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1 Introduction

Rapidly evolving coherent scalar fields have been widely studied in cosmology. Their dy-

namics is not only important during the reheating epoch after inflation, but they can also

support periods of accelerated expansion in both the early universe [1–5] or at late times [6–

12]. Concerning the dark matter problem, non-thermal candidates like the axion [13–21]

or other massive scalar [22–25] or pseudoscalar fields [26–32] also fall in this class. These

models can be interpreted as Bose-Einstein condensates, where the scalar particles occupy

the lowest quantum state of the potential [33–48]. Finally, the possibility of ultra-light

scalar fields as dark matter candidates has been explored in different works [49–58] by

tuning appropriately the potential and initial conditions [54–58].

The general analysis of a homogeneous oscillating scalar field in an expanding universe

was performed by Turner in [59]. For a power-law potential V (φ) = λ|φ|n/n, the rapid

scalar oscillations around the minimum of such a potential behave as a perfect fluid with an

effective equation of state ω = (n− 2)/(n+ 2). His results can be recovered by means of a

generalization of the virial theorem [60]. Recently, it has been shown that a fast oscillating

abelian vector [61], non-abelian vector [62, 63] or arbitrary spin field [64] will behave in a

very similar way.

The purpose of this work is to analyse the growth of perturbations in these coherent

oscillating scalar theories for arbitrary power law potential. This subject has been mainly
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studied for harmonic potential models that mimic the standard dark matter case [65–71], as

it happens for the axion field [72, 73]. It has been proved by using the linear perturbation

theory that the axion was equivalent to CDM for high enough masses [74–77]. However,

gravitational instabilities of oscillations in a harmonic potential are suppressed on small

scales [72, 73, 78–80]. This analysis determines the cut-off in the matter power spectrum

and its deviations with respect to the CDM phenomenology. On the other hand, the

dynamical stability (ignoring metric perturbations) of general coherent oscillating scalar

dark energy models has been analysed in different works [1, 11, 12, 60, 81–84], even by

considering nonlinear evolutions [85]. They conclude that potentials supporting accelerated

expansion are generically unstable with respect to the growth of inhomogeneities.

This work is organized as follows: we will briefly review the standard average approach

for the background evolution of a scalar field under a power law potential (section 2), as well

as set the equations that rule its perturbations (section 3). After the preliminary discussion,

we will analyse the well-known case of a massive scalar by means of an adiabatic expansion

approach (section 4). The perturbations evolution of power-law potential models will be

studied following the average approach (section 5). Firstly, we will compute the effective

sound speed, which is in general the quantity that rules the evolution, using the perturbed

version of the generalized virial theorem. This method allows to extend previous results

to an arbitrary power-law potential. Also, exploiting this equation, we will be able to

derive a general expression for a possible anharmonic correction in a massive scalar theory.

After that (section 6), we will check the validity of the result for the effective sound speed

by studying the exact system of equations (non-averaged) in both super-Hubble and sub-

Hubble limits. For small wavenumbers, we will show what is the natural ansatz for δφ

(subsection 6.1), whereas in the sub-Hubble limit we will study the exact solution of the

non expanding equations thanks to Floquet’s theorem (subsection 6.2). Finally, we will see

that at high k, a cut-off is always expected (subsection 6.3).

2 Background evolution

We are interested in studying the cosmological evolution of a homogeneous scalar field

which is rapidly oscillating around the potential minimum. Let us then consider a scalar

field theory in cuved space-time with Lagrangian

L =
1

2
gµν∂µφ ∂νφ− V (φ) . (2.1)

The equation of motion can be written as

1√
−g

∂µ
(√
−g gµν∂νφ

)
+ V ′(φ) = 0 , (2.2)

where V ′ represents the derivative with respect to its argument. By considering a Fried-

mann-Lemâıtre-Robertson-Walker metric in conformal time η, the equation of motion takes

the form

φ̈+ 2Hφ̇+ V ′(φ)a2 = 0 , (2.3)

where H = ȧ/a and ˙≡ ∂/∂η .
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The corresponding energy-momentum tensor reads

Tµν = −δµν

(
φ̇2

2a2
− V (φ)

)
+
φ̇2

a2
δµ0 δ

0
ν . (2.4)

Following the same approach as in previous works [59], we are interested in the cos-

mological evolution generated by the effective energy-momentum tensor obtained after av-

eraging over the fast scalar oscillations. Thus, we will concentrate on the average Einstein

equations given by

Rµν −
1

2
gµνR = 8πG〈Tµν〉 . (2.5)

In the particular case of a homogeneous scalar field in flat RW background, they reduce to

H2 =
8πGa2

3
〈ρ〉 =

8πGa2

3

〈
φ̇2

2a2
+ V (φ)

〉
, (2.6)

2Ḣ+H2 = −8πGa2〈p〉 = −8πGa2

〈
φ̇2

2a2
− V (φ)

〉
. (2.7)

In order to obtain the average equation of state of the oscillating scalar, we apply a

generalization of the virial theorem [60]. Let us consider that the typical frequency of the

φ oscillations is ωeff � H and let us calculate the average in a certain time interval T

such that it is large compared to the oscillation period but small compared to the Hubble

time [61], i.e., H−1 � T � ω−1
eff .

We start by calculating the average of the total derivative given by ∂0

(
φ̇φ
)

= φ̇2 + φ̈φ.

Thus, if the φ oscillations are bounded〈
∂0

(
φ̇φ
)〉

=
φ̇φ|t+T − φ̇φ|t

T
∼ O

(ωeff

T
φ2
)
. (2.8)

Thus, comparing with 〈φ̇2〉 ∼ O(ω2
effφ

2), we see that (2.8) is suppressed by a factor

1/(ωeffT ). Using (2.3) and neglecting H terms, we can write〈
φ̇2 + φ̈φ

2a2

〉
=

〈
φ̇2

2a2
− V ′(φ) φ

2

〉
+O

(
H
ωeff

)

= O
(

1

ωeffT

)
. (2.9)

The error introduced by neglecting the total derivative can be reduced by taking large T ,

so that the minimum limit is set by ε ≡ H/ωeff

By using these equations, we can reach a useful expression for the the average equation

of state:

ω ≡ 〈p〉
〈ρ〉

=
〈V ′(φ) φ− 2V (φ)〉
〈V ′(φ) φ+ 2V (φ)〉

+O(ε) . (2.10)
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Considering a power-law potential V (φ) = λ|φ|n/n, the last expression results

ω =
n− 2

n+ 2
+O(ε) , (2.11)

(see [59] for an alternative discussion). Therefore, from the conservation equation

˙〈ρ〉+ 3(1 + ω)H〈ρ〉 = 0 , (2.12)

we can show that the evolution of the average energy density is

〈ρ〉 = ρ0

(a0

a

)3(1+ω)
, (2.13)

so that from the Friedmann equation (2.6) we get:

a(η) = a0

(
η

η0

) 2
1+3ω

. (2.14)

3 First order perturbations

Let us consider now a perturbation on the homogeneous evolution studied above for φ:

φ(η, ~x) = φ(η) + δφ(η, ~x) , (3.1)

with δφ a small perturbation.

The only sourced metric perturbations are scalars. Therefore we can write

ds2 = a2(η)
(
(1 + 2Φ(η, ~x)) dη2 − (1− 2Ψ(η, ~x)) d~x2

)
, (3.2)

where we have chosen the longitudinal gauge for the computation. By taking the Fourier

transformation in the spatial coordinates, the equation of motion for the perturbation

results

δ̈φk + 2H ˙δφk − 3Ψ̇kφ̇− Φ̇kφ̇+ (V ′′(φ) a2 + k2)δφk + 2V ′(φ) a2Ψk = 0 , (3.3)

and, following the same approach as for the background, the average Einstein equa-

tions (2.5) read to first order in perturbations,

Ψk − Φk = 0 , (3.4)

−6H2Ψk − 6HΨ̇k − 2k2Ψk = 8πGa2〈δρk〉 , (3.5)

2HΨk + 2Ψ̇k = −i8πGa2ki
〈δT 0

i |k〉
k2

, (3.6)

Ψ̈k + 3HΨ̇k +
(
H2 + 2Ḣ

)
Ψk = 4πGa2〈δpk〉 , (3.7)

where the perturbed energy-momentum tensor components read

δρk = δT 0
0 |k =

˙δφkφ̇

a2
−Ψk

φ̇2

a2
+ V ′(φ)δφk ; (3.8)

δpk δ
i
j = −δT ij |k = δij

(
˙δφkφ̇

a2
−Ψk

φ̇2

a2
− V ′(φ)δφk

)
; (3.9)

δT 0
i |k =

−ikiδφk φ̇
a2

, (3.10)
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and the effective sound speed is:

c2
eff(k) ≡ 〈δpk〉

〈δρk〉
. (3.11)

In the following section, we will analyse this system for the simple case of a massive

scalar. By making an adiabatic expansion, we will obtain the background solution of φ

and compute the averages of eqs. (2.6)–(2.7) explicitly, together with the corresponding

effective sound speed.

4 Perturbations of a massive scalar

Homogeneous scalars are widely considered in cosmology, particularly fast oscillating mas-

sive scalars are specially relevant since its perturbations mimic those of dust perfect fluids.

This fact makes them a good candidate for solving the dark matter problem.

Assuming a quadratic potential (n = 2) and redefining the field φ̃ = a(η)φ in (2.3),

the equation of motion turns into

φ̈+

(
m2a2 − ä

a

)
φ = 0 . (4.1)

Making an adiabatic expansion [86] with ε = H/ma � 1, the solution to the leading

adiabatic order results

φ̃ =
φs√

2W (η)
sin

(∫ η

W
(
η′
)
dη′
)

+
φc√

2W (η)
cos

(∫ η

W
(
η′
)
dη′
)
, (4.2)

with φs and φc integration constants, and

W 2(η) ' m2a2
(
1 +O

(
ε2
))

. (4.3)

Setting the origin of time adequately, the background field reads

φ (η) =
φc

a3/2

[
cos

(∫ η

ma
(
η′
)
dη′
)

+O
(
ε2
)]

. (4.4)

The average energy-momentum tensor is equivalent to a dust perfect fluid (see

eq. (2.11) or [59])

ω =
〈p〉
〈ρ〉
' 0 +O (ε) . (4.5)

The problem of the perturbations of the massive oscillating scalar has been previously

studied in [74–77]. In our case, in order to solve the system, we will combine equations (3.5)

and (3.6), obtaining an equation which together with (3.4), form an algebraic system for

Φk and Ψk as a function of φ and δφ.

Ψk = Φk = 8πG

〈
˙δφkφ̇+ 3Hδφkφ̇+m2a2φδφk

〉
3H2 − 2k2

+O(ε), (4.6)
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notice that the origin of the error comes from the use of the virial theorem (2.9) and (2.6)

to pass the term φ̇2Ψk to the left-hand side on (3.5). This expression gives Ψk as a function

of the field and its perturbation, thus, using (4.2) we can obtain the solution of (3.3) for

δφk in an adiabatic expansion.

As we have just seen the background equations of motion have been solved using a

WKB approximation (4.2) which can be written as an expansion in the so called adiabatic

parameter ε ≡ H/ma. In order to solve the perturbation equations we can similarly use

this method. In this case, there is a new scale, k, independent of the other two: H and

ma. Therefore, we have two different expansion parameters: the same ε = H/ma as in the

background case and the new parameter k/H. In order to simplify the calculations and

work with a single parameter, we will assume that the new parameter k/H is related to

ε by k/H = O(εα). Thus we will work in different regimes by assigning different values

to the exponent α. Thus for example, as we are interested in cosmological perturbations,

we typically expect k ∼ H, i.e. both H and k of the same adiabatic order, or in other

words, k/H ∼ ε0. However, as we will see below, this is not the only interesting range in k.

For example, we will show that when k2 ∼ Hma, the behaviour of perturbations changes.

In such a case, k/H ∼ ε−1/2. Finally we will also solve the system for scales k ∼ ma,

i.e., k/H ∼ ε−1.

4.1 α ≥ 0

We will proceed as in the background by assuming an adiabatic ansatz for the field per-

turbation,

δφk(η) = δφs(η) · sin
(∫ η

ma(η′)dη′
)

+ δφc(η) · cos

(∫ η

ma(η′)dη′
)
. (4.7)

The amplitudes can be expanded in the adiabatic parameter,

δφs,c = δφ(0)
s,c + δφ(1)

s,c +O(ε2) , (4.8)

where δφ
(0)
s,c and δφ

(1)
s,c are of adiabatic order ε0 and ε respectively. In the standard case α = 0

(k ∼ H), we have access to super-Hubble and sub-Hubble modes provided k2 � maH.

From the leading order of the equation of motion (3.3), we obtain

δφ(0)
c = 0 , (4.9)

and once we take this constraint into account, the equation implies

δφ(1)
c =

H
24ma

(
3
(
12 + k2η2

)
δφ(0)

s + k2η3 ˙δφ
(0)
s

)
, (4.10)

δ̈φ
(0)
s + 3H ˙δφ

(0)
s = 0 . (4.11)
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By solving this system, we can easily compute the perturbations to the leading order,

δφ(0)
s =

C1

a5/2
+ C2, (4.12)

Ψk = − 3

2
√

2
C2 +

1

5
√

2

C1

a5/2
+O (ε) , (4.13)

〈δρk〉 =
3H2 + k2

√
2a2

C2 −
√

2

15

−9H2 + 2k2

2a2

C1

a5/2
+O (ε) , (4.14)

〈δpk〉 = 0 +O (ε) , (4.15)

c2
eff = 0 +O(ε) . (4.16)

As it can be seen the solution mimics the perturbations of dust perfect fluids, i.e. it has

vanishing effective sound speed, constant Φk and 〈δρk〉/〈ρ〉 ∝ a at late times.

The case α > 0 corresponds to super-Hubble modes and has the same solutions (4.12)–

(4.15) just neglecting k in comparison with H.

4.2 α ≤ −1/2

Let us first consider the α = −1/2 (k2 ∼ Hma) case. Expanding the equations of motion

in ε we obtain the system

δφ(0)
s =

2ma

k2

(
˙δφ

(0)
c +

3

2
Hδφ(0)

c

)
, (4.17)

δ̈φ
(0)
c + 4H ˙δφ

(0)
c +

(
3

2
H2 +

k4

4m2a2

)
δφ(0)

c = 0 , (4.18)

with solution

δφ(0)
c =

1

a3/2

[(
3
maH
k2

C2 +

(
3
m2a2H2

k4
− 1

)
C1

)
× cos

(
k2

maH

)
+

(
3
maH
k2

C1 −
(

3
m2a2H2

k4
− 1

)
C2

)
sin

(
k2

maH

)]
, (4.19)

where C1 and C2 are integration constants. The cosmological perturbations read

Ψk = − 3√
2

maH
k2

1

a3/2

[(
3
maH
k2

C1 +

(
1− 3

m2a2H2

k4

)
C2

)
sin

(
k2

maH

)
+

(
3
maH
k2

C2 −
(

1− 3
m2a2H2

k4

)
C1

)
· cos

(
k2

maH

)]
+O(ε) , (4.20)

〈δρk〉 = −2

3

k2Ψk

a2
+O(ε) , (4.21)

c2
eff =

k2

4m2a2
+O(ε) . (4.22)

In this case Φk oscillates slowly compared to ωeff with a decaying amplitude at early

times and is constant at late times. On the other hand 〈δρk〉/〈ρ〉 also oscillates with
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decaying amplitude at early times and grows as a at late times thus matching the dusty

behaviour.

For modes with −1/2 > α > −1, the expressions are equivalent to (4.20)–(4.22)

neglecting the factors that are a power of maH/k.

Finally, for modes with α ≤ −1, δφ oscillates with a higher frequency than φ and all

perturbations go to zero in average. Consequently, a cut-off is expected as we consider

larger-k modes.

5 Perturbation of power law potential theories

In general for a power-law potential, the background field equation is non linear and we

cannot obtain the explicit adiabatic expansion of the solutions as in the quadratic case.

We can still define a typical frequency of the background oscillations ωeff and compare it

with the other two scales in the problem H and k. Moreover, in this case, the pressure is

not negligible in comparison with the energy density. This fact makes easy to compute the

effective sound speed ceff, which is the quantity that controls the evolution of sub-Hubble

perturbations.

Effective sound speed. Combining (3.5) and (3.7), we get a single equation for the

metric perturbation:

Ψ̈k + 3H
(
1 + c2

eff

)
Ψ̇k + c2

effk
2Ψk +

[
2Ḣ+

(
1 + 3c2

eff

)
H2
]

Ψk = 0 . (5.1)

If φ dominates the background energy density, (5.1) can be rewritten as

Ψ̈k + 3H
(
1 + c2

eff

)
Ψ̇k +

(
c2

effk
2 + 3

(
c2

eff − ω
)
H2
)

Ψk , (5.2)

where here, H and ω correspond to the average background evolution.

In order to compute the effective sound speed, let us consider the following average in

a period T , which verifies H−1 � T � ω−1
eff :

〈
∂0

((
φ̇+ ˙δφk

)
(φ+ δφk)

)〉
≡

(
φ̇+ ˙δφk

)
(φ+ δφk)|t′=t+T −

(
φ̇+ ˙δφk

)
(φ+ δφk)|t′=t

T

=

〈(
φ̇+ ˙δφk

)2
+
(
φ̈+ δ̈φk

)
(φ+ δφk)

〉
. (5.3)

If the field evolution is periodic or bounded, averaging during long enough periods, the

left-hand term of the last equation will be negligible in comparison with the average

of
(
φ̇+ ˙δφk

)2
.

In principle, except for a quadratic potential, δφ will have some growing modes. Those

modes make
〈
∂0

(
φ̇δφ+ φ ˙δφ

)〉
not to vanish, but as long as it oscillates around zero, the

following discussion holds at leading order.

Focusing on the first order of perturbations and introducing the equation of mo-

tion (3.3):

〈 ˙δφkφ̇〉 =

〈
−2Ψ̇kφ̇φ+

k2

2
δφkφ+

a2

2
V ′(φ)δφk

〉
+

〈
a2

2
V ′′(φ) φδφk + a2V ′(φ)Ψkφ

〉
+O(ε) ,

(5.4)
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where we have neglected the scale factor derivatives as we are considering time intervals

much smaller than the inverse of the expansion rate.

By using (5.4), we obtain the following expression for the effective speed of sound

c2
eff =

〈
k2

a2 δφk φ− V ′(φ)δφk + V ′′(φ)φδφk − 2
a2 Ψ̇k∂0(φ2)− 2Ψk

(
φ̇2

a2 − V ′(φ)φ
)〉

〈
k2

a2 δφk φ+ 3V ′(φ)δφk + V ′′(φ)φδφk − 2
a2 Ψ̇k∂0(φ2)− 2Ψk

(
φ̇2

a2 − V ′(φ)φ
)〉

'

〈
k2

a2 δφk φ− V ′(φ)δφk + V ′′(φ)φδφk

〉
〈
k2

a2 δφk φ+ 3V ′(φ)δφk + V ′′(φ)φδφk

〉 +O (ε) . (5.5)

In the second equation the terms proportional to Ψk are averaged out as their fast oscillating

part can be expressed as a total derivative or coincide with the background generalization

of the virial theorem (2.9).

If a power-law potential, V (φ) = λ|φ|n/n, is considered:

• When ωeff � k, i.e. the frequency of φ is almost equal to the perturbation frequency,

the behaviour is similar to a perfect fluid with constant equation of state (see figure 1

for the case n = 2 and figure 2 for n = {4, 6, 8}), i.e. up to O(ε):

c2
eff =

n− 2

n+ 2
= ω ≡ 〈p〉

〈ρ〉
. (5.6)

Notice that for n < 2, there is an instability in agreement with [60]. In this case

V ′′(φ) is not well defined when φ = 0.

• For massive scalar fields n = 2,

〈δpk〉 =

〈
k2

a2
δφk φ

〉
+O(ε) , (5.7)

〈δρk〉 =

〈
k2

a2
δφk φ+ 4m2φ δφk

〉
+O(ε) . (5.8)

Reproducing the result obtained in [72–77]:

c2
eff =

k2

k2 + 4m2a2
+O(ε) ' k2

4m2a2
+O(ε) . (5.9)

Although this expression seems to be valid for all k, when k is comparable with

ma fails since the averaging time interval has the same order of the δρ oscillation

period. See curve (c) in figure 3 at early times. The high k limit will be discussed in

subsection 6.3.

The corresponding comoving Jeans length λJ = 2π/kJ, which satisfies c2
eff(kJ)k2

J

= 4πG〈ρ〉a2 reads:

k2
J =
√

8πGφcm
2a2 . (5.10)
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Figure 1. Sub-Hubble mode of a massive scalar field with k � ma. Those graphics are the

numerical solution to the non-averaged equations (6.3)–(6.5), with V (φ) = m2φ2/2. We work in

8πG/3 = 1 and ηini = 1 units. In order to calculate a representative mode, we have set m = 3000,

k = 100, δφ(η = 1)k = 10−6, ˙δφk(η = 1) = −10−6, a(η = 1) = 1. The two plots on the top

show that the scalar perturbation of the metric tends to a constant. The energy density contrast

(gray) grows as η2 ∼ a, as expected for the perturbations of a dust-like perfect fluid. Finally, the

ratio δpk/δρk (purple) oscillates around zero. The parameter α on the bottom left corner has been

introduced to show explicitly the asymptotic behaviour of δ.

• Because of the vanishing of the potential terms in the numerator of (5.5) in the

harmonic case, we can also consider anharmonic corrections, V (φ) = m2φ2/2 +λφl/l

in a simple way. Due to the averaging process the sine mode of δφk gives a negligible

contribution:

〈
φl−1 sin

(∫
ma dη

)〉
= φl−1

c (η) ·

〈
∂0

(
cos
(∫
ma dη

)l
l

)〉
∼ O

(
εφl−1
c (η)

)
.

(5.11)

The same situation occurs with the term k2φδφk. Therefore, only the cosine mode

contributes and we will be able to extract the common factor φ0δφc both in the

numerator and the denominator and simplify the expression. We will only consider
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Figure 2. In this figure, we compute the metric perturbation, Ψk, by the non averaged system (6.3)–

(6.6) for a scalar theory with various potentials: V = λ|φ|n/n ; n = {4, 6, 8}. We work in the

same units of figure 1. The parameters used for each case were respectively: λ = {1032, 1052, 1064},
k = 1000; and we consider the initial conditions: δφk(1) = 10−7, ˙δφk(1) = −3 · 10−7 and a(1) = 1.

This numerical result is well described by (5.1) with c2eff = {1/3, 1/2, 3/5} respectively.

Figure 3. In this figure, we compare the metric perturbation, Ψk, computed by the non averaged

system (6.3)–(6.6) (continuous line) and by the effective equation (5.1) (dashed line) for a massive

scalar field. (a), (b) and (c) label the cases m = {3 · 103, 103, 100}, respectively, with k = 100. We

work in the same units of figure 1. The initial conditions for the exact system are δφk(1) = 10−6,
˙δφk(1) = −6 · 10−6 and a(1) = 1. The initial conditions for the effective equation has been tuned

properly. We observe good concordance between both, moreover it can be seen that the shape of

(b) and (c) comes from the correction given by eq. (5.9).

even powers l = 2p since odd exponents make the sinusoidal resulting function to

oscillate around zero and are suppressed by the average. Finally,

c2
eff =

k2

4m2a2
+

(p− 1)

22p

(
2p

p

)
λφ2p−2

c

m2a3(p−1)
+O(ε) . (5.12)

For example, for the case p = 2, we recover the sound speed obtained in [60].
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6 Comparing with the non-averaged solutions

In order to check the validity of the results obtained above from the averaged equations,

in this section we will compare them with exact results in certain particular limits.

Let us then consider the Einstein equations with the exact (non-averaged) energy-

momentum tensor. At the background level we have:

H2 =
8πGa2

3
ρ =

8πGa2

3

(
φ̇2

2a2
+ V (φ)

)
, (6.1)

2Ḣ+H2 = −8πGa2p = −8πGa2

(
φ̇2

2a2
− V (φ)

)
, (6.2)

whereas to first order in perturbations they read,

Ψk − Φk = 0 , (6.3)

−6H2Ψk − 6HΨ̇k − 2k2Ψk = 8πGa2δρk , (6.4)

2HΨk + 2Ψ̇k = −i8πGa2ki
δT 0

i |k
k2

, (6.5)

Ψ̈k + 3HΨ̇k +
(
H2 + 2Ḣ

)
Ψk = 4πGa2δpk , (6.6)

where the expression for the perturbed energy-momentum tensor components are given

in (3.8), (3.9) and (3.10). Notice that in this section all the geometric quantities are not

averaged so that in order to compare with the result of the previous section we will explicitly

take the corresponding average of the obtained results.

6.1 Super-Hubble analytic approach

In the super-Hubble limit k � H, we can neglect the terms proportional to k in (6.4), and

introducing (6.5) in (6.4), we obtain

−3Hφ̇δφk = φ̇ ˙δφk −Ψkφ̇
2 + V ′(φ)δφk . (6.7)

It is interesting to note that any time the oscillating φ̇ is zero, the perturbation δφk
must be zero too. Therefore, it is natural to assume the ansatz δφk = fk(η)φ̇. When it

is substituted in the previous equation and by using eq. (2.3), we can write the metric

perturbation as:

Ψk = ḟk(η) +Hfk(η) . (6.8)

If we take into account (6.5), we can obtain the following equation for fk(η):

f̈k(η) + 2Hḟk(η) +
(
H2 + Ḣ

)
fk(η) = 4πGfk(η)φ̇2. (6.9)

By combining equations (6.1) and (6.2), we can integrate the last equation obtaining:

ḟk(η) = −2Hfk(η) + c̃0
k , (6.10)
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where c̃0
k is an integration constant. Solving this equation we obtain

fk(η) =
c1
kη0

a
+
c0
k

a2

∫ η

η0

a2(η′)dη′ , (6.11)

where c0
k and c1

k are integration constants. Substituting in (6.8)

Ψk = c0
k

(
1− H

a2

∫ η

η0

a2(η′)dη′
)
−
c1
kη0H
a2

. (6.12)

As it can be seen in figure 4 for the case of a quadratic potential, Ψk does not oscillate in

an important way. On the other hand, computing the energy density contrast:

δk ≡
δρk
ρ

= −3Hf(η)
φ̇2

ρ
= −3Hf(η)

ρ+ p

ρ
, (6.13)

Notice that since φ̇2 oscillates around a non-vanishing value, the same behaviour is expected

for δk. This agrees with the numerical result in figure 4.

Finally, it can be seen that averaging the previous expression, we find a perfect agree-

ment with the results in previous section. Thus, substituting (2.14) in (6.12) and (6.11),

and averaging in (6.13) we find that at late times:

〈δk〉 = −6(1 + ω)

3ω + 1
c0
k = −2〈Ψk〉+O(ε) , (6.14)

where the O(ε) error comes from the average in φ̇2. This result agrees with the standard

expression for super-Hubble modes in perfect fluid cosmologies with constant equation of

state. Notice that (6.14) is in good concordance with the numerical solution shown in

figure 4.

6.2 Sub-Hubble analytic approach

In this section, we will consider a different approach to check the results of previous section.

This approach is valid for sub-Hubble modes of power law potential theories with n 6= 2.

Fortunately, as we shown, the n = 2 case is well understood.

Using (2.3) and (3.3), we can write the perturbation of the energy density and pres-

sure as,

δρk =
1

2a2

(
Σ̇k −

n+ 2

n− 2
∆̇k −

4

n− 2
k2φδφk

)
−

(
φ̇2

a2
+

4n

n− 2
λφn

)
Ψk +

4∂0

(
φ2
)

(n− 2)a2
Ψ̇k

− H
(n− 2)a2

(
4φ ˙δφk − 2nδφkφ̇

)
, (6.15)

δpk =
1

2a2

(
Σ̇k − ∆̇k

)
− φ̇2

a2
Ψk + 2H φ̇δφk

a2
, (6.16)

where Σ̇k ≡ ∂2
0 (φ δφk), ∆̇k ≡ ∂0

(
φ ˙δφk − φ̇ δφk

)
.
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Figure 4. Super-Hubble mode of a massive scalar field. The plots are the numerical solution

to the non averaged equations (6.3)–(6.5), with V (φ) = m2φ2/2. We work in the same units of

figure 1. In order to calculate a representative mode we have set m = 10, k = 0, δφk(η = 1) = 10−5,
˙δφk(η = 1) = 0, a(η = 1) = 1. It can be seen that the scalar perturbation of the metric (blue) tends

to a constant. The perturbation of the energy density (gray) decays as η−6 ∼ a−3, consequently the

average contrast of density is constant as expected for the perturbations of a dust-like perfect fluid

during the super-Hubble limit. Finally, the pressure perturbation (purple) oscillates around zero.

Multiplying (6.4) by the expected effective sound speed c2
eff = (n − 2)/(n + 2) and

subtracting it from (6.6):

Ψ̈k+3H
(
1 + c2

eff

)
Ψ̇k+

(
c2

effk
2 + 2Ḣ +

(
1 + 3c2

eff

)
H2
)

Ψk = 4πGa2
(
δpk − c2

effδρk
)
. (6.17)

By using (6.15) and (6.16),

Ψ̈k + 3H

(
1 + c2

eff +
16πG

3 (n+ 2)

∂0

(
φ2
)

H

)
Ψ̇k + c2

effk
2Ψk =

8πG

n+ 2

(
∂2

0 +H∂0 + k2
)
φ δφk .

(6.18)

Notice that the order of the φ amplitude can be estimated through (2.6),

φc ∼ O
(

H√
8πGωeff

)
, (6.19)

thus,

16πG

3 (n+ 2)

∂0

(
φ2
)

H
∼ O

(
H
ωeff

)
� 1 . (6.20)

So eq. (6.18) can be approximated by

Ψ̈k + 3H
(
1 + c2

eff

)
Ψ̇k + c2

effk
2Ψk =

8πG

n+ 2

(
∂2

0 +H∂0 + k2
)
φ δφk . (6.21)

Moreover, in time intervals ∆η � H−1, we can write approximately

Ψ̈k + c2
effk

2Ψk =
8πG

n+ 2

(
Σ̇ + k2φδφk

)
(6.22)

=
8πG

n+ 2

(
∂2

0 + k2
)
φδφk .
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The solution of this equation is decomposed in a solution for the homogeneous equation,

Ψk,hom(η) = Ψ0k cos (ceffkη + ∆0k) , (6.23)

and a particular solution for the inhomogeneous one. In order to obtain it let us take the

Fourier transform of (6.22),

Ψ̂k,part(ω) = −8πG
ω2 − k2

ω2 − c2
effk

2
φ̂ ∗ δ̂φk . (6.24)

where ∗ denotes the convolution operation.

In the limit ωeff � k, φδφk oscillates with ωeff and, thus,

Ψ̂k,part(ω) = −8πG φ̂ ∗ δ̂φk
(

1 +O
(
k2

ω2

))
. (6.25)

By taking the inverse Fourier transform, we reach the general solution,

Ψk(η) ' Ψ0k cos

(
2ceff k

ωeff
z + ∆0k

)
− 8πGφδφk , (6.26)

where z = ωeff η/2.

As it can be seen, Ψk,part ∼ O(8πGφδφk), however for sub-Hubble modes,

Ψk '
8πGa2δρk

k2
∼ O

(
8πG

ω2
eff

k2
φδφk

)
, (6.27)

and, consequently, the particular solution can be neglected. In addition, the source

on (6.21) can also be neglected, thus obtaining the same approximated equation (5.1)

of the effective model.

A more rigorous analysis can be done thanks to Floquet’s theorem. Within time

intervals ∆η � H, (3.3) takes the form,

∂2
zδφk +

(
Q(z) + ε2k

)
δφk = 0 , (6.28)

with Q(z) ≡ 4(n− 1)λ|φ|n−2/ω2
eff and εk ≡ 2k/ωeff. Notice that as φ is periodic, so is Q(z)

and the Floquet’s theorem gives us the general form of the solution of (6.28).

Following [87], let us define δφ
(1)
k and δφ

(2)
k as the normalized solutions corresponding

to the initial conditions: δφ
(1)
k (0) = 1, ˙δφ

(1)
k (0) = 0 and δφ

(2)
k (0) = 0, ˙δφ

(2)
k (0) = 1. The

corresponding characteristic equation reads

τ2 −
[
δφ

(1)
k (π) + ˙δφ

(2)
k (π)

]
τ + 1 = 0 , (6.29)

whose associated roots can be written as

τ1k = eiαkπ, τ2k = e−iαkπ , (6.30)

and the Floquet’s theorem implies:
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1. If τ1k 6= τ2k, (6.28) has two linearly independent solutions

δφ
(1)
k = eiαkzξ1k(z) , δδφ

(2)
k = e−iαkzξ2k(z) , (6.31)

where ξ1k and ξ2k are π-periodic functions.

2. If τ1k = τ2k, (6.28) has a periodic solution with period π (τ1k = τ2k = 1) or 2π (τ1k =

τ2k = −1). Denoting by ξ(z) this one and by δφ
(2)
k (z) another linearly independent

solution:

δφ
(2)
k (z + π) = τ1kδφ

(2)
k (z) + c ξk(z) , (6.32)

where c is a constant.

As an example, let us consider the quartic potential case V (φ) = λφ4/4,

φ = φ0sn[z, i] ; z =

√
λ

2
φ0η + ∆ ; (6.33)

δ̈φk +
(
6 sn[z, i]2 + ε2k

)
δφk = 0 ; εk ≡

2k2

λφ2
0

, (6.34)

with φ0 and ∆ integration constants and sn[z, i] the corresponding Jacobi Elliptic function.

If k = 0,

δφk=0 = δφ10
d

dz
(sn[z, i]) + δφ20

d

dz
(z · sn[z, i]) . (6.35)

Notice that, as Jacobi Ellliptic functions are periodic with period 4K,

K ≡

π
2∫

0

dθ√
1 + sin2(θ)

, (6.36)

making the change z = 4Kx/π, we can see that this solution corresponds to the τ1k =

τ2k = 1 case of the Floquet’s theorem:

δφk(z + π) = δφ10
π

4K

d

dx

(
sn

[
4Kx

π
, i

])
+ δφ20

(
π

4K

d

dx

(
4Kx

π
sn

[
4Kx

π
, i

])
+ 4K

d

dx

(
sn

[
4Kx

π
, i

]))
, (6.37)

by comparing with (6.32). However, in general, when k 6= 0, τ1k 6= τ2k and it can be

seen that for modes with ωeff � k, δφ is an oscillating function modulated by a periodic

function of frequency O
(
k/
√
λφ2

0

)
. In figure 5 an explicit numerical calaculation shows

how the number of nodes is multiplied by a factor of 10 when k is increased from k = 1

to k = 10.

For a general power law potential, if εk = k = 0, the analogous solution to (6.35) can

be written as

δφk=0 = δφ10φ̇+ δφ20

(
2

n− 2
φ+ tφ̇

)
, (6.38)
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Figure 5. This plot shows the numerical solutions of (6.34) for different k values. We work in the

same units of figure 1. The initial conditions are δφk(0) = 0 and ˙δφk(0) = −10−6, for λ = 106. The

solution with k = 0 (black) shows the growing mode of (6.35), which corresponds to the second case

of Floquet’s theorem. As it can be seen for the cases with k = 1 (gray) and k = 10 (lighter gray),

in general the characteristic equation roots will be different and the first case of Floquet’s theorem

applies.

which also corresponds to the second case of Floquet’s theorem. For k 6= 0, δφk behaves

analogously to the n = 4 case and, thus, we will assume that δφk has the form:

δφk(z) = eiαkzξ1k(z) + e−iαkzξ2k(z) . (6.39)

As δφk ∈ R, solutions can be divided in [88]:

1. Stable solutions with Re(αk) = 0:

δφk(z) = eiαkzξ∗1k(z) + e−iαkzξ∗1k(z) . (6.40)

2. Unstable solutions with Re(αk) = µ and Im(αk) = l ∈ Z:

δφk(z) = eµkzeilzξ1k(z) + e−µkze−ilzξ2k(z) . (6.41)

Notice that eilzξ1k(z) and e−ilzξ2k(z) are real π-periodic functions.

We can synthesise both cases in a single expression:

δφk = eiαkz ξ̃1k(z) + e−iαkz ξ̃2k(z) , (6.42)

where ξ̃1k(z) and ξ̃2k(z) are π-periodic functions. We consider Im(αk) = 0, and ξ̃1k = ξ̃∗2k
for stable modes, which are those in which we are interested.

Due to the periodic properties of φ and δφk, their product can be expanded in Fourier

series as,

8πGφδφk = eiαkz
+∞∑

m=−∞
bmke

i2mz + e−iαkz
+∞∑

m=−∞
b∗mke

−i2mz , (6.43)
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From this series, we can obtain a simple expression for φ̂ ∗ δ̂φk ,

Ψ̂k,part(ω) = −
ω2 − 4k2

ω2
eff

ω2 − 4k2

ω2
eff
c2

eff

(
+∞∑

m=−∞
bmkδ(ω − i(αk + 2m)) +

+∞∑
m=−∞

b∗mkδ(ω + i(αk + 2m))

)
.

(6.44)

We can obtain the general solution of (6.22),

Ψk = Ψ0k cos

(
2ceff k

ωeff
z + ∆0k

)
−

+∞∑
m=−∞

cmkbmke
i(2m+αk)z −

+∞∑
m=−∞

cmkb
∗
mke

−i(2m+αk)z ,

(6.45)

with

cmk =
(αk + 2m)2 + 4k2

ω2
eff

(αk + 2m)2 + 4k2

ω2
eff
c2

eff

. (6.46)

Notice that in the limit in which we are interested (ωeff � k), cmk ' 1. Therefore the

particular solution is at leading order equal to φδφk and is negligible in comparison with

the homogeneous one, in agreement with our preliminary analysis (6.27).

From the general solution (6.45), we can obtain an expression for the effective sound

speed up to O(ε):

c2
eff ≡

〈δpk〉
〈δρk〉

'

〈
ω2

eff
4 ∂2

zΨk(z)
〉

〈−k2Ψk(z)〉
' n− 2

n+ 2

1 + α2
k

n+2
4(n−2)

ω2
eff
k2

2[Re(b0k)·cos(αkz)−Im(b0k)·sin(αkz)]

Ψ0k cos
(

2k
ωeff

ceffz+∆0k

)
1 + 2[Re(b0k)·cos(αkz)−Im(b0k)·sin(αkz)]

Ψ0k cos
(

2k
ωeff

ceffz+∆0k

) ,

(6.47)

where we have considered only the m = 0 mode in (6.45) since the m 6= 0 modes vanish

when taking the average.

This expression depends not only on αk but also on the initial conditions given by b0k
and Ψ0k. However, from (6.27) we know that |b0k/Ψ0k| ' O(k2/ω2

eff). On the other hand

we have to determine the size of the parameter αk. With this purpose, we will follow the

discussion made in [88] writing Q(z) and a possible solution δφ
(1)
k as Fourier expansions:

∂2
zδφk +

(
ε2k + θ0 +

∞∑
r=1

2θr cos (2rz)

)
δφk = 0 , (6.48)

δφ
(1)
k = eiαkz

∞∑
m=−∞

c(2m)ke
i2mz . (6.49)

We introduce the tentative solution δφ
(1)
k in (6.48), resulting the following system:

c(2m)k +
1

θ0 + ε2k − (αk + 2m)2

∞∑
l=−∞

θ2l c(2m+2l)k = 0,

where l 6= 0 and m = . . . ,−1, 0, 1, . . . . (6.50)
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We eliminate c(2m)k, obtaining the determinant ∆k(αk) and an equation for αk, ∆k(αk) = 0.

This equation can be rewritten as

cosh (iπαk) = 1− 2∆k(0) sin

(
π

2

√
θ0 + ε2k

)
. (6.51)

We know the solution when εk = 0, where one of the modes is periodic. Consequently

εk → 0⇒ αk → 0. Notice that we have also checked this behaviour numerically in figure 5.

Expanding (6.51) in αk,

π2α2
k

2
+ · · · = 2∆k(0) sin

(
π

2

√
θ0 + ε2k

)
. (6.52)

Even if we can not compute ∆k(0) analytically for εk 6= 0, we know that expanding in εk
the first correction of the matrix elements is O

(
ε2k
)
. Thus from equation (6.52), we expect

that αk ∼ O(εk).

Therefore, the correction to the effective sound speed given by (6.47) is:

c2
eff =

n− 2

n+ 2

(
1 +O

(
k2

ω2
eff

))
, (6.53)

which is a generalization of (5.9) for n 6= 2.

6.3 High-k modes

We have seen that for ma� k an oscillating scalar field with power-law potential behaves

as a perfect fluid for which c2
eff = ω. Let us now consider the opposite limit with k � ma.

For sub-Hubble modes Ψk is well approximated by

Ψk = −4πG

(
˙δφkφ̇

2k2
+
V ′(φ)

2k2
δφk

)
. (6.54)

In this case the field perturbation oscillates much faster than the background field. The

typical frequency of δφk oscillations would be k [87], thus

Ψk ' −4πG
˙δφkφ̇

2k2
. (6.55)

We can also reach an equivalent expression using (6.45). In this limit, we can neglect V ′′(φ)

from eq. (6.28) in comparison with 4k2/ω2
eff. It implies αk ' 2k/ωeff . If we assume that

the lowest m coefficients are responsible of the main contribution to the Fourier expansion

cmk '
m+ 2

m
, for |m| � αk . (6.56)

And, thus,

Ψk ' Ψk,part ' −
∑
|m|�αk

m+ 2

m
(Re (bmk) cos ((2m+ αk)η)− Im (bmk) sin ((2m+ αk)η)) .

(6.57)

The gravitational potential, and accordingly the density perturbation, oscillates around

zero as shown in figure 6. Because of this fact, all the perturbations vanish in average but

the effective sound speed is c2
eff = 1 (see figure 6) according to (5.5), since in both δpk and

δρk, the kinetic term dominates.
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Figure 6. Sub-Hubble mode of a massive scalar field with k � ma. Those graphics show the

numerical solution to the non averaged equations (6.3)–(6.5), with V (φ) = m2φ2/2. We work in

the same units of figure 1. In order to calculate a representative mode, we have set m = 10, k = 104,

δφk(η = 1) = 10−5, ˙δφk(η = 1) = −10−5, a(η = 1) = 1. The first plot on the left shows clearly the

approximation for the scalar perturbation of the metric (blue) made in (6.55). The perturbation of

the energy density (gray) oscillates around zero with an amplitude that decays as η−7 ∼ a− 7
2 . The

last plot shows that the ratio δpk/δρk (purple) oscillates around 1.

7 Conclusions

In this work we have shown that a coherent homogeneous scalar field oscillating in a

power-law potential behaves as an adiabatic perfect fluid with constant equation of state

both at the background and perturbation levels. Thus, scalar perturbations are shown

to propagate, to the leading order in k/ωeff, with a sound speed given by c2
eff = ω =

(n − 2)/(n + 2). The first correction to this expression is shown to be O
(
k2/ω2

eff

)
. The

robustness of the result has been shown by studying the exact system in the sub-Hubble

and super-Hubble limits as well as in the numerical computations.

These results extend previous analysis done in the massive case n = 2 and opens the

possibility of using this kind of models as perfect fluid analogues in different cosmological

contexts. In the general case, we have shown that there are departures from the perfect

fluid behaviour on small scales with a cut-off around k ' ωeff very much as in the harmonic

case. Notice that for n < 2 the negative value of c2
eff suggests the generation of instabilities

as found in previous works in the homogeneous case.

The analysis performed in this paper could be extended to higher-spin oscillating fields.

In particular in the massive vector case, which as shown in [61] behaves as non-relativistic

matter at the background level, this study would allow to determine the growth of struc-

tures and its viability as dark matter candidate. Work is in progress in this direction [89].
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[58] J. Magaña, T. Matos, A. Suárez and F.J. Sánchez-Salcedo, Structure formation with scalar

field dark matter: the field approach, JCAP 10 (2012) 003 [arXiv:1204.5255] [INSPIRE].

[59] M.S. Turner, Coherent scalar-field oscillations in an expanding universe, Phys. Rev. D 28

(1983) 1243 [INSPIRE].

[60] M.C. Johnson and M. Kamionkowski, Dynamical and Gravitational Instability of

Oscillating-Field Dark Energy and Dark Matter, Phys. Rev. D 78 (2008) 063010

[arXiv:0805.1748] [INSPIRE].

[61] J.A.R. Cembranos, C. Hallabrin, A.L. Maroto and S.J. Núñez Jareno, Isotropy theorem for
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