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Facultad de Matemáticas, Universidad Complutense de Madrid

Plaza de las Ciencias 3, Madrid, 28040, Spain

8th AIMS International Conference, Dresden, Germany, May, 2010

Abstract. We prove that the mere presence of a delayed term is able to

connect the initial state u0 on a manifold without boundary (here assumed
given as the set ∂Ω where Ω is an open bounded set in RN ) with the zero state
on it and in a finite time even if the dynamics is given by a linear problem.
More precisely, we extend the states to the interior of Ω as harmonic functions

and assume the dynamics given by a dynamic boundary condition of the type
∂u
∂t

(t, x) + ∂u
∂n

(t, x) + b(t)u(t − τ, x) = 0 on ∂Ω, where b : [0,∞) → R is
continuous and τ > 0. Using a suitable eigenfunction expansion, involving

the Steklov BVP {∆φn = 0 in Ω, ∂νφn = λnφn on ∂Ω}, we show that if b(t)
vanishes on [0, τ ]∪ [2τ,∞) and satisfies some integral balance conditions, then
the state u(t, .) corresponding to an initial datum u0(t, ·) = µ(t)φn(·) vanish
on ∂Ω (and therefore in Ω) for t ≥ 2τ. We also analyze more general types of

delayed boundary actions for which the finite extinction phenomenon holds for
a much larger class of initial conditions and the associated implicit discretized
problem.

1. Introduction. We consider a linear problem with a time-delayed term in a
manifold without boundary. More precisely, we shall assume that the manifold is
given as the set ∂Ω where Ω is an open bounded set in RN . We shall also assume
that the evolution of the states in such manifold is given through the trace of the
solution of a boundary value problem in which the boundary condition contains the
dynamic of the states, as, for instance, the following one

(PN )


−∆u = 0 in (0,+∞)× Ω,
∂u

∂t
+
∂u

∂n
(t,x) + b(t)u(t− τ,x) = 0 on (0,+∞)× ∂Ω,

u(s,x) = u0(s,x) on (−τ, 0)× ∂Ω.

(1)
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Here u0 ∈ C([−τ, 0], L2(∂Ω)), and b : R → R is assumed to be continuous (and
with support in [τ, 2τ ]). Our main goal is to prove that the mere presence of the
delayed term is able to connect the initial state u0 on the manifold ∂Ω with the zero
state on it and in a finite time. Obviously the final state can be extended to zero in
the whole domain Ω and so this property can be regarded as another version of the
so called “finite extinction time phenomenon” (i.e., the existence of some instant
te > 0 such that u(t,x) ≡ 0 for every t ≥ te, and almost all x ∈ Ω).

It is well-known that such phenomenon is typical of some parabolic reaction-
diffusion equations involving some non-Lipschitz nonlinear terms (see, e.g., [1, Chap-
ter 2], and the references therein, in particular [8]). The so-called “quenching
phenomenon” is also related to this behavior. Interestingly, [10] also shows the
somewhat surprising fact that the extinction process cannot be avoided by the in-
clusion of memory terms in the equation. On the other hand, in some previous
work ([3], [4]), the authors have shown that a suitable delayed action may indeed
induce quenching in semilinear parabolic equations with homogeneous boundary
conditions. The main contribution of the present paper consists in proving that the
phenomenon still holds when the delay term is only located on the manifold ∂Ω and
nowhere else of Ω and all that without the presence of any nonlinear term which
in many cases is the cause of the phenomenon. We point out that problems with
dynamic boundary conditions is an important area in which much recent study is
being made (see [6] and the references therein; in particular [7] and [2]).

We end the paper with some comments showing that it is possible to prove the
“finite extinction time phenomenon”, again under the mere presence of a delay term,
for the case of a discrete linear problem, related to problem (PN ), for instance, by
means of the usual implicit Euler discretization.

2. The simpler case of a suitable delaying coefficient. We will use here a
constructive approach, instead of using the semigroup generated on L2(∂Ω) by the
dynamics of the problem (see to this respect [6], [2], [7]). As a matter of fact, we
shall apply the classical separation of variables but now applied to the dynamic
problem on the manifold ∂Ω. We extend the initial state to the whole domain Ω
(as an harmonic function at the interior having u0 as its trace on ∂Ω). We assume
now that the initial function u0(s,x) admits a separated expression of the type,

u0(s,x) = µ(s)ψ(x) for − τ ≤ s ≤ 0, x ∈ Ω (2)

where ψ(x) = φn(x) is n-th eigenfunction of the −∆ operator with Steklov
boundary condition, i.e. { −∆φn = 0 in Ω,

∂φn

∂n
= λnφn on ∂Ω.

(3)

Then any “separable solution” u(t,x) = φn (x)Wn(t) of [1] must satisfy (on ∂Ω) :

∂u

∂t
(t, x)− ∂

∂n
u(t, x) + b(t)u(t− τ,x)) = φn (x) (W

′
n(t) + λnWn(t) + b(t)Wn(t− τ))

which means that Wn(t) must be a solution of the delay equation{
W ′

n(t) + λnWn(t) + b(t)Wn(t− τ) = 0,
Wn(s) = µ(s), for s ∈ (−τ, 0) . (4)
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We recall now some previous results in the literature for delayed ordinary differential
equations. Perhaps, the simplest case corresponds to the “pure delay” equation

u′(t) = −b(t)u(t− τ) for t ≥ 0 (5)

where b : [0,∞) → R is a locally integrable function with support in [τ, T ], where
T ≤ 2τ. Since the general solution is given by

u(t) = u(0)

(
1−

∫ t

τ

b(s)ds

)
, (6)

the finite-time extinction property takes place if and only if
∫ T

τ
b(s)ds = 1. Further-

more, the phenomenon is global in the sense that all solutions become extinct at the
same time. Similarly, the solutions of

u′(t) + λu(t) = −b(t)u(t− τ) (7)

satisfy

u(t) = e−λtu(0)

{
1− eλτ

∫ t

τ

b(s)ds

}
for t ≥ 0

and therefore all of them vanish for t ≥ 2τ if and only if

eλτ
∫ 2τ

τ

b(t)dt = 1 (8)

Coming back to our problem we get that Wn(t) = 0 for t ≥ 2τ if and only if one
has the “balance equation”

eλnτ

∫ 2τ

τ

b(s)ds = 1 (9)

3. Case of more general delaying coefficients: a “universal function”.
Since the previous balance equation depends on n, only one “mode” Wn(t)φn(x)
can vanish for t ≥ 2τ with the right choice of b(t). We will see now that, by
modifying the delay term in the original equation, keeping its essential structure,
several eigenfunctions (in fact, all of them) can be dealt with at the same time.

Theorem 3.1. Let τ > 0 be given and assume that: {τk} is an increasing sequence
such that 0 < τ1 < τ2 < · · · < τ = lim τk < ∞ and τk+1 − τk < τ1 for k = 1, 2, ...
Let {bk} be a sequence of continuous functions bk : R −→ R such that support(bk) ⊂
[τk, τk+1] and that bk(t) ≥ 0 or bk(t) ≤ 0 on [τk, τk+1]. Finally, we assume that

βk :=

∫ τk+1

τk

bk(s)ds

satisfy
∞∑
k=1

|βk| <∞ and
∞∑
k=1

eλiτkβk = 1 i = 1, 2, . . .

Then the solution of the problem
−∆u = 0 in (0,+∞)× Ω,
∂u

∂t
(t,x) +

∂u

∂n
(t,x) +

∑∞
k=1 bk(t)u(t− τk,x) = 0 on (0,+∞)× ∂Ω,

u(s, x) = µ(s)u0(x) on (−τ, 0]× ∂Ω

vanish for t ≥ τ independently of the initial data µ(s) and u0(x).
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Proof. Let us first mention that the presence of infinitely many delays does not
represent any problem as far as the existence and uniqueness of solutions of the
ODE

u′(t) + λiu(t) = −
∞∑
k=1

bk(t)u(t− τk), i = 1, 2, . . . (10)

is concerned (see, e.g. [9, Theorem 6.1.1], ). This is because the functional on the
right-hand side of the equation satisfies for every ϕ(θ), continuous on [−τ, 0], the
following upper estimate∣∣∣∣∣−

∞∑
k=1

bk(t)ϕ(−τk)

∣∣∣∣∣ ≤
{ ∞∑

k=1

|bk(t)|

}
max

θ∈[−τ∞,0]
|ϕ| = m(t) ∥ϕ∥

where the function m(t) :=
∑∞

k=1 |bk(t)| is integrable since∫ τ∞

0

m(t)dt =

∞∑
k=1

∫ τk+1

τk

|bk(t)| dt =
∞∑
k=1

|βk| <∞.

by assumption. Observe that bk ≥ 0 or ≤ 0 on [τk, τk+1] implies that∫ τk+1

τk

|bk(t)| dt =
∣∣∣∣∫ τk+1

τk

bk(t)dt

∣∣∣∣ = |βk| .

The usual change of variables v(t) = eλtu(t) gives the transformed equation

v′(t) = eλt (u′ + λu) = eλt

[
−

∞∑
k=1

bk(t)e
−λt(t−τk)v(t− τk)

]

= −
∞∑
k=0

bk(t)e
λτkv(t− τk)

Then we can proceed by the method of steps: For t ∈ [0, τ1], v
′(t) = 0 and then

v(t) = v(0). For t ∈ [τ1, τ2], v
′(t) = −b1(t)eλτ1v(t − τ1) = −b1(t)v(0) since t ∈

[τ1, τ2] =⇒ t − τ1 ∈ [0, τ2 − τ1] ⊂ [0, τ1] (recall that τ2 − τ1 ≤ τ1) and then the
function v(t− τ1) is constant (= v(0)). Therefore

v(t) = v(τ1)−
∫ t

τ1

b1(s)e
λτ1v(s− τ1)ds = v(0)

{
1− eλτ1

∫ t

τ1

b1(s)ds

}
and

v(τ2) = v(0)

{
1− eλτ1

∫ τ2

τ1

b1(s)ds

}
= v(0)

[
1− eλτ1β1

]
In general,

v(t) = v(0)
[
1− eλτ1β1 − ... − eλτkβk

]
for t ∈ [τk, τk+1]

Hence

v(τ) = lim
k−→∞

v(τk) = v(0)

[
1−

∞∑
k=1

eλτkβk

]
= 0

by our assumptions on {τk} and {βk}. And since v′(t) = 0 for t ≥ τ, the solution
remains equal to zero, as we wanted to proved.

Finally, coming back to the solution of the elliptic equation, it can be written as

u(t, x) =
∞∑

n=1

cnWn(t)φn(x)
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where φn(x) are the eigenfunctions of the Steklov problem (3) and

∞∑
n=1

cnWn(0)φn(x) = u(0, x) = µ(0)u0(x) for x ∈ ∂Ω

and Wn(t) are solutions of the initial value problem{
W ′

n(t) + λnWn(t) = −
∑∞

k=1 bk(t)Wn(t− τk) for t ≥ 0
Wn(s) = µ(s) for − τ ≤ t ≤ 0

But we have just proven that Wn(t) = 0 for every t ≥ τ. Therefore,

u(t, x) =
∞∑

n=1

cnWn(t)φn(x) = 0 for t ≥ τ.

and the proof is finished. �

Remark 1. The existence of an ℓ1 solution {βk} to the infinite system of linear
equations is not an obvious matter. In the finite case it can be easily proven because
the linear system has a Casorati determinant which does not vanish due to the linear
independence of the functions eλiz. In the 2× 2 case there is a direct argument:∣∣∣∣ eλ1τ1 eλ1τ2

eλ2τ1 eλ2τ2

∣∣∣∣ = eλ1τ1+λ2τ2 − eλ1τ2+λ2τ1 ̸= 0

since λ1τ1 + λ2τ2 − (λ1τ2 + λ2τ1) = (λ1 − λ2)(τ1 − τ2) ̸= 0. �

4. Finite extinction phenomenon for some linear discrete problems with
delay. The above extinction time property is present also in some discrete prob-
lems. As in the preceding sections, we can reduce the implicit discretization of
the problem to the case of a simpler discrete problem which depends only of a
discrete time. To simplify our exposition we assume that the initial function is
u0(s,x) = µ(s)φn(x) for −τ ≤ s ≤ 0, x ∈ Ω (where φn is the n-th eigenfunction of
the −∆ operator with a Steklov boundary condition). We assume to be given an
arbitrary partition of of [0,∞) of size h = ϵ, and let bϵ(t) be an approximation of
b(t). Consider the associated implicit discrete problem


−∆uϵ = 0 in (0,+∞)× Ω,
uϵ(t, x)− uϵ(t− ϵ, x)

ϵ
+
∂uϵ
∂n

(t, x) + bϵ(t)uϵ(t− τ, x) = 0 on (0,+∞)× ∂Ω,

uϵ(s, x) = µ(s)u0(x) on (−τ, 0]× ∂Ω
(11)

Theorem 4.1. Let b(t) ∈ C ([0,∞)) , b(t) ≡ 0 for t ∈ [0, τ ] ∪ [2τ,+∞), such that∫∞
0
b(s)ds = 1. Then,

i) there exists a function bϵ, constant in each subinterval ((n − 1)h, h), such that
bϵ −→ b in L2(0, T ), for any T > 0, as ϵ −→ 0, bϵ(s) ≡ 0 on [0, (n − 1)h] ∪

[kh,+∞), k > (n− 1), and
kh∫

(n−1)h

bϵ(s)ds = h
∑kh

i=(n−1)h bϵ(i) = 1,

ii) uϵ → u on C([0, T ] : L2(∂Ω)) (and so at least in C([0, T ] : L2(Ω))) for any
T > 0, as ϵ −→ 0,
iii) uϵ(t, x) ≡ 0 on Ω after a finite time of iterations.
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Proof. i) For each step of the partition we can choose two different values for the
b, the supremum and the infimum. The corresponding sums are in the following
relation

1 =

∞∫
0

b(s)ds < h

kh∑
i=(n−1)h

sup b(i), and 1 =

∞∫
0

b(s)ds > h

kh∑
i=(n−1)h

inf b(i)

So, for each point i of the partition we can choose a value bϵ(i) (different, in general,
of b(i)) such that inf b(i) < bϵ(i) < sup b(i), which allows us to construct a step
function bϵ(s), fulfilling the properties of i). The proof of ii) is an easy consequence
of the fact that the abstract operator associated to the problem with b ≡ 0 is the
subdifferential of a convex function (see [2]). Then, when b ̸= 0, since on the interval
[0, τ ] the term bϵ(t)uϵ(t−τ, x) is known, we can apply the Crandall-Ligget’s theorem
leading to the convergence result. Finally to prove iii) we use the assumption on the
initial datum and argue as in the preceding section. If we assume, for simplicity,
that λn ≡ 0 (the general case, λn ̸= 0 is absolutely similar), then we reduce the
problem to the discrete dynamical system{

uϵ(t)− uϵ(t− ϵ)

ϵ
= −bϵ(t)uϵ(t− τ) = 0, t ≥ 0

uϵ(s) = µ(s), for s ∈ (−τ, 0) .
. (12)

Thus, uϵ(t) = uϵ(t − ϵ) − ϵbϵ(t)uϵ(t − τ). Since uϵ(t) = uϵ0 for t ∈ [0, τ ] , on [τ, 2τ ]
we have

uϵ(t− ϵ) = uϵ(t− 2ϵ)− ϵλbϵ(t− ϵ)uϵ0,

uϵ(t− 2ϵ) = uϵ(t− 3ϵ)− ϵλbϵ(t− 2ϵ)uϵ0

uϵ(t− 3ϵ) = uϵ(t− 4ϵ)− ϵλbϵϵ(t− 3ϵ)uϵ0, ...

and so

uϵ(t) = uϵ0 − ϵ [bϵ(0) + bϵ(t− nϵ) + ...+ bϵ(t− ϵ) + bϵ(t)]uϵ0 = (13)

= uϵ0 {1− ϵ [bϵ(0) + bϵ(t− nϵ) + ...+ bϵ(t− ϵ) + bϵ(t)]} (14)

Observe that the term ϵ [bϵ(0) + bϵ(t− nϵ) + ...+ bϵ(t− ϵ) + bϵ(t)] is a (sort of) par-
tial sum of the integral in (6). Thus, by property i) we get uϵ(t, x) ≡ 0 on Ω after
a finite time of iterations.
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