ2, µ)
(
Cg(b, R, µ)Jg(pT , R, µ)

)(
Cf (b, R, µ)Jf (pT , R, µ)

)
.

In this formula ff1 is the unpolarized quark TMDPDF for flavor f , HU the hard factor for
the unpolarized quark case. The perturbative calculations of TMDPDF has been performed
recently at NNLO [5, 41–44] and N3LO [45, 46]. The jets are described by the product of a
collinear-soft function C(f,g) and a jet shape function J(f,g) specific for each partonic flavor.
The calculation at NLO of these functions can be found in [47, 48] for generic kT -type and
cone jet algorithms.

The factor Sγf is the dijet soft function for the fundamental representation of SU(3)C
and calculated in [28] up to NLO. A corresponding soft factor, Sγg, for the adjoint repre-
sentation of SU(3)C is also necessary for the incoming gluon contribution.

dσ(γ∗g)
dxdη1dη2dpTdrT

=
∑
f

Hµν

γ∗g→ff̄ (ŝ, t̂, û, µ)
∫

d2b

(2π)2 exp(ib · rT )Fg,µν(ξ, b, µ, ζ1) (2.12)

× Sγg(b, η1, η2, µ, ζ2)
(
Cf (b, R, µ)Jf (pT , R, µ)

)(
Cf̄ (b, R, µ)Jf̄ (pT , R, µ)

)
,

The hard factor Hµν(µ) accounts for contributions of unpolarized and linearly polarized
gluons,

Hµν

γ∗g→ff̄ = σgU0 HU
γ∗g→ff̄

gµνT
d− 2 + σgL0 HL

γ∗g→ff̄

(
− gµνT
d− 2 + vµ1T v

ν
2T + vµ2T v

ν
1T

2 v1T · v2T

)
. (2.13)

The TMD tensor Fg,µν can be also decomposed in terms of unpolarized and linearly polar-
ized parts,

Fµνg (ξ, b) = fg1 (ξ, b) gµνT
d− 2 + h⊥1 (ξ, b)

(
gµνT
d− 2 + bµbν

b2

)
, (2.14)

with gµνT = gµν − nµn̄ν − n̄µnν . The hard factors are evaluated up to NNLO in the
unpolarized case in [49, 50] and at LO for the linearly polarized case [51]. In these equations
fg1 and h⊥1 represent the unpolarized and linearly polarized gluon TMD. Both of them are
known perturbatively up to NNLO [5, 42, 44]. Combining eq. (2.10), (2.12), (2.13), (2.14)

– 5 –



J
H
E
P
0
3
(
2
0
2
2
)
0
4
7

one obtains

dσU (γ∗g)
dxdη1dη2dpTdrT

=σgU0
∑
f

HU
γ∗g→ff̄ (ŝ, t̂, û, µ)

∫
d2b

(2π)2 exp(ib · rT ) fg1 (ξ, b, µ, ζ1) (2.15)

× Sγg(b, ζ2, µ)
(
Cf (b, R, µ)Jf (pT , R, µ)

)(
Cf̄ (b, R, µ)Jf̄ (pT , R, µ)

)
,

dσL(γ∗g)
dxdη1dη2dpTdrT

=σgL0
∑
f

HL
γ∗g→ff̄ (ŝ, t̂, û, µ)

∫
d2b

(2π)2 exp(ib · rT )h⊥1 (ξ, b, µ, ζ1) (2.16)

× s2
b − c2

b

2 Sγg(b, ζ2, µ)
(
Cf (b, R, µ)Jf (pT , R, µ)

)(
Cf̄ (b, R, µ)Jf̄ (pT , R, µ)

)
.

We use sb = sinφb and cb = cosφb for the sine and cosine of the angle φb between the
vectors b and v1T , respectively. Each of dσ has a hard factor that describes the initiating
interaction. The coefficients σ(f,g),(U,L)

0 are introduced such that the leading order hard
functions are normalized to the unity, i.e. HU(L)

LO = 1 +O(αs).
The case of heavy hadron pair is very similar. The measured imbalance rT is

rT = pHT + pH̄T , (2.17)

where the superscript H indicates a generic heavy meson and H̄ the corresponding anti-
particle. The imbalance is measured in the Breit frame and assuming the TMD factoriza-
tion scaling, i.e., |rT | � pH,H̄T . We also assume that the two heavy mesons are fragmented
near the kinematic end-point and carry most of the energy of the heavy quark coming from
the hard process. The cross-section reads

dσ(γ∗g)
dxdηHdηH̄dpTdrT

=Hµν

γ∗g→QQ̄(ŝ, t̂, û, µ)
∫

db

(2π)2 exp(ib · rT )Fg,µν(ξ, b, µ, ζ1)

× Sγg(b, µ, ζ2) JQ→H(b, pT ,mQ, µ) JQ̄→H̄(b, pT ,mQ, µ) . (2.18)

with ηH and ηH̄ the pseudo-rapidities of the heavy mesons, JQ→H the heavy quark jet-
functions [52, 53]. The hard, soft, and beam functions are the same as in the dijet case. In
the hard function we do not consider corrections due to the quark mass and we define

pT = |p
H
T |+ |pH̄T |

2 , (2.19)

The heavy quark jet functions, JQ→H , can be partially evaluated in perturbation theory
as shown in [28]. We work in the limit pT � mH � ΛQCD and the heavy quark jet function
can be re-factorized using bHQET. We also have rT � pT so that it is possible to find
large logs of two parametrically different scales in the fragmentation process,

µ+ = mQ, and µJ = mQ
rT
pT

, (2.20)
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that need to be resummed to ensure the convergence of the expansion. Following [28]
the jet function can be firstly factorized into a short distance matching coefficient and a
bHQET matrix element,

JQ→H(b, pT ,mQ, µ) = H+(mQ, µ)JQ→H
(
b,
mQ

pT
, µ

)
, (2.21)

where the coefficient H+ is

H+(mQ, µ) = |C+(mQ, µ)|2 . (2.22)

and the two-dimensional shape function is defined in momentum space as

JQ→H(r) = 1
2 p−H NC

∑
X

〈0|δ(2)
(
r − iv (v̄ · ∂

)
)W †vhvβ+ |XH〉〈XH|h̄v,β+Wv /̄v|0〉. (2.23)

Notice that v is a Euclidean, two dimensional, transverse component of the light-like four-
vector vµ pointing along the direction of the boosted heavy meson. In position space JQ→H
is obtained by Fourier transformation

JQ→H
(
b,
mQ

pT
, µ

)
=
∫
dr exp(ib · r)JQ→H(r) . (2.24)

The one-loop expression for these quantities are calculated in [28].

3 Cross-sections used in phenomenology

The cross-sections presented in previous section are usually partially integrated in phe-
nomenological observables. We discuss here these integrations, which also allow us to
relate the normalization of our cross-section with the ones obtained in the literature.

3.1 Extracting the Born-level cross-sections

The tree level cross-sections for the dijet and hadron pair production were considered at
tree level in ref. [54]. We start considering the gluon case, from which one can easily deduce
also the quark case. The gluon hard contribution to the cross-section is described by

dσ(γ∗g)
dxdη1dη2dpTdrT

= N
xs

[
A0 +A1 cos 2φ′p + · · ·+B0 cos 2φ′r + · · ·

]
, (3.1)

and the azimuthal angles (φ′r, φ′p) of vectors pT , rT are measured with respect to the lepton
plane. However, our preferred frame is the one where the φ` angle is measured in the plane
defined by pT and qT , the sum of the lepton momenta, and φr is the azimuthal angle
between rT and pT . In this frame and integrating over the angle φ` we are left with:

dσ(γ∗g)
dxdη1dη2dpTdrT

= 2πpT
N
xs

[
A0 +B2 cos(2φr)

]
, (3.2)
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with the factor 2π coming from φ` integration. The LO expressions are obtained by sepa-
rating the unpolarized and linearly polarized gluon contributions and Fourier transforming.
The unpolarized partonic part has a similar form also for quarks, so that we find

dσU (γ∗g)
dxdη1dη2dpTdrT

∣∣∣
LO

= σgU0

∫
d2b

(2π)2 exp(ib · rT ) fg1 (ξ, b) = σgU0 fg1 (ξ, rT ) , (3.3)

dσU (γ∗f)
dxdη1dη2dpTdrT

∣∣∣
LO

= σfU0

∫
d2b

(2π)2 exp(ib · rT ) ff1 (ξ, b) = σfU0 ff1 (ξ, rT ) , (3.4)

The same for the linearly polarized gluons gives

dσL(γ∗g)
dxdη1dη2dpTdrT

∣∣∣
LO

= σgL0

∫
d2b

(2π)2 exp(irT · b)
sin2 φb − cos2 φb

2 h⊥1 (ξ, b) .

= −σgL0

∫
b db dφb

8π2 exp
(
irT b cos(φb − φr)

)
cos(2φb)h⊥1 (ξ, b)

= cos(2φr) σgL0

∫
b db

4π J2(rT b)h⊥1 (ξ, b)

= −cos(2φr)
2 σgL0 h⊥1 (ξ, rT ), (3.5)

where notice that h⊥1 (ξ, rT ) is not the direct Fourier transform of h⊥1 (ξ, b) and both functions
can be related through eq. (2.20) in [3]. We obtain the σ(g,f)(U,L)

0 prefactors from the
structure functions given in eqs. (3.3, 3.5) in [54] and we list them in appendix A.

3.2 Angle integrated and azimuthally modulated cross-section

The scalar cross-section that we finally consider in the phenomenological studies is obtained
by integrating over the φr angle

dσ

dΠdrT
= rT

∫ +π

−π
dφr

dσ

dΠdrT
, (3.6)

where dΠ = dxdη1dη2dpT . Because the factorized cross-section is always expressed in
position space one can write (here J0,2 are Bessel functions)

dσ

dΠdrT
= rT

∫ +π

−π
dφr

∫
db

(2π)2 exp
[
irT b cos(φb − φr)

] dσ̃(b)
dΠdb

= rT

∫ ∞
0

b db

2π J0(rT b)
∫ +π

−π
dφb

dσ̃(b)
dΠdb

= rT

∫ ∞
0

b db

2π J0(rT b)
∫ +π

−π
dφb

[
dσ̃U (b)
dΠdb −

cos 2φb
2

dσ̃L(b)
dΠdb

]
, (3.7)

where dσU = dσU (γ∗f) + dσU (γ∗g), dσL = dσL(γ∗g) for the dijet case and dσU,L =
dσU,L(γ∗g) for the heavy hadron pair case.

In our phenomenological analysis we consider also the azimuthal angle average

〈cos 2φr〉 ≡
[ ∫ +π

−π
dφr cos 2φr

dσ

dΠdrT

]/
dσ

dΠdrT
. (3.8)
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The denominator is what we have discussed in the previous section, so now we will only
focus on the numerator,∫ +π

−π
dφr cos 2φr

dσ

dΠdrT

= rT

∫ +π

−π
dφr cos 2φr

∫
db

(2π)2 exp
[
irT b cos(φb − φr)

]dσ̃(b)
dΠdb

= rT

∫ ∞
0

b db

2π J2(rT b)
∫ +π

−π
dφb cos 2φb

dσ̃(b)
dΠdb

= rT

∫ ∞
0

b db

2π J2(rT b)
∫ +π

−π
dφb

[
cos 2φb

dσ̃U (b)
dΠdb −

cos2 2φb
2

dσ̃L(b)
dΠdb

]
. (3.9)

Eqs. (3.7)–(3.9) show the relation among the final cross-section in momentum space and
the factorized cross-sections in position space, where we have distinguished between the
unpolarized cross-sections generated by gluons and quarks, dσ̃U = dσ̃Ug + dσ̃Uf and the
contribution from linearly polarized gluons dσ̃L.

4 Evolution kernels with angular dependent anomalous dimensions

The anomalous dimensions of soft, collinear-soft and heavy-jets matrix elements are angular
dependent and complex valued, and both these features are not common in literature. The
angular dependence is parameterized here by the angle φb. In order to discuss the issue
we show in section 4.1 the dijet soft function as obtained in [28] and then we extend the
conclusions to the other functions that have a similar angular dependent structure. The
angular dependence of the anomalous dimension is strictly correlated with the imaginary
parts of the cross-section in position space. The treatment of the angular dependence in
the evolution has been discussed also in [55–57] which propose an approximate treatment.
In section 4.2 we perform an original analysis discussing in detail how passing from position
space to momentum space in the cross-section allows to obtain a real valued cross-section,
including resummation. The proof of this statement is here provided at one-loop, and the
same mechanism can be conjectured to work at all orders in perturbation theory.

4.1 Dijet soft function and angle dependent anomalous dimensions

The dijet soft function presents several properties that result particularly interesting. The
renormalized soft function is obtained from its bare expression

Sbare
γi (b, ζ2) = ZSγi(b, µ, ζ2)Sγi(b, µ, ζ2), (4.1)

where the factor ZSγi was calculated in [28]. For our purposes it is sufficient to report
expression of the soft function in the MS scheme for the (γ∗g)-channel

Sγg(b, µ, ζ2) = 1 + as

{
CF

[
π2

3 + 2 ln2
(
Bµ2e2γE

−Ab

)
+ 4Li2(1 +Ab)

]
+ CA

[
− 2 ln(Bµ2e2γE ) ln ζ2 − ln2(−Ab)−

π2

3 − 2Li2(1 +Ab)
]}

+O(a2
s),

(4.2)
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and for the (γ∗f)-channel

Sγf (b, µ, ζ2) = 1 + as

{
CA

[
π2

6 + ln2
(
Bµ2e2γE

−Ab

)
+ 2Li2(1 +Ab)

+ 2 ln(Bµ2e2γE ) ln (n · v1)(v2 · b)
(n · v2)(v1 · b)

]
+ CF ln(Bµ2e2γE )

[
ln(Bµ2e2γE )− 2 ln ζ2 + 2 ln

( 2(n · v2)
(v1 · v2)(n · v2)

)
+ 4 ln(−iv1 · b̂)

]
− CF

π2

6

}
+O(a2

s), (4.3)

respectively, where we have Ab = (v1·v2)
2 (v1·b̂) (v2·b̂)

. The expressions above depend explicitly on
the angle φb and we have used b̂ = b/|b|. The rapidity scale ζ2 is responsible for the rapidity
evolution of this factor and it is related to the TMD rapidity scale ζ1 by the consistency
constraint

ζ1 ζ2 = (k−)2

An
= û t̂

ŝ
. (4.4)

The values of ζ1 and ζ2 that minimize hard logs are

ζ1 = p2
T , ζ2 = 1. (4.5)

Despite the fact that the scale ζ2 is dimensionless there are some formal similarities in the
evolution of this soft function and the TMD. The dijet soft function double scale evolution
is dictated by

d

d lnµSγi(b, ζ, µ) = γSγi(b, µ, ζ)Sγi(b, ζ, µ), (4.6)

d

d ln ζ Sγi(b, ζ, µ) = −Di(µ, b)Sγi(b, ζ, µ), (4.7)

where i is gluon or quark. The rapidity evolution kernel Di is the same as in the TMD
case, while for the rest we need a special treatment.

4.2 Treatment of angular dependent anomalous dimensions and resummation

The dijet soft function, the collinear-soft function in dijets and the heavy meson jet function
in hadron pair production have, as a common feature, an anomalous dimension that is
φb-dependent and that can include some imaginary parts. The general structure of the
anomalous dimension for these cases is

γi(b, µ) = γcusp[αs]
(
ci 2 ln | cosφb| − c′i iπΘ(φb)

)
+ other φb independent terms (4.8)

where

Θ(φb) =

+1 : −π/2 < φb < π/2
−1 : otherwise

(4.9)

and the consistency of anomalous dimensions requires∑
i

ci =
∑
i

c′i = 0, (4.10)
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where ci and c′i are the color coefficients that multiply the corresponding part of the cusp
anomalous dimension. The construction of the evolution kernel involves an integration over
the angle φb and after integration all imaginary parts cancel consistently. Note that this
does not mean that one can ignore the imaginary components of the anomalous dimensions
or fixed order functions as contributions of imaginary terms yield real contributions to the
final result.

In order to show the cancellation of the imaginary part we separate the angular de-
pendent part of the evolution kernel from the rest. For instance for the soft function
we have

Sγi (b, µf , ζ2,f )

= exp
[∫
P

(
γSγi(b, µ, ζ2)d lnµ−Di(µ, b)d ln ζ2

)]
S (b;µ0, ζ2,0)

= exp
[∫
P

(
γφSγi(φ)d lnµ+ γ̄Sγi(b, µ, ζ2)d lnµ−Di(µ, b)d ln ζ2

)]
Sγi (b, µ0, ζ2,0)

= exp
[∫ µf

µ0

(
γφSγi(φ)d lnµ

)]
× exp

[∫
P

(
γ̄Sγi(b, µ, ζ2)d lnµ−Di(µ, b)d ln ζ2

)]
Sγi (b, µ0, ζ2,0)

= RφSγi RSγi Sγi (b, µ0, ζ2,0) . (4.11)

The evolution factor is so splitted in an angular dependent part and the rest. The splitting
is clearly not unique, however this should not affect the final result once the angular
integration is performed. We have

d

d lnµR
φ
Sγi

= γφS(φ)RφSγi ,
d

d ln ζR
φ
Sγi

= 0 (4.12)

d

d lnµRSγi = γ̄SRSγi ,
d

d ln ζRSγi = −DiRSγi , (4.13)

A similar splitting is done for all other angular dependent evolution kernels, for which we
have used

γφSγg = γcusp
[
4CF ln | cosφb|

]
, (4.14)

γφSγf = γcusp
[
2(CF + CA) ln | cosφb| − (CF − CA)iπΘ(φb)

]
, (4.15)

γφCg = γcuspCA
[
− 2 ln | cosφb| − iπΘ(φb)

]
, (4.16)

γφCf = γcuspCF
[
− 2 ln | cosφb| ± iπΘ(φb)

]
, (4.17)

γφJ = γcuspCF
[
− 2 ln | cosφb| ± iπΘ(φb)

]
, (4.18)

where the ± sign refers to quark and anti-quark jet respectively. The angular independent
part of the anomalous dimension is simply obtained from the complete expression of the
anomalous dimension

γi = γφi + γ̄i (4.19)
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with i = Sγg, Sγf , Cg, Cf , J for each channel. The complete list of one loop anomalous
dimensions can be found in appendix B.

In order to describe the implications of the angle integration we consider here the dijet
production case, being the HHP one very similar. The separation of the evolution kernels
of all functions in an angular dependent part and the rest allows to write the resummed
cross-section in position space as

dσ̃(b) ∼ exp
[
A({µi}) 2 ln | cosφb| − B({µi}) iπΘ(φb)

]
R({µk} → µ)

×
[
1 +

∑
k∈{H,F,J,S,C}

as(µk)f [1]
k (b, cosφb)

]

= | cosφb|2A
(

cos(Bπ)− iΘ(φb) sin(Bπ)
)
R({µk} → µ)

×
[
1 +

∑
k∈{H,F,J,S,C}

as(µk)f [1]
k (b, cosφb)

]
(4.20)

where we have omitted global scale independent hard factors and non-perturbative contri-
butions that we assume independent of the angle φb. In this equation we have combined
the evolution kernel of the functions that appear in the cross-section in

A({µi}) =
∑

i∈{S,C}
ci

∫ µ

µi

γcusp[αs]d lnµ′ , B({µi}) =
∑

i∈{S,C}
c′i

∫ µ

µi

γcusp[αs]d lnµ′ (4.21)

which are independent of the factorization scale µ because of eq. (4.10), and an angle
independent part R({µk} → µ). The perturbative parts of all functions that appear in
the cross-sections at one loop are collected in the factor

[
1 +∑

k∈{H,F,J,S,C} as(µk)f
[1]
k

]
. In

eq. (4.20) the imaginary part of the cross-section is proportional to the odd function Θ(φb).
We expect so that this part cancel at all orders in perturbation theory when the φb the
Fourier transform is performed like in eq. (3.7)–(3.9). In the next subsection we show that
this is explicitly the case at one loop.

In order to organize the discussion we firstly consider the case of dσ̃U and then deduce
the necessary modifications to get the Fourier transform of dσ̃L. The angular integra-
tion of the cross-section at one loop can always be expressed in terms of the following
basic integrals:

In(A) ≡
∫ +π

−π
dφb | cosφb|2A lnn | cosφb| (4.22)

where

I0(A) = 2
√
π Γ(1/2 +A)
Γ(1 +A) ,

I1(A) =
√
π Γ(1/2 +A)
Γ(1 +A) (HA−1/2 −HA)

I2(A) =
√
π Γ(1/2 +A)
2Γ(1 +A)

[
(HA−1/2 −HA)2 + ψ(1)

(1
2 +A

)
− ψ(1)(1 +A)

]
. (4.23)
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The results on the r.h.s. of eq. (4.23) are defined only for A > −1/2. In order to satisfy this
condition for every value of b the scales µS and µC must be chosen appropriately, which at
the current level of precision can be done. Next we show the contribution of each term of
f

[1]
k to the cross-section:

• Constant terms: in this case we consider the leading order term in eq. (4.20) together
with all terms in the functions f [1]

k that are cosφb independent. The integral we need
to perform is,

Iconst.(A,B) ≡
∫ +π

−π
dφb | cosφb|2A

(
cos(Bπ)− iΘ(φb) sin(Bπ)

)
= I0(A) cos(Bπ)

(4.24)

and the imaginary part cancels because of parity.

• Single logarithmic terms: in this case we consider terms proportional to ln(−i cosφb)
that appear in the soft and collinear-soft terms f [1]

S and f [1]
C respectively. The relevant

integral that we need to perform is

Ilog(A,B) ≡
∫ +π

−π
dφb | cosφb|2A

(
cos(Bπ)− iΘ(φb) sin(Bπ)

)
ln(−i cosφb). (4.25)

Expanding the logarithm as follows

ln(−i cosφb) = ln | cosφb| −
iπ

2 Θ(φb) (4.26)

we can split the main integral into one part proportional to cos(Bπ) and a second
part proportional to sin(Bπ). In terms of the integrals in eq. (4.23) we obtain the
real valued result

Ilog(A,B) = I1(A) cos(Bπ)− π

2 I0(A) sin(Bπ). (4.27)

• Logarithmic Ab terms: in the soft function we observe the presence of terms that
involve the following combination,

Ab = (v1 · v2)
2(v1 · b̂)(v1 · b̂)

= − ŝ

4p2
T (cosφb)2 (4.28)

Particularly this term appears in logarithms and di-logarithms. Here we address the
double logarithmic terms, i.e.,

ln2(−Ab) = ln2
(

ŝ

4p2
T

)
− 4 ln

(
ŝ

4p2
T

)
ln | cosφb|+ 4 ln2 | cosφb| (4.29)

Integrating over φb the above we obtain three contributions: a constant term, a
single-log and a double-log. Thus we can immediately write,

IlogA(A,B) ≡
∫ +π

−π
dφb | cosφb|2A

(
cos(Bπ)− iΘ(φb) sin(Bπ)

)
ln2(−Ab)

=
[

ln2
(

ŝ

4p2
T

)
I0(A)− 4 ln

(
ŝ

4p2
T

)
I1(A) + 4I2(A)

]
cos(Bπ). (4.30)
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• Double logarithmic terms: in this case we consider terms proportional to
ln2(−i cosφb) that appear in the soft and collinear-soft functions. The relevant inte-
gral that we need to perform is

Ilog2(A,B) ≡
∫ +π

−π
dφb | cosφb|2A

(
cos(Bπ)− iΘ(φb) sin(Bπ)

)
ln2(−i cosφb) (4.31)

we can then expand the logarithm as follows

ln2(−i cosφb) = ln2 | cosφb| −
π2

4 − iπΘ(φb) ln | cosφb| (4.32)

then we can expand as before in terms proportional to sin(Bπ) and terms proportional
to cos(Bπ)

Ilog2(A,B) =
[
− π2

4 I0(A) + I2(A)
]

cos(Bπ)− πI1(A) sin(Bπ). (4.33)

In addition we have poly-logarithmic terms which are proportional to Li2(1−Ab),

ILi(A,B, c̄) ≡ cos(Bπ)
∫ +π

−π
dφb | cosφb|2A Li2

(
1− 1

c̄ cos2 φb

)
, (4.34)

where

c̄ ≡ 4p2
T

ŝ
, 0 < c̄ ≤ 1, (4.35)

and where we have dropped the terms proportional to sin(Bπ) since they vanish after
integration from parity. We can then use properties of the poly-logarithm in order to
express this integral in the following form,

ILi(A,B, c̄) = cos(Bπ)
{
− 1

2

[(
ln2 c̄+ π2

3

)
I0(A) + 4 ln c̄I1(A) + 4I2(A)

]
+
∫ +π

−π
dφb | cosφb|2A

[
Li2(c̄ cos2 φb) + ln(c̄ cos2 φb) ln(1− c̄ cos2 φb)

]}
(4.36)

We can then expand the poly-logarithms and the ln(1− c̄ cos2 φb) in the region 0 < c ≤ 1.
This allows us to perform the integral over φb and obtain the following,

ILi(A,B, c̄) = cos(Bπ)
{
− 1

2

[(
ln2 c̄+ π2

3

)
I0(A) + 4I1(A) ln c̄+ 4I2(A)

]
−
∞∑
n=1

c̄n

n

[(
ln c̄− 1

n

)
I0(A+ n) + 2I1(A+ n)

]}
(4.37)

Although this expression is exact it includes a sum extending to infinity. In numerical
applications one can truncate this sum at the desired value to achieve a certain numerical
precision. This concludes the discussion of all possible cases that appear in the Fourier
transform of the unpolarized cross-section.
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The part of the cross-section relative to linearly polarized gluons can be treated sim-
ilarly. In this case we need to incorporate an additional cos 2φb term in the integrals
but this is the only change since the soft and collinear-soft functions that appear in the
two contributions are the same as for the dijet case. Using the trigonometric identity
cos 2φb = 2 cos2 φb− 1 the integrals for this case can be deduced from the discussion of the
unpolarized cross-section by the replacement

In(A) −→ −In(A+ 1) + 1
2In(A) . (4.38)

Equivalently for the case of angular modulation in eq. (3.8) the following transformations
have to be performed,

dσ̃U (b) : In(A) −→ −In(A) + 2In(A+ 1)

dσ̃L(b) : In(A) −→ −In(A) + 2In(A+ 1)− 2In(A+ 2) . (4.39)

In all these cases one obtains a cancellation of the imaginary part of the cross-section.
Treating perturbatively the angular integration as discussed in this section leads to

write eq. (3.7) for the dijet case as

dσ

dΠdrT
= dσU (γ∗g)

dΠdrT
+ dσU (γ∗f)

dΠdrT
+ dσL(γ∗g)

dΠdrT
, (4.40)

where
dσU (γ∗g)
dΠ drT

=
∑
f

σgU0 HU
γ∗g→ff̄ (ŝ, t̂, û, µ = pT )Jf (pT , R, µJ)Jf̄ (pT , R, µJ)

×
∫ +∞

0
bdb J0(brT )fg1 (ξ, b)Rg

(
({µk}, ζ1,0, ζ2,0)→ (pT , p2

T , 1)
)
σ̂Ug (b, R, {µi}),

(4.41)
dσU (γ∗f)
dΠ drT

=
∑
f,f̄

σfU0 HU
γ∗f→gf (ŝ, t̂, û, µ = pT )Jf (pT , R, µJ)Jg(pT , R, µJ)

×
∫ +∞

0
bdb J0(brT )ff1 (ξ, b)Rq

(
({µk}, ζ1,0, ζ2,0)→ (pT , p2

T , 1)
)
σ̂Uf (b, R, {µi}),

(4.42)
dσL(γ∗g)
dΠ drT

=
∑
f

σgL0 HL
γ∗g→ff̄ (ŝ, t̂, û, µ = pT )Jf (pT , R, µJ)Jf̄ (pT , R, µJ)

×
∫ +∞

0
bdb J0(brT )h⊥1 (ξ, b)Rg

(
({µk}, ζ1,0, ζ2,0)→ (pT , p2

T , 1)
)
σ̂Lg (b, R, {µi}),

(4.43)

where Rf,g are products of evolution kernels to be described in the next section, and σ̂U,Lf,g

are the result of φb angular integration and can be written as

σ̂Ug = IgUconst. + as(µC)CUf (b, R, µC) + as(µC)CUf̄ (b, R, µC) + as(µ0)SUγg(b, ζ2, µ0), (4.44)

σ̂Uf = IfUconst. + as(µC)CUf (b, R, µC) + as(µC)CUg (b, R, µC) + as(µ0)SUγf (b, ζ2, µ0), (4.45)
σ̂Lg = IgLconst. + as(µC)CLf (b, R, µC) + as(µC)CLf̄ (b, R, µC) + as(µ0)SLγg(b, ζ2, µ0). (4.46)
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The functions C and S in eq. (4.44)–(4.46) are the result of the φb integration in collinear-
soft and dijet soft functions. For the heavy meson case we have just contributions from
gluon scattering,

dσ

dΠdrT
= dσU (γ∗g)

dΠdrT
+ dσL(γ∗g)

dΠdrT
, (4.47)

and we have to change Jf,f̄ → H+ and Cf → JQ→H in eq. (4.41)–(4.43). In the case of
angular modulation the cross-sections can also be written as in eq. (4.40)–(4.47), with the
correct values of the functions Iconst., C and S. The non-perturbative effects are in all cases
encoded in the evolution kernels, TMD and jet functions. In the next section we describe
how the evolution kernels are defined.

5 Evolution kernels and scale choices

The evolution kernels appearing in eq. (4.40)–(4.47) are

Rg
(
({µk}, ζ1,0, ζ2,0)→ (pT , p2

T , 1)
)

=RJf (µJ → pT )2RCf (µC → pT )2

×RgF
(
(µ0, ζ1,0)→ (pT , p2

T )
)
RqS
(
(µ0, ζ2,0)→ (pT , 1)

)
, (5.1)

Rq
(
({µk}, ζ1,0, ζ2,0)→ (pT , p2

T , 1)
)

=RJf (µJ → pT )RJg(µJ → pT )RCf (µC → pT )RCg(µC → pT )

×RqF
(
(µ0, ζ1,0)→ (pT , p2

T )
)
RgS
(
(µ0, ζ2,0)→ (pT , 1)

)
, (5.2)

where RJf,g is a jet function kernel, RCf,g is the one of collinear-soft functions, Rq,gF the
one of TMD and finally RqgS is the one of the dijet soft function. In the heavy quark case
the evolution kernels are parameterized like in eq. (5.1) with the usual changes Jf → H+
and Cf → JQ→H . The kernels for single-scale evolution have a standard form and a review
up to NLL is given in [58],

Ri(µi → pT ) = eKi(µi→pT )
(
µi
mi

)ωi(µi→pT )
, i = {Cf , Cg, Jf , Jg,JQ→H , H+} (5.3)

where

ωi(µi → pT )
∣∣∣
NLL

= − Γ0
i

β0

[
ln r +

(Γ1
Γ0
− β1
β0

)
αs(µi)

4π (r − 1)
]
, (5.4)

Ki(µi → pT )
∣∣∣
NLL

= − γ0
i

2β0
ln r − 2πΓ0

i

(β0)2

[
r − 1− r ln r

αs(pT )

+
(Γ1

Γ0
− β1
β0

) 1− r + ln r
4π + β1

8πβ0
ln2 r

]
, (5.5)
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with r = αs(pT )/αs(µi) and

Γ0
Cf = −4CF , Γ0

Cg = −4CA, γ0
Cf/g = 0, mCf/g = Re−γE

b
,

Γ0
Jf

= 4CF , Γ0
Jg = 4CA, γ0

Jf
= 6CF , γ0

Jg = 2β0, mJf/g = pTR,

Γ0
J = −4CF , γ0

J = 4CF , mJ = mQ/pT e
−γE

b
,

Γ0
+ = 4CF , γ0

+ = 2CF , m+ = mQ, (5.6)

Initial scales µi choice is given in section 6. The TMD kernel is considered here in the
ζ-prescription described in [40] and implemented in the code Artemide [37, 38] that we
use,

Rq,gF ({µ0, ζ0} → {µf , ζf}) =
(

ζf
ζµ(b, µf )

)−Dq,g(b,µf )
. (5.7)

In the next paragraph we define a ζ-prescription also for the dijet evolution kernel
RgS
(
(µ0, ζ2,0)→ (pT , 1), which is the only missing part.

5.1 ζ-prescription for dijet evolution kernel

The angular independent kernel of the dijet soft function is obtained as a solution of a
coupled system of differential equations, reported in eq. (4.13), that are formally very
similar to the TMD ones [59, 60]. The anomalous dimensions are given by

γ̄Sγg(µ, ζ) = γcusp

[
2CF ln

(
µ2

µ2
0

)
− CA ln

(
ζ

ζγg2,0

)]
+ δγγgS , (5.8)

γ̄Sγf (µ, ζ) = γcusp

[
(CF + CA) ln

(
µ2

µ2
0

)
− CF ln

(
ζ

ζγf2,0

)]
+ δγγfS , (5.9)

where

µ0 = 2
beγE

, ζγg2,0 =
(4p2

T

ŝ

) 2CF
CA

, ζγf2,0 =
(4p2

T

ŝ

)CF+CA
CF

(
t̂

û

)CF−CA
CF

, (5.10)

and δγS are the non-cusp SF anomalous dimension, which is known up to three-loops for
the gluon-channel and up to one-loop for the quark-channel and are reported in appendix.
The anomalous dimension and the rapidity anomalous dimension (RAD) in eq. (4.6), (4.7)
satisfy also

− d

d ln ζ γ̄Sγi(µ, ζ) = d

d lnµDi(µ, b) = Γcusp(µ) (5.11)

The evolution for the SF takes the general form

RiS({µi, ζi} → {µf , ζf}) = exp
[∫
P

(
γ̄Sγ i(µ, ζ)d lnµ−Di(µ, b)d ln ζ

)]
(5.12)

with i = q, g and {µi, ζi} and {µf , ζf} being the initial and final points of factorization and
rapidity scales. The integration path P is an arbitrary path in the {µ, ζ}-plane. Eq. (5.11)
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ensures that the evolution kernel is path only independent when one knows the complete
perturbative expansion of the anomalous dimensions. Since this is not the case the path
independence is broken. In order to partially restore the path independence we proceed
as in [40] defining a ζ-prescription also for the dijet soft function evolution kernel. The
ζ-prescription provides a way to choose the initial scale ζi of the evolution kernel as a
function of µ and b so that the SF does not depend on the initial scale µi. This is done
by taking the integration path through a null-evolution line in the {µ, ζ}-plane and then
taking a fixed-µ evolution.

To find the null-evolution line we interpret the pair of differential equations (5.11) as
a two-dimensional gradient equation ∇F = EF , where E = (γS(µ, ζ),−DS(µ, b)). The
null-evolution line is then an equipotential line of the field E. In particular, there is
a special null-evolution line that passes through the saddle-point {µsaddle, ζsaddle} of the
evolution field. We find that the saddle point is exactly µsaddle = µ0 and ζγisaddle = ζγi0 . If
we parameterize the null-evolution line as {µ, ζµ(b)}, the value of ζµ is given by

γSγi(µ, ζµ(b)) = 2DSγi(µ, b)
d ln ζµ(b)
d lnµ2 , (5.13)

which is solved perturbatively order by order in αs. The perturbative solution takes the
form

ζγgµ, pert(b) =
(
µ

µ0

) 2CF
CA

ζγg0 ev
γg(µ,b), (5.14)

ζγfµ, pert(b) =
(
µ

µ0

)CF+CA
CF

ζγf0 ev
γf (µ,b), (5.15)

where

vγi(µ, b) =
∞∑
n=0

ans (µ)vγin (Lµ), Lµ = ln(Bµ2e2γE ),

vγg0 (Lµ) = 0, (5.16)

vγg1 (Lµ) = 2CF
CA

[
− β0

12L2
µ +

γ2
2CF − d

(2,0)

Γ0

]
, (5.17)

vγg2 (Lµ) = 2CF
CA

[
− β2

0
24L3

µ −
(
β1
12 + β0Γ1

12Γ0

)
L2
µ +

(
β0

γ2
2CF

2Γ0
− 4β0d

(2,0)

3Γ0

)
Lµ

−
γ2

2CF Γ1 − d(2,0)Γ1

Γ2
0

+
γ3

2CF − d
(3,0)

Γ0

]
, (5.18)

vγf0 (Lµ) = 0, (5.19)
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and we are using the following notation

Di(µ, b) = Ci

∞∑
n=1

ans (µ)
n∑
k=0

Lkµd(n,k), δγS(µ) =
∞∑
n=1

ans (µ)γn, (5.20)

β(as) = −
∞∑
n=0

an+2
s βn, Γcusp(µ) = Ciγcusp(µ) = Ci

∞∑
n=0

an+1
s (µ)Γn, (5.21)

with Ci = CF , CA for quark and gluon channel respectively. Notice that v0 vanishes as it
is proportional to the LO non-cusp AD, which is zero for the SF. The non-cusp AD is not
known beyond LO for the quark-channel.

The RAD is a function of b and therefore has important non-perturbative corrections
in the large-b region. These corrections can be implemented as a model. The way to
proceed is to solve (5.13) for a generic non-perturbative RAD. The equation is solvable but
it is difficult to obtain the cancellation of perturbative logarithms in the small-b region.
Following [40] we use the perturbative solution for the small-b region and move to the exact
(generic RAD) solution for large-b:

ζµ(b) = ζpert
µ (b)e−b2/B2

NP + ζexact
µ (b)

(
1− e−b2/B2

NP
)
, (5.22)

with BNP being the b value where non-perturbative (NP) effects become important (∼ 2.5
GeV−1). We have already discussed the perturbative solution to eq. (5.13). For the exact
solution we find

ζγgµ, exact(b) =
(
µ2

µ2
0

) 2CF
CA

ζγg0 e−g
γg(as,DS)/DS , (5.23)

ζγfµ, exact(b) =
(
µ2

µ2
0

)CF+CA
CF

ζγf0 e−g
γf (as,DS)/DS , (5.24)

where

gγi(as,DS) = 1
as

Γ0
2β2

0

∞∑
n=0

ans g
γi
n (DS),

gγg0 = 2CF
CA

[
e−p − 1 + p

]
, (5.25)

gγg1 = 2CF
CA

[
β1
β0

(
e−p − 1 + p− p2

2

)
− Γ1

Γ0

(
e−p − 1 + p

) ]
, (5.26)

gγf0 = CF + CA
CF

[
e−p − 1 + p

]
, (5.27)

gγf1 = CF + CA
CF

[
β1
β0

(
e−p − 1 + p− p2

2

)
− Γ1

Γ0

(
e−p − 1 + p

) ]
, (5.28)

and p = 2β0DS/Γ0.
Finally, the evolution kernel that provides the evolution from the null-evolution line

and that passes through the saddle-point to the final ζ point is given by

Rq,gS ({µ0, ζ0} → {µf , ζf}) =
(

ζf
ζµ(b, µf )

)−Dq,g(b,µf )
, (5.29)
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and if we consider the evolution from an arbitrary initial scale we take

RiS({µi, ζi} → {µf , ζf}) = R
i
S({µ0, ζ0} → {µf , ζf})
RiS({µ0, ζ0} → {µi, ζi})

. (5.30)

with i = q, g. This discussion concludes the analysis of all terms that appear in the
factorization theorem and the scale prescription. We are now ready for the implementation
in the code Artemide [37, 38].

6 Dijet and heavy hadron pair (HHP) production at EIC

In order to test the phenomenology developed in the previous sections we consider the
case of the EIC. In [28] we already studied the coverage of the EIC and we concluded that
the most favourable case is given for a value of mass energy for dijet production around√
s = 140GeV and central rapidity, η1 = η2 = 0. Typical values for jet radii and momenta

at EIC are respectively R ∼ 0.7 and pT ∼ Q/2 ∼ 20 GeV. In order to simplify the discussion
we show plots integrated over Bjorken variable x (the longitudinal fraction of momentum
ξ that enters in the TMDPDFs is ξ ∼ 2x) in the allowed kinematic intervals. For the case
of central rapidity we have x ∈ (0.0859, 0.5). The cross-sections that we plot are∫ xmax

xmin
dx

dσ

dxdη1dη2dpTdrT

∣∣∣
η1, η2, pT

(6.1)

and its value is presented as a function of the small transverse momentum rT . The cross-
sections and the error bands are obtained by using and preparing specific moduli for the
code Artemide [37, 38]. In particular we use the TMD and the TMD evolution kernels
already coded in Artemide, that come from the fit [39], while the new functions studied
in this work are included in this code for the first time. The gluon TMD is not fitted yet,
however in Artemide there is a parameterization for it. The code takes into account that
the contribution of linearly polarized gluons is highly suppressed because in the small-b
regime the matching of the linearly polarized gluon TMD onto the gluon PDF starts at
order α1

s and not at order α0
s like other distributions. In ref. [5] the cross section obtained

in this way agrees with Pythya 8 and current experimental results for the Higgs transverse
momentum spectrum, which are however not very precise. The non-perturbative effects are
expected to be important in the high-b region and they should not alter the small-b behavior
of this distribution. Notice also that the non-perturbative effects play a role to control the
behavior of the distribution around the Landau pole at large-b, which means a further
suppression effect at large-b (as we also observe in the case of unpolarized distributions).
Summing up, given the current perturbative and non-perturbative knowledge of TMDs, at
this stage we prefer not to push for a hypothetical non-perturbative enhancement of the
contribution of linearly polarized gluon TMD.

The factorization that we propose in general needs information of the non-perturbative
effects in several functions. For the dijet case we have

C(b, R; pT ) = RC(b, R; pT , µC)Cpert(b, R;µC)fNP
C (b, R), (6.2)

Sγi(b; pT , 1) = RS({µ0, ζ0} → {pT , 1})Spert
γi (b;µ0, ζ0)fNP

S (b), (6.3)
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C J S

Bi
NP (GeV−1) 2.5 2.5 2.5

C J
bmax (GeV−1) 0.5 0.3

Table 1. Values of non-perturbative parameter BNP and bmax prescription chosen for collinear-soft
function, heavy meson jet function and dijet soft function. Impact of the varition of BNP is shown
in figure 2.

where the functions with suffix pert refer to their perturbative part in the MS scheme which
is currently known at one loop. Similarly for the HHP case we need

J (b,mQ/pT ; pT ) = RJ (b,mQ/pT ; pT , µJ )J pert(b,mQ/pT ;µJ )fNP
J (b;mQ). (6.4)

The non-perturbative effects are parameterized as

fNP
i (b) = exp

(
− b2

(Bi
NP)2

)
, i = C,J , S. (6.5)

The values of Bi
NP define thee non-perturbative model and we have tested several combi-

nations as shown in figure 2. Higher values of Bi
NP are more sensitive to the perturbative

series in the low transverse momentum spectrum, and in general provide higher values of
the observables. In unpolarized TMD cases we have usually that typical values of Bi

NP are
around 1-3 GeV−1 so we have found reasonable to fix their values as in table 1.

The factorization scales µC for dijet and µJ for HHP are chosen to minimize pertur-
bative logarithms and to not hit the Landau pole of the strong coupling constant,

µC = 2e−γE
(1
b

+ 1
bmax

)
, (6.6)

µJ = 1
2e
−γE

(1
b

+ 1
bmax

)
. (6.7)

This scale choice deserves some comments. In the dijet case the scale choice does not
include the dependence on the jet radius R. Similarly, the mass of the ratio mQ/pT does
not enter the collinear-soft function and heavy meson jet. In all cases, this means that
there is not a complete cancellation of the logarithms of these functions. The reason is
that the φb integration imposes some constraints on the choice of scales. In fact, the
function A({µi}) defined in eq. (4.21), which depends on the initial scale choice for the
soft function, collinear-soft function and heavy meson jet, needs to be A > −1/2 in order
to have a well defined angular integration. Because of this constraint some scale choices
which could be considered like for instance

µC = Re−γE

b
, µJ = mQ/pT e

−γE

b
, (6.8)

can not be used. As a result in our approach we only partially resum the logs in the
collinear-soft function and the heavy meson jet in order to maintain the structure of ζ-
prescription and double scale evolution in the soft function that is described in section 5.
This leads to the initial scales in eq. (6.6), (6.7).
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Finally for the dijet soft function we use the b∗-prescription in the same way as for the
TMDPDF:

µS = 2e−γE
b∗

, b∗ = b√
1 + b2/b2max

. (6.9)

Concerning the theoretical errors, the scale variations in collinear-soft and heavy meson
jet function are the main source. This is due to the non-cancellation of logs in the functions
by the choice of the initial scales. The choice of the values bmax for collinear-soft function
and heavy meson jet account for the convergence of our perturbative result. A more
consistent way to treat the resummation of these scales is left for a future work, involving
the refactorization of these functions.

For functions that do not depend on b the initial scale choice does not require a
prescription or NP-model and it is dictated by the cancellation of the logarithms. For the
jet function and the H+ matching coefficient we have

µJ = pTR, µ+ = mQ. (6.10)

We use a NP-model for the rapidity anomalous dimension that enters the exact solution
for the null-evolution ζµ line as it is explained in section 5. In particular, we use the same
model that has been used for TMDPDF in [39]

DNP
F,S = c0bb

∗, c0 = 2.5 · 10−2. (6.11)

This model dictates how the rapidity anomalous dimension behaves in the large-b region and
is used for both dijet soft function and TMDPDF when performing double scale evolution.
While a color re-scaling of the non-perturbative models for gluon TMDPDF and gluon
channel soft function with respect to their quark analogues is possible, we observe that this
change does not have a significant impact on the cross-section and, therefore, we choose to
keep the same model for both quarks and gluons.

6.1 Results

In this section we show our results for the differential cross-section for both dijet and
heavy hadron pair production processes. Differential cross-sections are shown with error
bands coming from scale variation of the different final and initial scales of the functions
appearing in our factorization formulas. Scale variation bands are obtained by changing
the considered scale by a factor of 2 up and down relative to its central value.

6.1.1 Results for dijet production

In figure 3 we show the impact of the change of jet radius, jet transverse momentum (hard
scale) and jet pseudorapidity over total dijet cross-section. We show that for the variation
of the jet radius we see a change of around 20% on the cross-section from the central value
when taking the jet radius to be ±0.2 from R = 0.7. For pT there is a variation of an
order of magnitude in the total cross-section when taking ±5 GeV from 20 GeV. This
corresponds to Q = 30, 40, 50 GeV respectively. Finally, for pseudorapidity variation we
obtain an order of magnitude difference above and below when compared to the central
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Figure 2. Impact of BNP variation over dijets and heavy meson total cross-section. Legend
correspond to (BSNP, B

C
NP) and (BSNP, B

J
NP) for dijet and HHP production respectively

� � � � � ��

���

���

���

���

(a) R variation
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(b) pT variation
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(c) η variation (η1, η2)

Figure 3. Impact of the variation of the jet radius (R), hard scale jet transverse momentum
(pT ) and jet pseudorapidity (ηi) for dijet production. For pseudorapidity variation legend is shown
referring to (η1, η2) pair, dashed and dotted lines correspond to negative and positive rapidity
respectively.

rapidity case. Positive rapidities (ηi = 0.5) correspond to Q ' 53 GeV while negative
rapidities (ηi = −0.5) correspond to Q ' 32 GeV, so both pT and η plots are consistent.
Notice that total dijet cross-section is not symmetrical for both jet rapidities as for quark
channel we have both a quark and gluon jet in the final state. Every other plot is obtained
taking R = 0.7, pT = 20 GeV and ηi = 0.

In figure 4 the result for the cross-section including quark and gluon channels is shown.
We consider the contribution of linearly polarized gluons in a separate panel to show that
their contribution is completely negligible, being a factor 103-104 smaller. This leads to
the conclusion that the contribution from the linearly polarized gluons can be neglected
when considering the unpolarized cross-section.

The angular modulation asymmetry is shown in figure 6, being around 5%.

6.1.2 Results for heavy hadron production

The analysis for HHP has followed similar steps of the dijet case when possible. The
differential cross-section including all channels is plotted in figure 5. A separate analysis of
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Figure 4. Cross-sections for dijet production at EIC with error-bands coming from scale de-
pendence in collinear-soft factor (CSF), hard factor (Hard), jet distributions (Jet) and Wilson
coefficients (OPE). Rows correspond to contributions from linearly polarized gluons (top) and total
cross-section (bottom).

√
s = 140 GeV, R = 0.7, pT = 20 GeV, η1 = η2 = 0.
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Figure 5. Cross-sections for HHP production at EIC with error-bands coming from scale de-
pendence in hard factor (Hard), heavy meson jet function (bHQET), heavy meson jet function
matching coefficient (Hard+) and Wilson coefficients (OPE). The rows correspond to contributions
from total cross-section (top) and linearly polarized gluons (bottom).

√
s = 140 GeV, pT = 20 GeV,

η1 = η2 = 0.

the contribution of linearly polarized gluons show also in this case that they are completely
negligible being suppressed by a factor 102-103. The angular modulation asymmetry is
shown in figure 7, being around 5%.
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Figure 6. Angular modulation contribution for dijet production at EIC with error-bands coming
from scale dependence in collinear-soft factor (CSF), hard factor (Hard), jet distributions (Jet) and
Wilson coefficients (OPE).

√
s = 140 GeV, R = 0.7, pT = 20 GeV, η1 = η2 = 0.
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Figure 7. Angular modulation contribution for HHP production at EIC with error-bands coming
from scale dependence in hard factor (Hard), heavy meson jet function (bHQET), heavy meson
jet function matching coefficient (Hard+) and Wilson coefficients (OPE).

√
s = 140 GeV, pT = 20

GeV, η1 = η2 = 0.

7 Conclusions

Dijet and HHP in SIDIS experiments present an opportunity to study the gluon TMD. In
this work we have considered the case of the Electron Ion Collider (EIC), as an example.
The processes have been proven to factorize consistently and this result has been checked
at least at one loop [28]. Nevertheless the evolution of the functions that appear in the
factorization theorem is non-trivial and we propose an original solution, which is generic
and independent of the resummation framework. We also note that it is consistent with the
ζ-prescription of TMD [40] which we implement in this work. The used prescription allows
to separate the evolution kernels from other scale independent factors in the cross-section,
so that in our final computations we can use some results already coded in the literature.
This is the case for the TMD and their respective evolution kernels extracted from DY and
SIDIS data and presented in the code Artemide [37, 38].

The phenomenological analysis that we have performed has revealed several issues that
need further study in the future. Estimating the errors due to scale dependence, we have
found that several functions need a higher loop calculation to achieve sufficient precision
for the low energy jets will be available at EIC. This is the case for instance of the collinear-
soft function that appears in the dijet process and more urgently on the heavy hadron jet
function. The fact that the perturbative convergence of these function is limited to small
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values of the b may lead to consider also a re-factorization of these functions, such that the
small-b effects are separately resummed. This possibility can eventually be considered in
future works.

In all cross-sections we have found a contribution of unpolarized and linearly polarized
gluon TMD. For both of these distributions we have used their re-factorization in coefficient
functions and collinear PDF studied at higher loops in the literature [5, 42, 44, 46]. In
accordance to this well tested procedure, the linearly polarized gluon contribution results
to be particularly suppressed in all considered cases, because its matching to collinear
PDF starts at order α1

s, instead of α0
s like the unpolarized distributions. The effect of this

suppression is particularly evident in the estimate of the angular modulation of cos 2φr
asymmetry that is here estimated to be around 5%. The study of next-to-leading power
effects is beyond the purpose of the present work, so that further study is necessary to
confirm a value of this asymmetry.

A source of uncertainty in our prediction comes from the usage of models for many
functions that have not been yet compared against data. In this case we have studied
several possibilities with simple Gaussian models, assigning values to the non-perturbative
parameters according to an educated-guess. The models do not alter the overall-conclusions
about scale choices or precision, but can have some effect on the shape of the curves that
we have computed. Only an strict comparison with data or eventual lattice calculations
can finally resolve this issue.

As a result of this study we can see that the extraction of gluon TMDs from dijet and
HHP processes at the EIC is conditioned yet by the possible theoretical and experimental
precision. In particular, the linearly polarized gluon TMD appears generally too suppressed
and hardly accessible if one uses the usual matching of TMDs onto their collinear counter-
part distributions. Nevertheless, the discussed theoretical issues can potentially be solved
or improved in future studies.
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A Hard prefactors

The hard prefactors for each channel are given in ref. [54]. We include in this section the
ones relevant for our cases

σgU0 = 2πpT
N
xs

AgU0
fg1 (ξ, rT ) , σfU0 = 2πpT

N
xs

AfU0

ff1 (ξ, rT )
, σgL0 = −4πpT

N
xs

B2
h⊥1 (ξ, rT )

,

(A.1)
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where

N = α2αs
πsp2

T

1
xy2 , (A.2)

AgU0 = e2
qTR

[(
1 + (1− y2)

)
AgUU+L − y

2AgUL

]
fg1 (ξ, rT ), (A.3)

AfU0 = e2
qCF

[(
1 + (1− y2)

)
AfUU+L − y

2AfUL

]
f q1 (ξ, rT ), (A.4)

B2 = e2
qTR

[(
1 + (1− y2)

)
BU+L − y2BL

] r2
T

M2
p

h⊥g1 (ξ, rT ) , (A.5)

and A and B factors are given by

AfUU+L = 1− z
D2

{
1 + z2 +

[
2z(1− z) + 4z2(1− z)2

] Q2

p2
T

+
[
z2(1− z)2

] [
1 + (1− z)2

] Q4

p4
T

}
,

(A.6)

AgUU+L = 1
D3 −

z(1− z)
D3

{
2− 8z(1− z)Q

2

p2
T

− z(1− z)[1− 2z(1− z)]Q
4

p4
T

}
, (A.7)

BU+L = z(1− z)
D3

{
[1− 6z(1− z)]Q

2

p2
T

}
, (A.8)

AfUL = 4z
2(1− z)3

D2
Q2

p2
T

, (A.9)

AgUL = 8z
2(1− z)2

D3
Q2

p2
T

, (A.10)

BL = −4z
2(1− z)2

D3
Q2

p2
T

, (A.11)

where D is defined as
D = 1 + z(1− z)Q

2

p2
T

. (A.12)

B Anomalous dimensions

For the two channels in the dijet process the relevant anomalous dimensions up to one-
loop are,

γ
[1]
Hγg

= 4
{
CF

[
ln
(
ŝ2

µ4

)
− 2γq

]
+ CA ln

(
t̂ û

ŝµ2

)}
,

γ
[1]
Hγf

= 4
{
CF

[
ln
(
û2

µ4

)
− 2γq

]
+ CA ln

(
ŝ t̂

û µ2

)}
,

γ
[1]
Sγg

= 4
{
− CA ln ζ2 + 2CF

[
ln(Bµ2 e2γE )− ln ŝ+ ln p2

T + ln(4c2
b)
]}
,

γ
[1]
Sγf

= 4
{

(CF + CA)
[

ln(Bµ2e2γE )− ln ŝ+ ln p2
T + ln(4c2

b)
]

+ (CF − CA)
[

ln
(
t̂

û

)
− κ(vf )

]
− CF ln ζ2

}
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γ
[1]
Fi

= 4Ci
[
− ln

(
ζ1
µ2

)
+ γi

]
,

γ
[1]
Ji

= 4Ci
[
− ln

(
p2
T

µ2

)
− lnR2 + γi

]
,

γ
[1]
Cg = 4CA

[
− ln

(
Bµ2 e2γE

)
+ lnR2 − ln(4c2

b) + κ(vg)
]
,

γ
[1]
Ci = 4CF

[
− ln

(
Bµ2 e2γE

)
+ lnR2 − ln(4c2

b) + κ(vi)
]
,

γ[1]
α = −4CAγg , (B.1)

The imaginary component in the soft and collinear-soft anomalous dimension is denoted
by κ(vi) where

κ(vf ) = −κ(vf̄ ) = −κ(vg) = iπ sign(cb). (B.2)

These anomalous dimensions, except the soft function which we calculated here, can be
found in [47–51, 61]. We also expand Ab in the soft function anomalous dimension in terms
of ŝ, pT , and cb. It is now easy to confirm the cancelation of the anomalous dimensions at
O(αs) which also serves as confirmation of the factorization theorem at the same order.

For the heavy hadron pair case the one-loop hard function, H+ is,

H+(mQ, µ) = 1 + αs
4πCF

{
ln
(
µ2

m2
Q

)
+ ln2

(
µ2

m2
Q

)
+ 8 + π2

6

}
, (B.3)

and the corresponding anomalous dimension is

γ+ = αsCF
π

{1
2 − ln

(
m2
Q

µ2

)}
. (B.4)

The heavy jet functions anomalous dimension is

γJ = αsCF
π

{
1− 2 lnR

}
(B.5)

where
R = − i pTµ e

γE (v · b)
mQ|v|

. (B.6)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] Y. Gao, C.S. Li and J.J. Liu, Transverse momentum resummation for Higgs production in
soft-collinear effective theory, Phys. Rev. D 72 (2005) 114020 [hep-ph/0501229] [INSPIRE].

[2] J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the systematic treatment of
rapidity logarithms in quantum field theory, JHEP 05 (2012) 084 [arXiv:1202.0814]
[INSPIRE].

– 28 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.72.114020
https://arxiv.org/abs/hep-ph/0501229
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0501229
https://doi.org/10.1007/JHEP05(2012)084
https://arxiv.org/abs/1202.0814
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.0814


J
H
E
P
0
3
(
2
0
2
2
)
0
4
7

[3] M.G. Echevarria, T. Kasemets, P.J. Mulders and C. Pisano, QCD evolution of (un)polarized
gluon TMDPDFs and the Higgs qT -distribution, JHEP 07 (2015) 158 [Erratum ibid. 05
(2017) 073] [arXiv:1502.05354] [INSPIRE].

[4] D. Neill, I.Z. Rothstein and V. Vaidya, The Higgs transverse momentum distribution at
NNLL and its theoretical errors, JHEP 12 (2015) 097 [arXiv:1503.00005] [INSPIRE].

[5] D. Gutierrez-Reyes, S. Leal-Gomez, I. Scimemi and A. Vladimirov, Linearly polarized gluons
at next-to-next-to leading order and the Higgs transverse momentum distribution, JHEP 11
(2019) 121 [arXiv:1907.03780] [INSPIRE].

[6] P.J. Mulders and J. Rodrigues, Transverse momentum dependence in gluon distribution and
fragmentation functions, Phys. Rev. D 63 (2001) 094021 [hep-ph/0009343] [INSPIRE].

[7] D. Boer and C. Pisano, Polarized gluon studies with charmonium and bottomonium at LHCb
and AFTER, Phys. Rev. D 86 (2012) 094007 [arXiv:1208.3642] [INSPIRE].

[8] J.P. Ma, J.X. Wang and S. Zhao, Transverse momentum dependent factorization for
quarkonium production at low transverse momentum, Phys. Rev. D 88 (2013) 014027
[arXiv:1211.7144] [INSPIRE].

[9] G.-P. Zhang, Probing transverse momentum dependent gluon distribution functions from
hadronic quarkonium pair production, Phys. Rev. D 90 (2014) 094011 [arXiv:1406.5476]
[INSPIRE].

[10] J.P. Ma and C. Wang, QCD factorization for quarkonium production in hadron collisions at
low transverse momentum, Phys. Rev. D 93 (2016) 014025 [arXiv:1509.04421] [INSPIRE].

[11] D. Boer, Linearly polarized gluon effects in unpolarized collisions, PoS(QCDEV2015)023
[arXiv:1510.05915] [INSPIRE].

[12] R. Bain, Y. Makris and T. Mehen, Transverse momentum dependent fragmenting jet
functions with applications to quarkonium production, JHEP 11 (2016) 144
[arXiv:1610.06508] [INSPIRE].

[13] A. Mukherjee and S. Rajesh, Probing transverse momentum dependent parton distributions
in charmonium and bottomonium production, Phys. Rev. D 93 (2016) 054018
[arXiv:1511.04319] [INSPIRE].

[14] A. Mukherjee and S. Rajesh, Linearly polarized gluons in charmonium and bottomonium
production in color octet model, Phys. Rev. D 95 (2017) 034039 [arXiv:1611.05974]
[INSPIRE].

[15] J.-P. Lansberg, C. Pisano and M. Schlegel, Associated production of a dilepton and a Υ(J/ψ)
at the LHC as a probe of gluon transverse momentum dependent distributions, Nucl. Phys. B
920 (2017) 192 [arXiv:1702.00305] [INSPIRE].

[16] J.-P. Lansberg, C. Pisano, F. Scarpa and M. Schlegel, Pinning down the linearly-polarised
gluons inside unpolarised protons using quarkonium-pair production at the LHC, Phys. Lett.
B 784 (2018) 217 [Erratum ibid. 791 (2019) 420] [arXiv:1710.01684] [INSPIRE].

[17] A. Bacchetta, D. Boer, C. Pisano and P. Taels, Gluon TMDs and NRQCD matrix elements
in J/ψ production at an EIC, Eur. Phys. J. C 80 (2020) 72 [arXiv:1809.02056] [INSPIRE].

[18] C. Hadjidakis et al., A fixed-target programme at the LHC: Physics case and projected
performances for heavy-ion, hadron, spin and astroparticle studies, Phys. Rept. 911 (2021) 1
[arXiv:1807.00603] [INSPIRE].

– 29 –

https://doi.org/10.1007/JHEP07(2015)158
https://arxiv.org/abs/1502.05354
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.05354
https://doi.org/10.1007/JHEP12(2015)097
https://arxiv.org/abs/1503.00005
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.00005
https://doi.org/10.1007/JHEP11(2019)121
https://doi.org/10.1007/JHEP11(2019)121
https://arxiv.org/abs/1907.03780
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.03780
https://doi.org/10.1103/PhysRevD.63.094021
https://arxiv.org/abs/hep-ph/0009343
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0009343
https://doi.org/10.1103/PhysRevD.86.094007
https://arxiv.org/abs/1208.3642
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.3642
https://doi.org/10.1103/PhysRevD.88.014027
https://arxiv.org/abs/1211.7144
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.7144
https://doi.org/10.1103/PhysRevD.90.094011
https://arxiv.org/abs/1406.5476
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.5476
https://doi.org/10.1103/PhysRevD.93.014025
https://arxiv.org/abs/1509.04421
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.04421
https://doi.org/10.22323/1.249.0023
https://arxiv.org/abs/1510.05915
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.05915
https://doi.org/10.1007/JHEP11(2016)144
https://arxiv.org/abs/1610.06508
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.06508
https://doi.org/10.1103/PhysRevD.93.054018
https://arxiv.org/abs/1511.04319
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.04319
https://doi.org/10.1103/PhysRevD.95.034039
https://arxiv.org/abs/1611.05974
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.05974
https://doi.org/10.1016/j.nuclphysb.2017.04.011
https://doi.org/10.1016/j.nuclphysb.2017.04.011
https://arxiv.org/abs/1702.00305
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.00305
https://doi.org/10.1016/j.physletb.2018.08.004
https://doi.org/10.1016/j.physletb.2018.08.004
https://arxiv.org/abs/1710.01684
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.01684
https://doi.org/10.1140/epjc/s10052-020-7620-8
https://arxiv.org/abs/1809.02056
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.02056
https://doi.org/10.1016/j.physrep.2021.01.002
https://arxiv.org/abs/1807.00603
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.00603


J
H
E
P
0
3
(
2
0
2
2
)
0
4
7

[19] U. D’Alesio, F. Murgia, C. Pisano and P. Taels, Azimuthal asymmetries in semi-inclusive
J/ψ + jet production at an EIC, Phys. Rev. D 100 (2019) 094016 [arXiv:1908.00446]
[INSPIRE].

[20] M.G. Echevarria, Proper TMD factorization for quarkonia production: pp→ ηc,b as a study
case, JHEP 10 (2019) 144 [arXiv:1907.06494] [INSPIRE].

[21] S. Fleming, Y. Makris and T. Mehen, An effective field theory approach to quarkonium at
small transverse momentum, JHEP 04 (2020) 122 [arXiv:1910.03586] [INSPIRE].

[22] F. Scarpa, D. Boer, M.G. Echevarria, J.-P. Lansberg, C. Pisano and M. Schlegel, Studies of
gluon TMDs and their evolution using quarkonium-pair production at the LHC, Eur. Phys. J.
C 80 (2020) 87 [arXiv:1909.05769] [INSPIRE].

[23] M. Grewal, Z.-B. Kang, J.-W. Qiu and A. Signori, Predictive power of
transverse-momentum-dependent distributions, Phys. Rev. D 101 (2020) 114023
[arXiv:2003.07453] [INSPIRE].

[24] D. Boer, U. D’Alesio, F. Murgia, C. Pisano and P. Taels, J/ψ meson production in SIDIS:
matching high and low transverse momentum, JHEP 09 (2020) 040 [arXiv:2004.06740]
[INSPIRE].

[25] M.G. Echevarria, Y. Makris and I. Scimemi, Quarkonium TMD fragmentation functions in
NRQCD, JHEP 10 (2020) 164 [arXiv:2007.05547] [INSPIRE].

[26] B.S. Page, X. Chu and E.C. Aschenauer, Experimental aspects of jet physics at a future EIC,
Phys. Rev. D 101 (2020) 072003 [arXiv:1911.00657] [INSPIRE].

[27] R. Abdul Khalek et al., Science requirements and detector concepts for the electron-ion
collider: EIC yellow report, arXiv:2103.05419 [INSPIRE].

[28] R.F. del Castillo, M.G. Echevarria, Y. Makris and I. Scimemi, TMD factorization for dijet
and heavy-meson pair in DIS, JHEP 01 (2021) 088 [arXiv:2008.07531] [INSPIRE].

[29] F. Dominguez, B.-W. Xiao and F. Yuan, kt-factorization for hard processes in nuclei, Phys.
Rev. Lett. 106 (2011) 022301 [arXiv:1009.2141] [INSPIRE].

[30] Y. Hatta, N. Mueller, T. Ueda and F. Yuan, QCD resummation in hard diffractive dijet
production at the electron-ion collider, Phys. Lett. B 802 (2020) 135211 [arXiv:1907.09491].

[31] R. Zhu, P. Sun and F. Yuan, Low transverse momentum heavy quark pair production to probe
gluon tomography, Phys. Lett. B 727 (2013) 474 [arXiv:1309.0780] [INSPIRE].

[32] G.-P. Zhang, Back-to-back heavy quark pair production in Semi-inclusive DIS, JHEP 11
(2017) 069 [arXiv:1709.08970] [INSPIRE].

[33] D. Boer, S.J. Brodsky, P.J. Mulders and C. Pisano, Direct probes of linearly polarized gluons
inside unpolarized hadrons, Phys. Rev. Lett. 106 (2011) 132001 [arXiv:1011.4225]
[INSPIRE].

[34] M. Arratia, Y. Furletova, T.J. Hobbs, F. Olness and S.J. Sekula, Charm jets as a probe for
strangeness at the future electron-ion collider, Phys. Rev. D 103 (2021) 074023
[arXiv:2006.12520] [INSPIRE].

[35] E. Chudakov et al., Heavy quark production at an Electron-Ion Collider, J. Phys. Conf. Ser.
770 (2016) 012042 [arXiv:1610.08536] [INSPIRE].

[36] H.T. Li, Z.L. Liu and I. Vitev, Heavy meson tomography of cold nuclear matter at the
electron-ion collider, Phys. Lett. B 816 (2021) 136261 [arXiv:2007.10994].

– 30 –

https://doi.org/10.1103/PhysRevD.100.094016
https://arxiv.org/abs/1908.00446
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.00446
https://doi.org/10.1007/JHEP10(2019)144
https://arxiv.org/abs/1907.06494
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.06494
https://doi.org/10.1007/JHEP04(2020)122
https://arxiv.org/abs/1910.03586
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.03586
https://doi.org/10.1140/epjc/s10052-020-7619-1
https://doi.org/10.1140/epjc/s10052-020-7619-1
https://arxiv.org/abs/1909.05769
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.05769
https://doi.org/10.1103/PhysRevD.101.114023
https://arxiv.org/abs/2003.07453
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.07453
https://doi.org/10.1007/JHEP09(2020)040
https://arxiv.org/abs/2004.06740
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.06740
https://doi.org/10.1007/JHEP10(2020)164
https://arxiv.org/abs/2007.05547
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.05547
https://doi.org/10.1103/PhysRevD.101.072003
https://arxiv.org/abs/1911.00657
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.00657
https://arxiv.org/abs/2103.05419
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.05419
https://doi.org/10.1007/JHEP01(2021)088
https://arxiv.org/abs/2008.07531
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.07531
https://doi.org/10.1103/PhysRevLett.106.022301
https://doi.org/10.1103/PhysRevLett.106.022301
https://arxiv.org/abs/1009.2141
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1009.2141
http://dx.doi.org/10.1016/j.physletb.2020.135211
https://arxiv.org/abs/1907.09491
https://doi.org/10.1016/j.physletb.2013.11.002
https://arxiv.org/abs/1309.0780
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.0780
https://doi.org/10.1007/JHEP11(2017)069
https://doi.org/10.1007/JHEP11(2017)069
https://arxiv.org/abs/1709.08970
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.08970
https://doi.org/10.1103/PhysRevLett.106.132001
https://arxiv.org/abs/1011.4225
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.4225
https://doi.org/10.1103/PhysRevD.103.074023
https://arxiv.org/abs/2006.12520
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.12520
https://doi.org/10.1088/1742-6596/770/1/012042
https://doi.org/10.1088/1742-6596/770/1/012042
https://arxiv.org/abs/1610.08536
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.08536
http://dx.doi.org/10.1016/j.physletb.2021.136261
https://arxiv.org/abs/2007.10994


J
H
E
P
0
3
(
2
0
2
2
)
0
4
7

[37] artemide web-page, https://teorica.fis.ucm.es/artemide/

[38] artemide repository, https://github.com/vladimirovalexey/artemide-public.

[39] I. Scimemi and A. Vladimirov, Non-perturbative structure of semi-inclusive deep-inelastic
and Drell-Yan scattering at small transverse momentum, JHEP 06 (2020) 137
[arXiv:1912.06532] [INSPIRE].

[40] I. Scimemi and A. Vladimirov, Systematic analysis of double-scale evolution, JHEP 08
(2018) 003 [arXiv:1803.11089] [INSPIRE].

[41] T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution
functions at next-to-next-to-leading order, JHEP 06 (2014) 155 [arXiv:1403.6451]
[INSPIRE].

[42] M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized transverse momentum
dependent parton distribution and fragmentation functions at next-to-next-to-leading order,
JHEP 09 (2016) 004 [arXiv:1604.07869] [INSPIRE].

[43] M.-X. Luo, X. Wang, X. Xu, L.L. Yang, T.-Z. Yang and H.X. Zhu, Transverse parton
distribution and fragmentation functions at NNLO: the quark case, JHEP 10 (2019) 083
[arXiv:1908.03831] [INSPIRE].

[44] M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Transverse parton distribution and
fragmentation functions at NNLO: the gluon case, JHEP 01 (2020) 040 [arXiv:1909.13820]
[INSPIRE].

[45] M.-x. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Quark transverse parton distribution at the
next-to-next-to-next-to-leading order, Phys. Rev. Lett. 124 (2020) 092001
[arXiv:1912.05778] [INSPIRE].

[46] M.-x. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Unpolarized quark and gluon TMD PDFs
and FFs at N3LO, JHEP 06 (2021) 115 [arXiv:2012.03256] [INSPIRE].

[47] A. Hornig, Y. Makris and T. Mehen, Jet shapes in dijet events at the LHC in SCET, JHEP
04 (2016) 097 [arXiv:1601.01319] [INSPIRE].

[48] M.G.A. Buffing, Z.-B. Kang, K. Lee and X. Liu, A transverse momentum dependent
framework for back-to-back photon+jet production, arXiv:1812.07549 [INSPIRE].

[49] T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02
(2010) 040 [arXiv:0911.0681] [INSPIRE].

[50] T. Becher, C. Lorentzen and M.D. Schwartz, Precision direct photon and W -boson spectra at
high pT and comparison to LHC data, Phys. Rev. D 86 (2012) 054026 [arXiv:1206.6115]
[INSPIRE].

[51] Y.-T. Chien et al., Recoil-free azimuthal angle for precision boson-jet correlation, Phys. Lett.
B 815 (2021) 136124 [arXiv:2005.12279] [INSPIRE].

[52] R.L. Jaffe and L. Randall, Heavy quark fragmentation into heavy mesons, Nucl. Phys. B 412
(1994) 79 [hep-ph/9306201] [INSPIRE].

[53] M. Fickinger, S. Fleming, C. Kim and E. Mereghetti, Effective field theory approach to heavy
quark fragmentation, JHEP 11 (2016) 095 [arXiv:1606.07737] [INSPIRE].

[54] D. Boer, P.J. Mulders, C. Pisano and J. Zhou, Asymmetries in heavy quark pair and dijet
production at an EIC, JHEP 08 (2016) 001 [arXiv:1605.07934] [INSPIRE].

– 31 –

https://teorica.fis.ucm.es/artemide/
https://github.com/vladimirovalexey/artemide-public
https://doi.org/10.1007/JHEP06(2020)137
https://arxiv.org/abs/1912.06532
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.06532
https://doi.org/10.1007/JHEP08(2018)003
https://doi.org/10.1007/JHEP08(2018)003
https://arxiv.org/abs/1803.11089
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.11089
https://doi.org/10.1007/JHEP06(2014)155
https://arxiv.org/abs/1403.6451
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.6451
https://doi.org/10.1007/JHEP09(2016)004
https://arxiv.org/abs/1604.07869
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.07869
https://doi.org/10.1007/JHEP10(2019)083
https://arxiv.org/abs/1908.03831
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.03831
https://doi.org/10.1007/JHEP01(2020)040
https://arxiv.org/abs/1909.13820
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.13820
https://doi.org/10.1103/PhysRevLett.124.092001
https://arxiv.org/abs/1912.05778
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.05778
https://doi.org/10.1007/JHEP06(2021)115
https://arxiv.org/abs/2012.03256
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.03256
https://doi.org/10.1007/JHEP04(2016)097
https://doi.org/10.1007/JHEP04(2016)097
https://arxiv.org/abs/1601.01319
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.01319
https://arxiv.org/abs/1812.07549
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.07549
https://doi.org/10.1007/JHEP02(2010)040
https://doi.org/10.1007/JHEP02(2010)040
https://arxiv.org/abs/0911.0681
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0911.0681
https://doi.org/10.1103/PhysRevD.86.054026
https://arxiv.org/abs/1206.6115
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.6115
https://doi.org/10.1016/j.physletb.2021.136124
https://doi.org/10.1016/j.physletb.2021.136124
https://arxiv.org/abs/2005.12279
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12279
https://doi.org/10.1016/0550-3213(94)90495-2
https://doi.org/10.1016/0550-3213(94)90495-2
https://arxiv.org/abs/hep-ph/9306201
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9306201
https://doi.org/10.1007/JHEP11(2016)095
https://arxiv.org/abs/1606.07737
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.07737
https://doi.org/10.1007/JHEP08(2016)001
https://arxiv.org/abs/1605.07934
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.07934


J
H
E
P
0
3
(
2
0
2
2
)
0
4
7

[55] Z.-B. Kang, K. Lee, D.Y. Shao and J. Terry, The Sivers asymmetry in hadronic dijet
production, JHEP 02 (2021) 066 [arXiv:2008.05470] [INSPIRE].

[56] P. Sun, C.P. Yuan and F. Yuan, Soft gluon resummations in dijet azimuthal angular
correlations in hadronic collisions, Phys. Rev. Lett. 113 (2014) 232001 [arXiv:1405.1105]
[INSPIRE].

[57] P. Sun, C.P. Yuan and F. Yuan, Transverse momentum resummation for dijet correlation in
hadronic collisions, Phys. Rev. D 92 (2015) 094007 [arXiv:1506.06170] [INSPIRE].

[58] A. Hornig, Y. Makris and T. Mehen, Jet shapes in dijet events at the LHC in SCET, JHEP
04 (2016) 097 [arXiv:1601.01319] [INSPIRE].

[59] J. Collins, Foundations of perturbative QCD, Cambridge University Press, Cambridge U.K.
(2013).

[60] M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization theorem for Drell-Yan at low qT
and transverse momentum distributions on-the-light-cone, JHEP 07 (2012) 002
[arXiv:1111.4996] [INSPIRE].

[61] M.G. Echevarria, I. Scimemi and A. Vladimirov, Universal transverse momentum dependent
soft function at NNLO, Phys. Rev. D 93 (2016) 054004 [arXiv:1511.05590] [INSPIRE].

– 32 –

https://doi.org/10.1007/JHEP02(2021)066
https://arxiv.org/abs/2008.05470
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.05470
https://doi.org/10.1103/PhysRevLett.113.232001
https://arxiv.org/abs/1405.1105
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.1105
https://doi.org/10.1103/PhysRevD.92.094007
https://arxiv.org/abs/1506.06170
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.06170
https://doi.org/10.1007/JHEP04(2016)097
https://doi.org/10.1007/JHEP04(2016)097
https://arxiv.org/abs/1601.01319
https://inspirehep.net/search?p=find+doi%20%2210.1007%2Fjhep04%282016%29097%22
https://doi.org/10.1007/JHEP07(2012)002
https://arxiv.org/abs/1111.4996
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.4996
https://doi.org/10.1103/PhysRevD.93.054004
https://arxiv.org/abs/1511.05590
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.05590

	Introduction
	Factorization theorem, frame choice and modulations
	Notation and kinematics
	Factorization theorem for dijet and heavy hadron pair production

	Cross-sections used in phenomenology
	Extracting the Born-level cross-sections
	Angle integrated and azimuthally modulated cross-section

	Evolution kernels with angular dependent anomalous dimensions
	Dijet soft function and angle dependent anomalous dimensions
	Treatment of angular dependent anomalous dimensions and resummation

	Evolution kernels and scale choices
	zeta-prescription for dijet evolution kernel

	Dijet and heavy hadron pair (HHP) production at EIC
	Results
	Results for dijet production
	Results for heavy hadron production


	Conclusions
	Hard prefactors
	Anomalous dimensions

