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Unimodular gravity and general relativity from graviton self-interactions
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It is commonly accepted that general relativity is the only solution to the consistency problem that
appears when trying to build a theory of interacting gravitons (massless spin-2 particles). Padmanabhan’s
2008 thought-provoking analysis raised some concerns that are having resonance in the community. In this
paper we present the self-coupling problem in detail and explicitly solve the infinite-iterations scheme
associated with it for the simplest theory of a graviton field, which corresponds to an irreducible spin-2
representation of the Poincaré group. We make explicit the nonuniqueness problem by finding an entire
family of solutions to the self-coupling problem. Then we show that the only resulting theory which
implements a deformation of the original gauge symmetry happens to have essentially the structure of
unimodular gravity. This makes plausible the possibility of a natural solution to the first cosmological
constant problem in theories of emergent gravity. Later on, we change for the sake of completeness the
starting free-field theory to Fierz-Pauli theory, an equivalent theory but with a larger gauge symmetry. We
indicate how to carry out the infinite summation procedure in a similar way. Overall, we conclude that as
long as one requires the (deformed) preservation of internal gauge invariance, one naturally recovers the
structure of unimodular gravity or general relativity but in a version that explicitly shows the underlying

Minkowski spacetime, in the spirit of Rosen’s flat-background bimetric theory.
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I. INTRODUCTION

The tight connection between general relativity and
geometry is what makes this theory conceptually beautiful,
but also very different from the formalism developed to
describe the other fundamental forces we know about: the
standard model of particle physics. While the latter is
formulated as a quantum field theory in Minkowski
spacetime, in general relativity there is no such notion of
preferred, immutable arena in which physics takes place.
Instead this environment (spacetime) is also a dynamical
object in its own right. This is arguably the root of the
conceptual problems concerning the reconciliation between
general relativity and quantum mechanics.

Trying to bridge this gap Rosen [1,2] showed that
general relativity can be reinterpreted as a nonlinear field
theory over Minkowski spacetime. Later Gupta [3] pro-
posed that a consistent theory of self-interacting gravitons
should have precisely the structure of general relativity. In
brief, Gupta’s idea is to start with a free massless spin-2
field in Minkowski spacetime, and then make it interact
with the rest of the fields. General considerations show that
the fact that this field has spin 2 implies that this can be
done only if the graviton field interacts with itself, making
the overall theory nonlinear. Since one can always express
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general relativity plus matter as a nonlinear theory for the
deviations of the metric with respect to some flat reference
metric, there is wiggle room to reconcile both visions.

However, to make this program come to fruition, one
should be able to determine the nature of the resulting
nonlinear theory which arises from the self-coupling of the
graviton field. The first subtle point is that the Lagrangian
density of such a theory contains, in principle, infinite
interaction terms which are obtained consecutively by an
iterative process, so one should devise a way to manage
them and show that this infinite series converges to the
Lagrangian density of general relativity. This question was
indirectly addressed in the work of Kraichnan [4] and
Feynman [5], but was finally settled by Deser [6]. To do
that, he used specific variables which make the series finite,
thus avoiding to perform the sum of an infinite series.

The second source of concern is the nonuniqueness of the
construction as there are many and, in principle, inequiva-
lent ways to make the graviton field self-interact. This was
first raised by Huggins in his 1962 thesis [7]. The central
point of his argument is that one needs more information to
uniquely fix the stress-energy tensor of the graviton field to
which it couples itself. Thus there are potentially many self-
interacting theories and, as there is no control of those
theories, it is not easy to conclude whether or not they are
equivalent to general relativity. Recently, Padmanabhan has
raised equivalent arguments [8]. In fact, this work has been
motivated by Padmanabhan’s paper, a subsequent follow-up
by Butcher et al. [9], and the reply by Deser [10].
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In this paper we start by considering the simplest theory
of a graviton field, corresponding to an irreducible spin-2
representation of the Poincaré group. After describing
the linear spin-2 theory, we develop in detail the self-
interacting scheme and find the (formal) sum of the series
for the action. To the best of our knowledge, it is the first
time that an infinite series arising in the graviton self-
coupling problem is summed. This construction is not
unique. We present the nonuniqueness problem and show
that, indeed, there is a one-parameter family of solutions to
the self-coupling problem which were not found in pre-
vious approaches. We analyze these resulting theories and
show that requiring the preservation of gauge symmetry
can be used to single out one of them, which turns out to be
equivalent to unimodular gravity. After the detailed analy-
sis of the spin-2 theory, we move to compare this approach
with the more standard that starts with Fierz-Pauli theory.
We sketch how to solve in an equivalent way the self-
coupling problem in this case. We study in a similar way
the issue of uniqueness and then, at the light of our results,
we present a discussion aimed at reconciling what seem
disparate results in the recent literature [8—10].

On the one hand, our results confirm the concerns of [8]
in that the self-coupling problem by itself does not uniquely
lead to unimodular gravity (or general relativity, depending
on the starting linear theory) unless further conditions are
imposed along the process. Specifically, one needs to
require that the gauge structure of the initial linear theory
is preserved, although deformed, in the final outcome.
This condition singles out unimodular gravity (or general
relativity) but in a version that explicitly shows the under-
lying Minkowski spacetime, in the spirit of Rosen’s
flat-background bimetric theory. On the other hand, once
the gauge preservation condition is applied, the entire
construction can be taken to completion in a natural way
using only flat spacetime notions, a position which is
defended in [10]. In fact, the presence of the Minkowski
background structure permits one to clearly separate the
internal gauge transformations from invariance under
changes of coordinates. Within this bimetric construction,
one obtains a quadratic Lagrangian density, invariant
under changes of coordinates. However, this quadratic
Lagrangian density is not invariant under internal gauge
transformations, but the action is. One could take a further
leap and adopt a geometrical (single-metric) interpretation
[6,10]. From this perspective the quadratic Lagrangian
density is not diffeomorphism invariant: the surface term
of the Einstein-Hilbert action cannot be recovered and would
have to be added by hand, as pointed out in [8]. Although
certainly appealing, within the self-coupling problem we do
not find a compelling reason to take this geometrization leap.

The structure of the paper is the following. Sections II and
III are intended to be a recapitulation of the knowledge
which can be found in different sources, concerning the
field-theoretical description of gravitons and the consistency
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problem which appears when one tries to make them interact
with matter. This problem leads to the consideration of a self-
interacting scheme for the gravitons, which is developed in
the next two sections, the core of the paper. In Sec. IV we
consider the simplest theory of a graviton field, correspond-
ing to an irreducible spin-2 representation of the Poincaré
group. We develop the self-interacting scheme and find the
(formal) sum of the series for the action. In Sec. V we discuss
how the condition of preservation of the maximal amount of
internal gauge invariance can eliminate the ambiguities
inherent to the self-coupling procedure. We also show that
this outcome of the self-coupling problem is equivalent to
unimodular gravity. Section VI is devoted to show how to
apply the same program to Fierz-Pauli theory and how
general relativity comes into play. We also include a dis-
cussion on gravitational energy which is particularly inter-
esting in the case of unimodular gravity. We end with a brief
summary and some conclusions.

Notation and writing style.—We use the metric con-
vention (—,+,+,+) and we will always avoid making
explicit the spatiotemporal dependence of the different
fields considered in the text. No distinction is made
between Greek and Latin indices. By gravitons we mean
massless spin-2 particles, though this notion still has wiggle
room to permit different implementations. Here we are
considering two types of graviton fields: the spin-2 and
Fierz-Pauli fields. When the Minkowski metric 7, is used,
it is understood as written in a generic coordinate system.
The d’ Alembert operator in the flat metric is [J. Similarly,
the covariant derivative V is always related to the flat
metric, while V' corresponds to a curved metric. Curvature-
related quantities will be defined by following Misner-
Thorne-Wheeler’s convention [11]. This paper was initially
motivated by the paper of Padmanabhan [8] and, thus, we
have decided to partially maintain his notation to facilitate
the translation of the results. Our intention throughout the
paper has been to use an “aseptic” writing style that avoids
contamination from geometric notions motivated by pre-
vious knowledge of general relativity. In this way, one can
see more clearly the different steps which are necessary to
obtain general relativity (or unimodular gravity) as solu-
tions to the self-coupling problem.

II. FREE GRAVITON FIELDS

The unitary representations of the Poincaré group as first
classified by Wigner are determined by the value of the
mass m and the eigenvalues of the so-called little group
[12,13]. For a particle with mass m # O the little group is
SO(3), so the corresponding label is the angular momen-
tum j and one has 2j 4 1 states in each representation,
corresponding to polarizations which range from 6 = —j to
o = +j jumping in units. However, for a massless particle
the little group is ISO(2) (the two-dimensional Euclidean
group) and only the states with polarizations ¢ = = are left.
This means that massless particles with integer spin carry
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only two independent degrees of freedom. As linear repre-
sentation space, one would like to construct a tensor-field
space using exclusively these degrees of freedom, but it is in
this construction where gauge invariance appears inevitably
intertwined with Lorentz invariance. In the following, we are
going to work in a covariant fashion with respect to changes
of coordinates in Minkowski spacetime. This will be useful
to distinguish between covariance and internal gauge invari-
ance in the resulting nonlinear theory.

The natural way to define such a spacetime tensor field is
to construct an object §* exclusively made of the two
physical polarizations, which can be done for example in
momentum space [14]. The problem is that Lorentz trans-
formations do not leave this space invariant, not even the
transformations that belong to the little group. Assuming a
tensorial character for §“® we have that, under an infini-
tesimal Lorentz transformation whose generators are &5, it
transforms as

hg)b = I)ab + §Z)vchab + hacvcdj) + [)bcvcgz;' (1)
The Lorentz generators & verify the conditions

V&, =0, 0 =0. (2)
The problem is that the last terms in this transformation law do
not belong to the linear space of objects of §** type [15], i.e.,

£V + 97V L + BV # B, (3)

Thus, the transformed object 42’ does not belong to the linear
representation space we started with (the same problem
appears in electrodynamics, where the gauge fixing condition
€” = 0 on the polarization vector €* is not Lorentz invariant).
One can prove instead that the terms driving one outside the
representation space are of the form

hey =96 =n" Vgl + 1"V &, (4)

To circumvent the representation problem we have two
options: instead of using a tensor space as representation
space, one could define §* as a nontensorial object; the
other possibility is to maintain a subsidiary tensor-field
space but consider as representation space not its individual
elements but equivalence classes of them related by gauge
transformations. We shall proceed using this second
approach.

The minimal realization of the gauge approach is to take
as representation space tensorial objects 49 such that they
are traceless and transverse,

ﬂabhab ES O, Vbh"b = 0, (5)
and with equation of motion
Ohet = 0. (6)
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Moreover, any h*’ and h'“® related by an internal gauge
transformation,

h/gb — hab + naz?v(_é:b + rlbcvcéza, (7)

will represent the same physical configuration, with gen-
erators verifying the conditions

V,£1=0, g = 0. (8)
Notice that the internal gauge transformation (7) and the

external transformation associated with a general change of
coordinates with generators &,

W = b+ EV R+ hVE 4 RV E, ()

are completely different from each other: the space of
generators is different and so is their implementation in the
symmetry transformation. Moreover, the last transforma-
tion affects the coordinates and the rest of the fields.

It is easy to check that the traceless and transverse
conditions are preserved by these internal gauge trans-
formations. These constraints in the definition of the field
h“ can be thought as the elimination of the scalar and
vector representations of the Poincaré group (see Appendix I
in [16]). A detailed analysis shows that one can always find
a vector &% such that the states with helicities 6 = 0, 1 are
gauged away or, in other words, the corresponding compo-
nents A% and A%, i=1,2,3 are set to zero while the
remaining components are constrained so that there are two
independent degrees of freedom. Another common choice
to show this is the light-cone gauge [17].

Notice that there are only two contractions of (V4)? with
metric objects (17,5, #*” and 03,) which are not zero by the
traceless and transverse conditions (5). By virtue of this, the
Lagrangian density should have the form

Lg o= cin® eV ah" Vi 4 ¢,8:800,;V B>V hI*.
(10)

Here ¢, and ¢, are real constants. The second term is
equivalent to a total divergence because of the transverse
condition in (5), so it does not affect the form of the equations
of motion. However, its presence can affect the definition of
the source of the self-interacting equations as we will see. We
can set the normalization to ¢; = —1/4 and introduce a bit of
notation to conveniently write the free action as

1 . .
Ago ::Z/ dy, g’bcjk(q)vahbcvihfk, (11)

where dV, :=d*x,/=7 is the Minkowski volume element
and the Lorentz tensor M§', (1) is given by

gibcjk(ﬂ) = g[”[b(jéz)5é + nc(j52)6§;] - nainb(j”lk)c' (12)
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The tensorial quantity Mg',,.;, (17) is symmetric under b <> c,
j<> kand (a,b,c) <> (i,j,k), as one can check from its
definition. When used in the action we do not need to worry
about these symmetries because it is contracted with an
object, (Vh)?, which already has these symmetries.
However, to solve the iterative equations of the self-coupling
problem it will be necessary to use its symmetric form as it
appears in (12). The parameter 8, directly proportional to ¢;,
controls the surface terms we are considering in the free
action. One can easily check that this action is invariant up to
a surface term under the gauge transformations (7) with
generators satisfying (8). In fact, the case 8 = 1 is special in
the sense that one could drop the second condition in (8) and
these transformations are still a symmetry. For this reason we
will always assume that this is the case i.e., only the first
condition in (8) applies when considering 8 = 1, thus
recovering the minimal theory of gravitons which was
considered in [18]. The reader will notice that, through
the calculations in Sec. IV, we always keep using the object
he and never its covariant counterpart A, := 1,141 This
simplifies some steps which involve taking variational
derivatives with respect to an auxiliary metric y,;, after the
replacement 7,;, — ¥, in the action. In the following, this
traceless field will be called spin-2 field.

An alternative way of constructing a spacetime field 4%°
is to drop the traceless and transverse conditions in (5)
while enlarging the gauge symmetry. This is the well-
known Fierz-Pauli theory [19], in which the fundamental
field is just a symmetric Lorentz tensor. We will call it
Fierz-Pauli field. We are not going to enter into details here
about the construction of the Fierz-Pauli action as the
procedure is equivalent (but a little more involved) to the
one we have followed for the spin-2 field. The details can
be found e.g., in [8], and we will mention part of them in
Sec. VI. Notice that the transverse and traceless conditions
can be imposed on the Fierz-Pauli field only within the
space of solutions of the free theory. That is, the so-called
transverse-traceless gauge can be applied only for fields 4
verifying the condition

Vavbh”b = ﬂathab, (13)

which is precisely the trace of the Fierz-Pauli dynamical
equations [20].

To develop the self-coupling scheme, we are going to treat
these theories as classical field theories. Our conclusions are
applicable then to the long wavelength limit of theories in
which a graviton propagates over Minkowski space in
interaction with matter, independently of the ultraviolet
completion of the theory.1 From the point of view of the

'In particular, the notion of a Minkowski preferred background
could be emergent in the sense of being applicable only below
some characteristic energy scale, instead of a fundamental
structure present in all regimes [21].
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classical equations of motion, which are what we are
interested in, surface terms in the resulting action of the
self-interacting theory are irrelevant. Notice that, if there is a
regime in the theory in which gravity functions classically but
the matter fields behave quantum mechanically (semiclass-
ical gravity), it is reasonable to expect that our conclusions
would also apply to it as the self-coupling only occurs in the
gravitational sector, still described by c-numbers.

III. COUPLING TO MATTER

In this section we address the question: could we make
an interacting theory of the spin-2 and matter fields? We
have included this review section to facilitate the reading of
the paper, but its contents are well known in the literature
(see [20] and references therein).

To couple a matter field to the spin-2 field we need to
define a quantity 7',, that is symmetric, traceless and
transverse on solutions. Then, we could write

Ohyp = AT . (14)

A natural consistency condition is to impose that this
equation can be obtained from an action. In fact, it can be
obtained as the corresponding Euler-Lagrange equation with
respect to restricted variations of 2%® (such that #7,,,6h%® = 0)
as long as we add to the Lagrangian density a term

AL = 2hT,, (15)

with T,, symmetric, transverse on solutions, and with
constant trace. An object with these characteristics is
precisely the stress-energy momentum tensor, where the
transverse condition amounts to its conservation. We com-
ment on the condition of constancy of the trace at the end of
the section; for now let us just require conservation of T .

One immediately realizes that one cannot use the stress-
energy tensor of the free matter theory: for consistency one
must use the total stress-energy tensor of the interacting
theory. Had we started tentatively by adding a term 2h**T™
to the Lagrangian density of the matter sector, with 7% the
free matter stress-energy tensor, this very term would have
changed the matter stress-energy tensor making it neces-
sary to add new energetic contributions to the Lagrangian
density. This iterative process is the one we are going to
follow in the next section.

This is a general property of the coupling with matter: as
the coupling is done through the stress-energy tensor, the
transverse condition for the spin-2 field implies that the
total matter traceless stress-energy tensor should be diver-
genceless.2 However, this would not be the case when
interaction is switched on, as the matter fields no longer

“When the transverse condition is relaxed, it is the result-
ing gauge invariance of the theory the responsible for this
feature [20].
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behave as an isolated system, being the energy transferred
between them and the spin-2 field. The natural way to
remedy this is to realize that the spin-2 field must also act as
a source of itself (the charge/source of the graviton field is
the energy and gravitons should possess energy), which
leads us to the issue of the spin-2 field self-coupling.
Therefore, the iterative procedure has to act also in the
spin-2 sector.

An important problem shows up when thinking about the
stress-energy tensor of the spin-2 sector: there is no way of
constructing a nontrivial conserved stress-energy tensor for
the spin-2 field that is invariant under the gauge trans-
formations (7) [22,23]. By nontrivial we mean that it is not
exactly zero for any solution. An indirect way of realizing it
could be the Weinberg-Witten theorem [13,24], which
explicitly forbids this possibility. Thus, one cannot asso-
ciate a local notion of energy with the physical configu-
rations in the free theory.3 One can live with this fact if
the theory is noninteracting, so that there is no operational
way to define what it is energy and momentum. Within an
interaction scheme this is untenable.

As mentioned before, strictly speaking the consistency of
a complete nonlinear spin-2 theory will need that the
transverse condition applies to the traceless object T,
independently of that of T,;,. When the trace of the stress-
energy tensor is a constant the conservation of 7', implies
the conservation of Tab. In this respect, notice that the trace
of the stress-energy tensor of a single linear matter sector
(e.g., a single scalar field) is always a constant as there are
no sources that can cause an inhomogeneity in the system,
and hence in the trace. When putting together the spin-2
and matter sectors with all its nonlinear interactions, we do
not know a priori what could happen. All in all one is left
with the expectation that when applying a consistent self-
interacting scheme some meaningful result would show up
for all the standing problems. We will come back to this issue
after finding the solutions to the self-coupling problem.

IV. SELF-COUPLING

The first question to answer when considering a self-
interacting scheme is: what is the object to which we are
going to couple the spin-2 field in a first stage? A natural
candidate to consider is the canonical stress-energy
tensor, that is, a conserved quantity of any field theory
which is Poincaré invariant, associated with invariance
under translations:

oL

a a O
O, = Ly0;, V)

be/”, VaG)“b =0. (16)

3Something equivalent happens in non-Abelian Yang-Mills
theory: one cannot find a Lorentz covariant conserved current
which is at the same time gauge invariant.
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Here L is the free Lagrangian density of both spin-2 and
matter fields, collectively denoted by y*. If we manage to
use this quantity as the right-hand side of our equations
of motion for h“, the theory will naturally verify the
condition obtained by Weinberg [25,26] as a necessary
one if we want to have a Lorentz-invariant theory: the
coupling between the spin-2 field to matter and to itself
must be governed by the same coupling constant.

However, direct use of this quantity is not possible: in
general, the fully covariant or contravariant counterparts of
(16) are not symmetric. But we can exploit the ambiguity in
the addition of identically conserved tensors, the so-called
Belinfante-Rosenfeld terms, to obtain a symmetric stress-
energy tensor which leads to the same conserved quantities.
This symmetric stress-energy tensor is not unique: one can
still add identically conserved tensors keeping the sym-
metric character. All the manipulations that follow can be
performed by directly using the symmetrized versions of
the canonical stress-energy tensor. Therefore, these manip-
ulations in no way involve any curved spacetime notion.
However, as shown by Belinfante and Rosenfeld [27,28],
these symmetric stress-energy tensors can be equivalently
obtained by the simple Hilbert prescription,

165
T, = —lim—— Ao

r=1 /=y oyl

where the flat metric 7,, in A, has been replaced by an
auxiliary (generally curved) metric y,,, being y* its
inverse. Recall that the two steps one needs to follow
are: write the action in curvilinear coordinates in flat space,
and then generalize it to curved space. It is in this second
step where the ambiguities show up in Hilbert’s prescrip-
tion. In practice, the ambiguities in the stress-energy tensor
appear now as the addition of nonminimal couplings of
the physical fields to the auxiliary metric y,,, and they are
added to the one-parameter family of surface terms we are
considering in the free action (11). In fact, as we will see
later these nonminimal couplings can be understood as
surface terms in the original free action, though different
from the one-parameter family we have been considering
up to now. We will show that these different choices of
stress-energy tensor as the source lead to different solutions
to the self-coupling problem. Let us stress again that here
we use Hilbert’s prescription as a mere calculational device
and insist that no curved spacetime notion is used through-
out the calculations.

Now that we have discussed the relevant properties of
the stress-energy tensor, we would like to derive the self-
interacting equations of motion from an action. The
coupling constant is denoted by A. This can be done if
we add a term AA; of order O(1) in the action, such that

A, 5A,

= um-—.
Shab ~ y—y 5yb

(17)

(18)
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Here A has two terms: the free action for the spin-2 field
given by (I11) and the matter content one wants to
consider, Ay = Ago + Amo-

As noticed by Gupta [3], this additional term of order
O(A) in the action would modify the definition of the
source by a term of order O(4?), which implies that we
need to contemplate a term 4*A4, in the action. This is the
iterative procedure we would want to solve for. It will
generate an action of the form*

A= Z A, (19)
n=0
where the set of partial actions {.A4,}% | must verify the

iterative equations

0A, . 6A,_;
= lim ,
Sht  y=n sy

n>1. (20)

In more detail, let us write the resulting action of the
self-coupling procedure as

A=Ay + Ay (21)

where the free part A, is already defined and A; is the self-
interacting part we are going to solve for. Given this action,
one would be able to obtain its stress-energy tensor. A; is
then fixed by the requirement of leading to this stress-
energy tensor as the source of the equations of motion:
OA _ 1im S0t A
She? =1 Sy

(22)

One just needs to expand A; = > %, 1" A, and compare
different orders in the coupling constant A to obtain the set
of iterative equations (20).

Recall that we started with traceless equations of motion.
This means that, to keep the same number of equations of
motion in the iterative procedure, the field 4“® must be
constrained in some way. One option is to maintain the
traceless condition with respect to the original Minkowski
metric. In any case, the set of equations (20) is general
enough to permit the imposition of this condition, as well as
other possible scalar constraints over the field heb  after
finding its solutions. So we postpone this discussion to
Sec. V, although we will keep in mind the existence of this
constraint which, at least at the lowest order, must be
equivalent to the traceless condition.

*Notice that there is no reason to expect, in principle, this
series to be infinite. There are two examples in the literature of
this kind of series: the first one is the trivial one, in the sense that
one does not consider self-interactions of the graviton field (see
paragraph below). This series is infinite. The only example of a
self-interacting series is the one constructed by Deser [6] which is
finite, with only .4, # 0. In this paper we are going to consider
always infinite series.
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The integration of the iterative equations for the matter
part is straightforward, as the corresponding part of the
stress-energy tensor does not contain the spin-2 field
explicitly. That is, the matter part of the right-hand side
of (18) is independent of 4? at the lowest order, linear at first
order, and so on, making the integration of this part of the
equation trivial. The resulting action is obtained as a Taylor
series which can be summed. The formal result of this sum is
the free matter action expressed in terms of a curved metric,
Anolg] with g?? =5 + 2h® [6,8]. Notice that nonmini-
mal couplings to matter are not ruled out by any consistency
condition, so minimal coupling to the physical metric in the
resulting matter action is not a necessity in this approach. It is
the gravitational self-interacting part of the iterative pro-
cedure which has to be handled carefully, and this is the part
we are going to work with in the rest of the text.

Concerning this self-interacting part, one could expect
that the resulting theory exhibits a nonlinear deformation of
the original gauge invariance, which is broken at each stage
of the iterative procedure. The search for this symmetry has
been a commonly used route to argue that general relativity
should be the only consistent self-interacting theory of the
Fierz-Pauli field, as the only nonlinear deformation of such
linear symmetry is diffeomorphism invariance [16,29,30]
(see also the related discussion in [20]). However, here we
would like to understand the interplay between the pres-
ervation of this symmetry and the iterative self-coupling
procedure, instead of taking its existence as an assumption
from the beginning.

In the rest of the section we are going to solve the iterative
equations (20) step by step. First we are going to solve these
equations in the simplest case in which there are no non-
minimal couplings. We show then that there is a unique
solution of these iterative equations, which corresponds to a
selection of a certain value of the parameter 8 in (11). Then
we devote the next subsection to understand the role of
nonminimal couplings. Their inclusion will permit us to
obtain the general solution to the self-coupling problem.

A. Explicit integration and summation of the series

In this section we are going to see how to manage the
infinite set of iterative equations (20) for the spin-2 field.
Let us start with the first-order iterative equation (18). To do
that, we are going to evaluate the right-hand side of this
equation and then integrate its functional form to obtain the
corresponding left-hand side.

The first step is to apply Hilbert’s prescription to obtain
the source of the equations of motion. To do that we have to
extend the action (11) to a general curved metric. Adopting
a minimal prescription we can write

It is in this step where the ambiguities in the addition of
nonminimal coupling terms can arise. We will deal with this
ambiguity in the following section, thus making here the simplest
choice.
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1 . o
Alr) =5 [ VM)V

(23)
where we have dropped the G subindex. Here V' is the
covariant derivative with respect to y,;, and dV, := d4x\/—_y
the corresponding volume element. Notice that we have
changed the metric in the argument of the tensor Mg',, ., (17)
defined in (12).

We obtain the stress-energy tensor by performing var-
iations on this metric, and then taking the limit back to flat
space. Under such a variation, the action (23) changes as

1 A .
3ol = [ 0T (T

b [ AT TV, (24)

The first term gives two contributions, one coming from the
variation of the determinant and the other from the variation
of M, (7). There are two possible ways of dealing with
the former. The first one is to notice that the first-order
equation must be traceless so the corresponding term is not
going to contribute. This observation can be extended to all
orders with the following recipe: do not change the measure
in the partial actions .4, when writing them in terms of the
auxiliary metric y,;,. Although a departure from Hilbert’s
prescription, this alternative procedure leads to a sensible
source to be used in the self-coupling procedure when the
constraints on the field 4 are taken into account. We shall
follow this approach in this section. A second option is to
proceed with no previous knowledge of the restrictions on
h? and integrate the contribution coming from the varia-
tion of the determinant. The iterative equations (20) are
linear, so we only need to add the corresponding contri-
bution obtained this way to the result of the calculations of
this section. We will show in the next section the result of
this procedure. Of course, this is only an operational choice
which does not affect the physical results at the end of the
day, when the constraints on the field he are considered.

Let us now deal with the second term of (24). There we
have the difference of two Levi-Civita connections asso-
ciated with y,;, and y,;, + 9y 5, respectively. This difference
is characterized by the tensor

1
C/lbld = E (},be + 57be)v//4 (yvp =+ 5yvp)Dlwpaedv (25)

where
DI g i= S8 50 + 8564 50 — 81608, (26)

(see e.g., [31]). Then one can see that the variation 5[V’ 7]
is given, at first order, by

(b peyd

5C' jyh? =

ye(bhc)dv;téth D’wpaed' (27)
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The notation 5C’§ here means that we only take the terms
in (25) which are linear in the variations dy,,. If we
integrate by parts, the contribution of these terms equals

1 ) )
_ E/ d*x =y 6yy/)y6(bD”Upa€dMglbcjkvﬂ [hC)dvl_hjk]

1 i
= 2/ d4x\/ -7 éyqupuJ/qpydeDwﬂﬂe(ng c)djk
x V,(hb<V,hi¥). (28)

The corresponding source then takes the form

16M4i, . ,
Tpyi= — bl pheV ik

4 |,

1

- 5 npynq/)ndeDuw}ye(hMgic)djkvu (hbcvihjk) . (29)

Notice that this expression contains second derivatives of
the spin-2 field. It is important to notice also that it naturally
splits into two kinds of terms, proportional to (V4)? and
V(hVh), respectively. As it stands, it is symmetric under
the exchanges p <> g and b < c.

The objective now is to find a term in the action A4,
whose variation with respect to 7%® gives the desired source
term. The most general expression which contains no more
than two derivatives of the spin-2 field can be always
written as

1 . )
Z/ dV,,N“’bcjkpq(r])hpqvahbcvih/k.

(30)
Then taking the functional derivative with respect to 7179 we
obtain

1

Z/dVﬂ[Naibcjkpq(”)vahbcvihjk

- 2Naiqukhc(’7)va (hbcvihjk)]éhpq' (31)
We get two equations coming from the comparison of the

coefficients accompanying the two independent combina-
tions (Vh)? and V(hVh) in both Egs. (29) and (31):

i M i ()
Nalbcjkpq(r]) = ’

(32)
oy 70

and

_Naibcjkpq (77) = ”pyﬂqpndeDaypye(nglc)djk (77) . (33)
The first equation provides the form of the first-order action
(30). The second equation then becomes a consistency

condition that must be satisfied for the whole procedure to
be well defined:
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_ 5Mgiquk (7)

SyPe = nl’bnq,ﬂndeDuD/)ye(ngic)djk(77)' (34

r=n

It is this equation which imposes restrictions to the
solutions of the iterative equations which, in fact, select
3 = 1. To obtain this condition on 8, let us notice that the
right-hand side of (34) can be written as

prMgichk(”D + 5znpuMgichk(n) - npbnqunadMgidcjk(n)1
(35)

where we must impose a symmetrization under the
exchange of indices p <> ¢ and b <> c. It is useful to
write this expression explicitly by using (12),

816 [1g(1%) 5% + e %] = Mppn“ N 0)c
+ 88511140 + Np(10) 4] — Sy
= [ Nty Mk)e + Mppa(i070)0e] + G40 M ppi)es
(36)

and symmetrize this equation with respect to p <> ¢, so it
can be simplified to

8[1,01c(6%) 5 + Nape(i5%) 0] + 85811
841 .
—— [Mpule(iM)g + Ngpllp(Mk)c]
31

T

52 [np(jr]k)céf] + nq(jnk)célp] (37)

This equation must be compared with the left-hand side of
(34) i.e., with

_ o giquk (}/)

5y = 8[1pw1e(j94) 8 + Mapne ;35 5p)

r—=n
+ 5252’713(1"7@4
— 1 e Miyg F NabMp(Mi)e)
(38)

which must be still symmetrized under the exchange
b <> c¢. A direct comparison of these equations tells us
that the only solution of (34) is given by 8 = 1.

In this way, we have shown how to integrate the first-
order iterative equation (18). The result is

A + 1A, + O(22)

1 . .
= Z/ dV,?M‘l”bcjk(” + ARV hPeV ik + O(22). (39)

Now that we have worked out the first order in detail, the
objective is to show that the result which can be anticipated
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from this order is in fact the correct result. That is, that the
total action is

A= [ Mg+ 2TV a0

So we decompose this ansatz (40) in partial actions,

A =32 "A,, with

nM(fibcjk(J’)

A _L/ dyéi \v4 thV'hjkhptht-“
" 4n! T syrasyst - a4 ! ’

r=n

(41)

and apply the iterative equations (20) to this sequence,
finding the consistency condition:

&MY i (r)

n nPVn(I/’ndeD et Syt

r=n

1 pqjk
6ybc6yst .

— w (42)

r=n

Notice the symmetrization of the pair (b, ¢). To work better
with this expression, we can avoid at first to evaluate it in
the limit y — 5, working thus with the equation

Y,y },deDavp 5n_1MI;lC>djk(y) — (YLMLl”Plek(}/)
pvigp pe(b 5}/st . 5]/b65}’5t 0
(43)

which can be viewed as a differential equation with an
initial condition imposed in flat space. In fact, if we drop
the indices we can write it schematically as

n®(y) 82;{5?) =- 8%@ : (44)

with ® ~ (y)~'. Up to now, we have shown that (34) is
valid, which in this simplified notation becomes

_oM(@y)

O(y)M(y) = a7

(45)

Thus to show by induction that (40) is in fact the solution to
the iterative problem we only need, as we have already
proved that it holds for n = 1, to show that ©(y) verifies the
differential equation,

P _ex(y), (40
Oy

as it is indeed the case. Coming back to the full equations,
one has
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6n+1M‘1”pq/k (}/)

5yuv5},in5},st .

5nMﬁllc)djk(7)
5},141 57“ ..

n—1 g gHi

M c)djk(V) o e
T&}/”” (}/Pl/yqpy )

(b,c)}. (47)

= n}/puyqpydeDaUpye(b

+ 1D
+{(,0) &

Then the consistency condition with the induction can be
read as

6" lM}luc)dJk(y) o

57/\[ . 5]/1,40
0" lMll”v)djk(y) o de
T o (V¥ ap? ™)

n ypqu,ﬂy HE(b 5]/141/57/31 ..

+ 17 14 ]/deDuv/) 5’1M11“1’)d/k(7/)
nlpvlar pe(u Sybesyst.

Daw}ﬂe( (yfqu/)yde)

+ Dabp/,te(u

(48)

Because of the symmetrization, we can take only one of the
terms in each side of the last equation, thus obtaining the
equation

&MY (v) s
5},st . 5ytw

Dayp/ze(b (ypqupyde)

_ 1 de pyavp nM;l” v)djk (r)
= e pe(u W

_}/pu}/qpydeDabpﬂe(uyda?v)ﬂy}/éDﬂaﬂeﬁ( 5}/5,

(49)

In the last line we have used (43). So we arrive at the
equation

o
Dabpyeb W (ypuyqpyde)
_7pu7qpyyeDaypee(s}/yayt)ﬂydéDgaﬂpéb s (50)

where we have changed the free indices to avoid potential
confusions. This is the equation represented schematically
by (46). The reader can find in the Appendix the demon-
stration that this algebraic relation is indeed true and,
therefore, the induction proof is finished.

Notice that, as the construction of the iterative series
relies ultimately in the solution of a system of ordinary
differential equations schematically represented by (45),

5 lM?lc)y/k (7/)
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with an initial condition posed in flat space, the solution is
unique. The solution A is then

"M 1bc;k
'757pq57,ff ..

/ AV, My (n + A0)V 1PV hik

V hPeN hikppapst . . .

—=n

4
1

4/12/ dv Mllhc/k(g>vagbcvigjk = A, (51)

where we have defined the field
gah = nuh + /U’lab. (52)

Remember that V is the covariant derivative compatible
with Nab-

B. Nonminimal couplings and surface terms

In this section we shall deal with the effect of allowing
contributions to the stress-energy tensor coming from
nonminimal couplings or, what is equivalent in this case,
covariant surface terms. These terms fully parametrize the
ambiguity inherent to the definition of the source in the
equations of motion. They must be considered for the sake
of completeness when the free action in flat space is
generalized to a general metric space in terms of the
auxiliary metric y,;,, remember e.g., (23).

Nonminimal couplings are defined as scalar quantities
which can be written in terms of the auxiliary metric y,;, in
the procedure above and the spin-2 field, and which vanish
in the flat-space limit. The most general form of these
terms, as they would be added to (23), is given by

/dVy [Aibcjk(% VJ’)hbcvthk + Bbcjk(}” V}’)hbchjk]-
(53)

The first function A’ (y, Vy) must be proportlonal to Vy,
while the second one By, (7. Vy) to (Vy)? or V?y. Using
the flat covariant derivative V guarantees that these terms
vanish in the flat-space limit. We have also restricted them
with the condition of leading to contributions to the stress-
energy tensor which are quadratic in the derivatives of the
spin-2 field. These contributions are obtained by varying
this expression with respect to y®* (after integrating by
parts) and then taking the flat-space limit.

The reader could find strange the form (53) we associate
with nonminimal couplings. While the usual representation
uses curvature-related tensor quantities, as the Riemann
tensor, constructed from specific combinations of the
auxiliary metric and its ordinary derivatives Jy, in (53)
we are using arbitrary scalar combinations of the metric and
its covariant derivatives Vy. To do that we are exploiting the
fact that we have a Minkowski reference metric, which

124019-9



CARLOS BARCELO, RAUL CARBALLO-RUBIO, AND LUIS J. GARAY

permits us to easily construct scalar quantities which
contain the (y-covariant) derivatives of the auxiliary metric.
Let us consider as an example the Riemann tensor: given a
generic decomposition of a metric y,, in the form
Yab = qap + €45, ONE can always write its Riemann tensor,

Ryei(r), as

Ryej(7) = Rpej(q) + 2V Cly +2C CG, (54)
In this expression, CZC is the tensor which characterizes the
difference between covariant derivatives with respect to
the two metrics y,, and g, respectively denoted by V'
and V [see for example [31], Eq. (D7) adapted to our sign
conventions]. Now one can consider the special situation
in which ¢,, = n,, to realize that contractions with the
Riemann tensor of y,;, can be written as a particular case of
the integrand in the expression (53).

With this definition of the possible nonminimal cou-
plings, it is not difficult to realize that the same effect can be
reproduced by adding a general covariant surface term
instead. This term would have the following form, after
writing the original action in terms of the auxiliary metric
[i.e., it would be added to (23)]:

[ TS e i) (55)

As in the case of nonminimal couplings, this is the most
general possible expression containing two covariant
derivatives of the spin-2 field. Recall that V' is the covariant
derivative associated with y,,.

Whether surface terms contribute or not to the stress-
energy tensor is a matter of choice. If we first substitute the
bulk integral by an integral in the boundary, and then
perform variations of y*” but maintaining it fixed on this
boundary, one would obtain nothing from this variation. If
instead one first performs this same variation, one obtains a
local contribution to the stress-energy tensor inside the
boundary, which does not change the values of global
charges. Which stress-energy tensor is the appropriate one
can only be distinguished precisely by gravitational experi-
ments. Without further knowledge this is an ambiguity in
the definition of the stress-energy tensor (it is equivalent
to the ambiguity exploited in the Belinfante-Rosenfeld
prescription).

The question now is whether the results we have
obtained in the previous section could change because of
the introduction of nonminimal couplings. In other words,
we want to know whether there exists a different functional

1 : i
A= Z/ AV, 0% e jipq (1) h74N RPN 1 (56)

solution up to order O(1) of the iterative procedure when
certain additional terms in the stress-energy tensor are taken
into account.
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The effect of these surface terms or nonminimal cou-
plings would be to add some terms of the form V(hV#h) to
the stress-energy tensor. Thus, the iterative equations give
us two conditions, analogous to (32) and (33): the first one
is directly

ai
5M§ bcjk

Pq ’
5]/ r=n

(57)

ai _
0 bejkpg —

as in the minimal coupling case, while the second one will
notice the effect of the surface terms, as it is changed to

_Oaibcjkpq = ﬂpu’//qpﬂdeDaUpﬂe(nglc)djk + Aaibcjkpqa
(58)

where the term A%
the surface term.

The second equation must be now understood as the
condition which permits us to know what surface term we
need in order to make the self-coupling procedure con-
sistent for different values of the parameter 8. That is, the
addition of surface terms allows us to find solutions to the
problem for 8 # 1. Now the first equation (57) implies that
the solution, if it exists, will be expressable as the first term
of a Taylor expansion in 4 of the free action displaced to
7%’ + Ah®, for any value of 8. That is,

bejkpq 18 the contribution coming from

Ay + 1A, + O(2?)

1 A .
= Z/ dV,Mg' (i + ARV 1PV Wk + O(2%). (59)

Then, the complete iterative procedure will give place to the
complete Taylor series in complete analogy with the
minimal coupling case (51).

Let us consider now the issue of the variation of the
volume element dV, or, in other words, of the factor /=y
in the partial actions A, [y]. The only difference in the
integration of the first-order iterative equation is that the
variation of the determinant 5,/—y must be taken into
account in (24). This implies that the measure in (59) as
well as in the final action would be given by dV,:=dV,k
with x:=/=g/,/=n instead of dV,. But the effect of this
volume element at each order can be absorbed by non-
minimal couplings as we did to obtain the solutions (59)
with values of the parameter 8 # 1. This means that the
general solution to the self-coupling problem is given by

1 _ |
A :Z/ dV’iK/Mglbcjk(W+Ml)vahbcv,~hﬂ‘

1 ) ' '
- 4,12/ AV, M, 1 (9)Vag" Vg, (60)

This form (especially the fact that only the combination
g*? = + Ah appears) was not a logical necessity from
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the beginning, but the analysis shows that it is actually the
result. The factor «’ is either ¥’ = 1 or ¥’ = x depending on
the prescription we follow to obtain the source at different
orders. By expanding this action with respect to g% =
n°? 4+ 2h?" in the formalism of [9], one can alternatively see
that it indeed leads to a solution to the self-coupling
problem with the appropriate quadratic (zeroth order) form
for each value of the parameter 8, and evaluate the
necessary surface terms in a different way. What at the
linear level is a surface term, in the final theory is no longer
reducible to a surface term, giving place to a complete
s-parameter family of solutions to the problem. Before
ending this section, let us recall that all the solutions we
have found are constructed as bimetric theories. Although
the final theories all exhibit the tensor ¢’ in their coupling
to matter, the flat metric #“® forms also part of the
construction. We will discuss later what happens if one
decides to eliminate #%? to make contact with the standard
general relativistic formulations.

V. THE FULL ACTION: RELATION WITH
UNIMODULAR GRAVITY

In this section we briefly analyze the resulting nonlinear
theories which we have obtained as solutions to the self-
coupling problem. In particular, we investigate the internal
gauge symmetry of these theories, and argue that this
feature can be used to distinguish between the different
possibilities.

Summarizing, we have found a family of theories (60)
which depend on a real parameter 3 and are expressed in
terms of the variable g°® = 5 + 1h*’. Moreover, this field
g** is constrained by a finite version of a (possibly)
nonlinear equation of the form f,,8¢*” = 0. This constraint
guarantees that the resulting theory has the same degrees of
freedom as the original linear construction of the spin-2
field. Since this is a scalar constraint, two options arise:
Naph®? =0 or /=9 = /—n. The first one is the original
constraint imposed in the free-field functional space.
However, when considering the self-interacting theory it
is natural to expect that a modified nonlinear condition
unfolds instead of maintaining the original traceless con-
dition. This is the second case which reduces to the first one
at the lowest nontrivial order in the coupling constant A.
These different selections of the parametric and functional
freedom lead to different theories. Each theory has its own
peculiarities which one can like or dislike. Let us now
discuss these peculiarities case by case. Notice that all of
these theories are by construction invariant under general
changes of coordinates. However, the amount of internal
gauge symmetry that they present can be different.

A. Nonlinear trace theories

In this section we will consider that the deformation
/=g = /=1 holds. Under this condition, & = 1 always.
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The first useful thing to do is try to express the action of
the theory, (60), in an alternative form. To do that, let us
introduce the derivative operator V associated with the field
g interpreted as a spacetime metric, such that

v, = 0. (61)

Now we can define a tensor field C¢, relating the two
derivative operators V and V.° We are going to show that
the entire action can be written in terms of this tensor field.
If we expand the compatibility condition (61) and

multiply it by the field ¢g“*, one has
gakvkghc — _CZI Cc ak hl (62)

By performing permutations of the free indices of this
equation, we can write

—2Cilg”kghl — gakvkgbc 4 ghkvkgac _ gckvkgab. (63)

Now we can multiply this equation by the inverse matrix
Jap (Which has nothing to do with the contravariant version
of ¢g°% obtained by acting twice with the flat metric 7,,) to
solve for C¢,:

1 ‘
= 9a19om (9" Vg™ + ¢V g — gV g™)

Cflb :_2

1
=5 (9onVag"™ + 9a Vb9 = 9u9om9*Vig™).
(64)

Then one has

gab ) ) )
9" CluChy =" (01Vad" + 9aV,19" = 9u9ing* Vig™)
X (9onVig" + 9 V9" = 9irGps 9"V ug")

1 - . .
=2 (291, V,;9"V:9" = 91299 Vg™ Vig")

1. .
= ZMtlnbcjk<g)vagbcvigjk' (65)

This means that we can write the action, at least for the
special case 8 = 1, as

1

4/12/ dv Ml bc;k( )vagbcvlgjk —_/ dvngabc;acgb'

(66)

What is interesting about this expression is that it permits us
to connect with the usual geometrical language of general

®The most consistent notation with previous definitions would
be Cg, instead of C¢,. However, here we have chosen the latter
notation which simplifies the appearance of the subsequent
equations.
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relativity, with g, playing the role of the spacetime metric.
To see that, let us consider the Einstein-Hilbert action
which contains the curvature scalar R of a metric g,;,. As we
have already discussed in IV B, if the metric is split as
g** = n® + Ah“, the curvature scalar can be written in
terms of #-compatible derivatives V of the field C¢,. Then,
we can eliminate a surface term by just realizing [32] that

2 .
5 / 4V, (V,.C5, + €5, C1 )
2

= /1_2/ dvnvc(\/ _gél[lcgd]bclavd)

2 .
- / dV,g"C5. Y, (67)

The surface term is

2 b
/1_2/ dvnvc(v_gé£l gd]bcbd)’ (68)

and the remaining action is precisely

2
-z / dV,g"Cg.CY,. (69)

This action was first written by Rosen in the context of a
gravitational theory with a preferred flat background [1].
Notice that the expression under the integral sign in this last
equation is a scalar under general coordinate transforma-
tions, so one does not need to complement it with a surface
term to ensure this invariance. On the other hand, it is not a
scalar under internal gauge transformations as one would
need to add the surface term (68) to guarantee that. In this
paper we stick to a bimetric formulation (in the sense of
Rosen), as our analysis shows that it is really one of the
most important consequences of giving full credit to the
self-coupling problem. It is not possible to obtain unim-
odular gravity (or general relativity, see next section) in a
strict sense but Rosen’s reformulation of it, when starting
from a free theory in flat spacetime and using only flat-
spacetime notions.

The only thing we need to do to make full contact with
our action (66) is to impose the condition on the determi-
nant \/=g = ,/=#. Under this condition, dV, = dV, and
Cb. =0 as it can be shown by using a particular
Minkowski reference frame:

1 1
C1b7L|M = __gabazrgab =

2 N

So the first term in (69) can be dropped and the volume
element is replaced by dV,, making this action completely
equivalent to (66). Therefore, we have recovered the
general relativity action, subject to the determinant restric-
tion. Now it is easy to analyze the internal gauge symmetry

/=g =0.  (10)
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of this theory, whose generators will be denoted by &%
Its infinitesimal counterpart has exactly the same form as
a diffeomorphism,

5§h“b — ﬁghab — _gcvcgab _|_gacvcé:b + gbcvcéa’ (71)

with the additional condition of preserving the Minkowski
volume element:

V& = 0. (72)

Here L; is the Lie derivative operator. This condition is
nothing but the first one in (8). As we have the same
number of generators subjected to the same number of
restrictions there is no reduction of gauge symmetry, just a
deformation.

However, the contrary happens when 8 # 1. One would
need to impose additional conditions on the generators to
make sure that (71) is a symmetry of the theory for these
values of 8 # 1, which means that the gauge symmetry is
reduced (see the next section for additional comments).

Independently of this we would have, when 8 # 1,
additional restrictions coming from the transverse condition:

V.g =V, h =0, (73)
which can be alternatively written as
C¢ g = 0. (74)

This means that we will also need to impose a deformation of
the second condition in the same equation whose expression
can be obtained by imposing V,,égh“” =0

CIE* + AhbeV,V, &4 = 0. (75)

Remember that what singles out the case 8 = 1 from the
other values from the point of view of the internal symmetry
is that the transverse condition can be dropped even at the
level of the free spin-2 theory, which means that the
conditions (73) can be relaxed from the beginning. This
corresponds to the situation analyzed by symmetry argu-
ments in [18]; then our discussion is compatible with the
content of this paper (notice that the transverse condition
plays no role in the solution of the iterative equations of
the self-coupling problem). This is different from 8 # 1, as
in those cases we will always need to impose the transverse
condition even in the free theory, which implies that the
resulting theory will always present the deformation (75) in
order to ensure this condition.

Even if we consider ¢’ as a metric, we still use the
natural volume form in Minkowski spacetime to write the
action of the resulting theory, (66). As we started from a
theory formulated in a fixed background, the Minkowski
spacetime, there is no logical reason to expect a perfect
decoupling of this background structure in the sense of
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emergent gravity scenarios [33]. In fact, we have seen that
the presence of this background is only partially camou-
flaged in the self-interacting theory when all orders in the
interaction are taken into account, but not entirely, as this
preferred notion of volume survives. However, in this case
this nonperfect decoupling is not an undesirable feature: the
existence of a background volume element is a definitory
characteristic of unimodular gravity and the ultimate reason
which makes this theory avoid the first cosmological
constant problem [34,35]. The consideration of unimodular
gravity as the self-interacting theory of a spin-2 field in
Minkowski spacetime thus offers a natural way of under-
standing this feature which, on the other hand, is rather
unnatural from the geometrical point of view.

Concerning the purely geometrical point of view, at this
stage one could take it one step further. Imagine that instead
of writing the action in coordinate independent manner we
select a particular Cartesian coordinate system. Then, all the
covariant derivatives in the action would be substituted by
partial derivatives. If someone gives us this action without
informing where does it come from we will not have any
way of noticing the existence of an external background. The
restricted variation conditions will become

v=g=1, I ¢ =0, (76)

i.e., the unit determinant and the so-called harmonic gauge
condition. In this way any reference to a Minkowski back-
ground is completely erased. The background is so camou-
flaged that one can even forget it exists. We could switch to a
completely geometrical interpretation of the theory. In this
form the theory would have to be interpreted similarly to
general relativity but only selecting certain coordinate
systems as special. This happens because of the mixing
of the external and internal symmetries, both are now one
and the same symmetry. One can forget about the harmonic
condition and allow for almost generic coordinates in the
geometrical description. Then only the determinant of the
metric is restricted to be minus one. This is precisely what is
standardly considered as unimodular gravity. To make this
geometrization conceptual jump or not is however optional,
not required by the iterative construction, and most impor-
tantly, it is not inconsequential.

B. Linear trace theories

Now let us consider what happens if the functional space
is constrained by the condition 7,,h*> = 0. As in the
previous case it is better to start with the particular value
3 =1. The invariance of the traceless condition,
nabééh“b =0, assumed in this particular construction
implies the additional requirement for the generators £%:

nabgacvcéb =0. (77)
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The invariance of the transverse condition, Vb(S,:h”b =0
implies in this case

&4 + AhbeV,V &4 + g*PV, V £ = 0. (78)
Therefore, the gauge symmetry of the original linear spin-2
theory has been deformed but also reduced because the
generators £ are subjected to three conditions (the trans-
verse condition V,£* =0 if ¥ =1 or the deformation
V£ =0 if ¥ =k must also hold) instead of two. A
similar thing occurs with the transverse condition and the
theories with 8 # 1 independently. We see then that the
constraints (5) which define the original functional space of
the free theory must be suitably relaxed to guarantee that
the conditions which their preservation impose on the
generators of the transformation (71) match with the
conditions which guarantee that this transformation is in
fact a symmetry of the theory, thus making compatible
these kinematical and dynamical aspects of the resulting
nonlinear theory. If this is not the case, the gauge symmetry
of the theory would be reduced. Whether this reduction of
symmetry can be acceptable or not seems to be a matter of
taste from the perspective of the self-coupling problem
only, although a deeper analysis of these theories probably
would reveal potentially observable consequences of this
reduction. Notice that in this theory the Minkowski metric
appears explicitly in the field equations (something similar
occurs in the theory which was found by self-coupling
in [36]).

VI. RELATION TO PREVIOUS WORK

In this section we are going to schematically describe
how the techniques developed in previous sections can be
applied to Fierz-Pauli theory. We also discuss some of the
seemingly contradictory conclusions in the recent litera-
ture. From the perspective of the spin-2 theory, Fierz-Pauli
theory constitutes an enlargement of the available func-
tional space in which the field 4 is defined, with a parallel
enlargement of the internal gauge symmetry. Fierz-Pauli
theory [19] is defined by the action

Form g | OV FLuu VeV, (19)
with
Fgaibcjk(ﬂ) = M?ihcjk(ﬂ) - 25?b5i)’1jk + ’7ai’7bc’7jk
+ 1;2?’ (6578, + M3, = 6,10
= 5, 010)-

The parameter 8 can acquire any value leaving the theory
unchanged because the combination
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(575;7'1% - 525;nck)vahbcvihjk (80)

is just a surface term and this is why in many places Fierz-
Pauli theory is presented as the previous one with 8 set to
one. In our discussion we are leaving this term explicit,
since we have learned from the spin-2 case that it could be
of importance. This action has the internal gauge symmetry

Sehb = 1V & + PV &, (81)

where now the generators are unrestricted. This action is the
only quadratic action invariant under these gauge trans-
formations [8]. We are not going to need here the explicit
form of the tensor F&',. jx(n) though. The only thing we
need to keep in mind is that it can be written in terms of
M¢", () plus additional terms, which are now present
because the conditions (5) no longer hold.

We can try to apply now the same self-interacting
scheme, but with Fg',_, (n) instead of M, (1), to see
whether we are able to obtain general relativity as the
outcome. However, this procedure does not work out so
straightforwardly in this case. The first evidence of this is
that there does not exist any 8 for which the analogue of
(34) is true, i.e.,

. 5\ / _ngal ik
A% _yypyyqpydeDaypue(bFémc)djk # _qu} . (82)

A way of realizing this is the following: the right-hand side
of this equation contains terms which are proportional to
¥be» Ot contracted with F§! pqjk because of the variation of
the determinant. However, the left-hand side of this
equation does not contain this kind of terms.
Independently of the form of F§! pejk> for the first term
in the left-hand side of the previous equation one has e.g.,

Yo ap? D™ web = Yo(p35i83 + 837 u(pPg) = Vo(p¥ gt ™
(83)

The index b never appears in combination with the free
index c. The same happens with the second term in (82).
This means that not all the sources are valid for the self-
coupling procedure, if we want the final theory to be
describable by a Lagrangian theory. In particular, we have
seen that the application of the Hilbert prescription to the
free Fierz-Pauli action (79) leads to a stress-energy tensor
which cannot be derived from an action by performing
variations of 4%? [20]. The requirement that the equations of
motion be derivable from an action cannot be ignored, since
it is in the heart of the definition of the iterative self-
coupling problem.

The natural thing to check next is whether it is possible to
find a solution of the iterative equations by introducing
nonminimal couplings or, what is equivalent, covariant
surface terms. In particular, one can ask whether general
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relativity can appear as a result of such self-coupling
scheme. This question is clearly and affirmatively answered
in the work by Butcher et al. [9]. To do that, these authors
performed a reverse engineering exercise. Let us discuss it
briefly here. The Einstein-Hilbert action can be expanded
as a series in A using the decomposition g** = 5 + 1h®.
By construction, this series is a solution of the iterative
equations (20).” These authors explicitly show that, to
guarantee that the overall procedure makes sense, one
needs to accept the following condition. When writing the
lowest order .4, in terms of an auxiliary metric y;, to obtain
Ap[y], this quantity must contain nonminimal couplings as
they are necessary to obtain the stress-energy tensor
appearing in the lowest-order iterative equation (this
happens also for higher orders). The quadratic action
Aply], when particularized to Minkowski space, leads
precisely to F; in (79) with 8 = 1.

Thus there exists a certain source, obtained through the
addition of nonminimal couplings, which permits one to
recover general relativity as a self-interacting theory of the
Fierz-Pauli field. As it happened before with the spin-2
theory, here the nonminimal couplings can be understood
as surface terms in the free Lagrangian density. In fact, with
the appropriate addition of surface terms all of the actions
(79) with an arbitrary value of 8 can be uplifted to nonlinear
theories that are solutions of the iterative equations.
Another matter is whether these final theories have some
internal gauge symmetry or not. What is clear is that only
the value 8 = 1 leads to a theory with an internal symmetry
of the form of the usual diffeomorphism invariance.

If we consider the nontensorial general-relativity action

1
2 [ o -t 69

and perform an expansion in the parameter A with
g*? =y + Ah®, we will see that it precisely exhibits a
coupling term of the form h®S,, at first order in A.
Padmanabhan pointed out the role of this object S, in
any coupling scheme leading to general relativity [8]. He
showed for instance that this object S,, can be obtained
from the quadratic term (zeroth order in 4) by applying only
a half-covariantization scheme which might be regarded at
least as unnatural (see Appendix A in [9] for additional
comments on this quantity). Somewhat surprisingly, whereas
the quadratic action is tensorial, the first order correction
should already be nontensorial. The variation of this new
action with respect to y,, might lead in principle to a
nontensorial stress-energy object (though finally this is not
the case). Therefore, one could argue, as Padmanabhan, that
the construction of general relativity from a self-coupling

"It can be checked that, as long as we are performing a Taylor
expansion of a function of the form F( + Ah), these conditions
are verified.
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scheme is somewhat unphysical (only at the end of the
iterative procedure one would realize the existence of a
surface term allowing the construction of a diffeomorphism-
invariant Lagrangian density).

However, in our formulation we always keep track of
the flat reference metric. This allows us to construct the
tensorial action

1
2 [ Wirtcch-cuch. 69

instead of the nontensorial action (84). The cubic term has a
form hS,, where now S, is a proper tensor. Moreover,
this object is not and must not be the stress-energy tensor.
We have seen that there is a natural definition of S, within
the iterative procedure, as the result of the integration of the
first-order iterative equation analogue to (18). In fact one of
the main differences between the work of Padmanabhan [§]
and that in here is that we have explicitly performed the
integration of the iterative equations. In other words, from
the point of view of the self-coupling consistency problem,
S, is just a derived quantity and not a fundamental one.
One will be led to it by following the equations carefully
[recall for example the discussion around (30)]. Concerning
this last point, Deser makes a similar comment in his reply
to Padmanabhan [10]: the only role of S, is to lead to the
required source when the variations which respect to h
are performed, and this is precisely the definition of this
quantity.

Concerning the surface term: the Einstein-Hilbert action
can be partitioned in a first-derivative action plus a surface
term in several ways. If one does not introduce a fiducial
background metric, this partition has to be nontensorial.
Instead, by introducing a flat background metric, one
discovers a tensorial partition. In our view what is unnatural
from the self-coupling program is precisely to forget about
the background metric, making an identification of the
coordinate invariance and the invariance under gauge
transformations. Once one obtains the action (85), which
is a scalar, one would not look for complementing this
action with additional surface terms to build the scalar
curvature. Only when taking the nontrivial conceptual jump
of forgetting about the background structure and taking a
complete geometrical description in terms of a single
metric, one would start worrying about the significance
of the surface term and its nontensorial character. In this
stage we agree with Padmanabhan’s [8] that the surface
term of the Einstein-Hilbert action is not naturally obtain-
able by the self-coupling procedure, one has to add
geometrical information.

Butcher et al. [9] say that “general relativity cannot be
derived from energy-momentum self-coupling the Fierz-
Pauli Lagrangian.” More precisely what they mean is that
one cannot use the stress-energy tensor obtained straight-
forwardly from the Fierz-Pauli Lagrangian density by using
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a minimal coupling prescription. One has to add specific
nonminimal couplings. From reading this paper and
Padmanabhan’s, one ends up with the impression that to
obtain general relativity from self-interaction one needs to
know somehow the final result, as one needs to make use of
curved-spacetime notions. However, here we have shown
that nonminimal couplings are encompassed by covariant
surface terms, which form part of the standard arbitrariness
in defining the stress-energy tensor even in flat spacetime.
Allowing surface terms one finds a one-parameter family of
solutions to the self-coupling problem. From them, general
relativity is selected by requiring the final theory to have
the largest possible amount of gauge invariance. Thus the
construction only uses concepts based on Poincaré-
invariant field theory and gauge invariance (although some
of the mathematical tools used can be geometrical, as the
Hilbert prescription to obtain the stress-energy tensor). It is
instructive to notice that the necessity of considering the
addition of identically conserved terms to the source one
would obtain directly from the free action is not exclusive
of gravity, but the same thing happens when considering
the case of Yang-Mills theory in the second-order formal-
ism, as it is explicitly written (but at some extent ignored)
in [6].

All these comments apply to the classic work of Deser
[6,10], e.g., the fact that the resulting action will be written
in terms of the covariant derivative V with respect to the flat
reference metric. The clever choice of independent varia-
bles in that work allowed him to lead to completion the
iterative procedure in a single step. Precisely, this selection
of variables hides the fact that the stress-energy tensor
obtained by varying 5 is not the one that one would
directly obtain from the minimally coupled Fierz-Pauli
theory. That is, Deser’s first order formalism naturally
selects the specific surface term (or nonminimal coupling)
that leads to Einstein equations. The reader should not
confuse this surface term at the level of the free theory with
the surface term in the Einstein-Hilbert action, which is put
by hand. Notice that all the other potential solutions to the
self-coupling problem are absent. One could recover them
by using additional surface terms in his direct construction.
One cannot simply exclude these possibilities from the
perspective of logic, but now the arguments in [6] do not
apply as the resulting iterative series would be now infinite.
A more general treatment such as the one presented here is
needed, in which the use of specific variables is avoided
and which permits one to handle infinite series to know the
nature of these solutions.

In [10] it is argued that the nonuniqueness inherent to the
use of Noether currents in the very definition of the self-
coupling problem is harmless. The argument is that these
identically conserved terms which appear in the definition
of the source can be absorbed in a redefinition of the Fierz-
Pauli field h°°. If we want to keep us in the linear level,
there is only one possible redefinition: shifting 2%* by its
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trace 17,,,h®®. This means that one could absorb only certain
types of such identically conserved terms. Even if we forget
about this, it is difficult to see how this procedure could
work as we argue in the following. Let us start with the
first-order self-interacting equation,

Oabcdth = ATab(hpa) + j'(M)al?(hpg)v (86)

where O,,., 1s a given differential operator [whose form
can be obtained from the action (79)], T,,(h"°) is the
source we want to consider, and ©,,(4”°) an identically
conserved tensor constructed from h%°. When 1 =0 we
recover the free field equations. Now let us construct a
different field,

J/ab — pab Ry ab(hpa)’ (87)

with f%(h?°) an arbitrary function of h* (which, if we
want to keep at the linear level, should be proportional to
nn.4h<?). In [10] it is argued that there always exists a
choice of £ (h®) such that the field equations (86) can be
written as

Oabcdh/Cd = ﬂTab<hlpo‘)7 (88)

thus absorbing the identically conserved term ©,,(h*?).
The function f“’(h*°) is determined by the following
equation:

Oabcdde(hpU) = _®ab (hpo‘)' (89)

As the operator O, satisfies V4O ,,., =0 [10], this
equation is well posed so it seems that one can conclude
that the identically conserved terms can be shifted away.
However, one should not forget about the stress-energy
tensor, which is not a mere spectator here but explicitly
depends in the Fierz-Pauli field he’ . Thus, at best, one can
get instead of (88) an equation of the form

Oabcdh/Cd = ﬂT;b(h/pa)’ (90)
such as
T, (W77) = T (H77). (91)

This means that the effect of the nonminimal couplings
cannot be simply shifted away at all orders. One must take
them into account, so the nonuniqueness problem remains
open until an additional assumption is imposed.

In summary, in the Fierz-Pauli case the self-coupling
problem naturally leads to a one-parameter set of solutions
that includes general relativity. From this point of view
general relativity naturally emerges from the self-coupling
of a Poincaré-invariant field theory. However, to select
general relativity from the other theories, one has to require
the existence of a maximal gauge symmetry. There seems
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to be no alternative guiding principle to directly obtain
general relativity. Moreover, what is obtained is closer to
the bimetric theory of Rosen [1].¥ Thus, although both
theories are observationally equivalent in standard situa-
tions, there can be conceptual differences when considering
extreme situations such as spacetime singularities.

A. On gravitational energy

One of the aspects which is expected to be addressed by
such a reinterpretation in terms of a flat reference metric of
the gravitational theories is the issue of the gravitational
energy. Also we have some loose ends in our construction
(remember the discussion in _III concerning the conserva-
tion of the traceless source 7',,) which demand to inves-
tigate this issue. Let us first consider in this section the
example of general relativity. As we have been discussing,
there are two equivalent descriptions of the same system
and, within each one, distinct ways of stating conservation
principles: on the one hand, the purely geometrical vision
in which quantities are covariantly conserved (i.e., with
respect to the covariant derivative V associated with the
metric g,;). On the other hand, we expect the system to
possess conserved quantities associated with Poincaré
invariance. In particular, there will be a stress-energy tensor
associated with translation invariance, which will be con-
served with respect to the flat derivative operator V (within
the space of solutions). In this section we explicitly recall
how these two pictures fit (see [1] and e.g., [37]).

If we include matter in our considerations, then the
resulting action has two parts. It is easy to realize that, by
construction, taking the variational derivative with respect
to the contravariant version of the auxiliary metric y,;, in the
matter part is equivalent to performing the same operation
but with respect to g,,. However, this it not true within the
gravitational part. This means that the total canonical
stress-energy tensor is given by

oL

K@M“h + tah = ‘CTéz - W

\ (92)

Here Lr1:=Lg+ Ly is the total Lagrangian density, y*
again represents all the fields, and x = ,/=g/\/=1 as
defined before. In this equation, ®y“, gives the same
conserved charges as the Hilbert stress-energy tensor for
the matter part, while

5L .
14, = L6% — Wfid} v, hed (93)

is a new object which provides the notion of gravitational
energy. The factor « in the matter part arises because of the

¥The reader should not confuse the resulting theory with what
is usually considered a bimetric theory, as here one of the metrics
(the flat reference metric) is not a dynamical entity.
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occurrence of /=g instead of /=7 as the natural measure
in the action. We are using the canonical stress-energy
tensor instead of the Hilbert prescription just to make better
contact with the literature: the only important thing in the
following arguments is the divergence of this quantity on
solutions, thus using the Hilbert stress-energy tensor would
lead exactly to the same calculations and conclusions.

As we have already mentioned, this overall quantity is
conserved with respect to V within the space of solutions,
that is,

Vi(kOy“, +1%)|s = 0. (94)

The subscript S means that the Euler-Lagrange equations
are used. Now it can be shown that this last equation is
equivalent to the covariant conservation of the Einstein
tensor,

V.G =0. (95)
The first step to show this is to use the gravitational
equations of motion which, in suitable units, permit us to
write (94) as
Va(KG“b + tab) = 0. (96)

One only needs to realize that this equation is now a purely
geometrical statement (that is, it is solely written in terms of
the metric g,;,) which, in fact, is equivalent to (95) as it was
shown in [1].

This argument can be extended also to unimodular
gravity. In this case, the equations of motion would be

1

R, —
b7y

1
R(SZ - TMab - ZTM(sZ, (97)

where now T;%, is the Hilbert stress-energy tensor of the
matter part. But (94) still holds (with k = 1), in which we
can certainly replace @y %, with T\%,. If we rewrite the
left-hand side of (97) as G“; + R&}, /4, then instead of the
identity (95) we have the condition

V.(R+Ty)=0. (98)
One can see then that the self-coupling of the spin-2 field
solves the problem associated with the conservation of the
traceless source T',;, in (14). Moreover, one can remember
this equation as the condition which permits the equations
of motion of unimodular gravity to be formally equivalent
to those of general relativity, but with a cosmological
constant unrelated to the parameters in the action [38]. This
means that in both cases (general relativity and unimodular
gravity), the conservation of the matter stress-energy tensor
within the space of solutions,
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VaTm®ls =0, (99)
is obtained as a consequence of the Poincaré invariance of
the theory and the resulting nonlinear equations of motion.
Put differently, the conservation of the total energy (written
in a perfectly tensorial way) in flat spacetime on the one
hand (94), and the conservation of the gravitational and
matter parts independently in a curved dynamical space on
the other hand, (95) and (99) respectively, are two ways
of writing the same thing. It is important to notice that
in previous constructions of unimodular gravity, (99) can
only be taken as an assumption additional to the field
equations [38], but here we have seen that from the
perspective of the self-coupling problem it is in fact a
necessary consequence of Poincaré invariance.

The tensor %, could be interpreted as the gravitational
stress-energy tensor, in the sense that it can be used to
evaluate the corresponding conserved charges. However, its
interpretation as providing a local notion of energy is still
problematic. The stress-energy tensor of the linear theory is
not gauge invariant and this fact remains in the final stress-
energy tensor: it is not a problem due to self-coupling. In
other words, this feature does not appear when one
performs the summation of the series but is present at
each order, even in the free theory, so it should not be
considered as a solid argument against the self-coupling
program as Padmanabhan claims [8]. In fact, for us the
vision is quite the opposite: if one insists in the preservation
of the original gauge symmetry, then even the free theory is
pushing you towards some kind of geometrical (nonlocal)
interpretation from the beginning and, thus, the lack of this
local notion of energy is really natural from the perspective
of the self-coupling problem. Notice that even the matter
stress-energy tensor 7™ becomes a gauge noninvariant
quantity as a result of the coupling. However, the gauge
transformation of 7% is of tensorial form while that of 7%,
is of nontensorial form: it can always be gauged to zero in a
point. For this reason, as opposed to the case in the matter
sector, it is not possible to extract any local meaning of
energy from 7. The single-metric geometrical interpreta-
tion offers a clear explanation of this issue, associating the
gauge to zero of the stress-energy tensor to free-fall
observers, which do not detect gravity.

The geometrical interpretation offers another way to
define a gravitational stress-energy tensor by varying ¢g°* in
the action. The gravitational stress-energy tensor is then
directly G, (a similar proposal is argued for in [39,40]),
that is a tensor with respect to changes of coordinates in
Minkowski spacetime as well as gauge transformations. In
this interpretation and the previous one, one could say that
outside matter there is no gravitational energy. However,
notice that this does not mean that gravitational waves do
not carry energy. Gravitational wave solutions exist in the
theory. They are solutions of the equations of motion. Then,
the covariant conservation with respect to the metric g,
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of the stress-energy tensor (99) tells us that these waves
can imprint energy in the fields acting as detectors.
The situation will be reminiscent of action-at-a-distance
theories.

The theories of gravitons considered here as the starting
points of the self-coupling procedure do not make use of a
local meaning of gravitational energy, as the graviton
stress-energy tensor is not a gauge-invariant observable.
When the original notion of gauge invariance is preserved,
this is also reflected in the resulting theories (unimodular
gravity and general relativity). A proper local meaning
would appear however if gauge invariance is broken. Then
1%, will be a perfectly defined stress-energy tensor. In a
sense, we could say that the self-interaction procedure
shows us two possible alternative routes: (a) gauge invari-
ance is preserved and one is pushed towards a complete
geometrical interpretation, or (b) self-interaction breaks
gauge invariance so that the final theory has a proper notion
of local energy over the Minkowski background.

VII. CONCLUSIONS

In this paper we have discussed Gupta’s original program
in detail, concerning the possible theories which arise
as self-interacting theories of gravitons propagating in
Minkowski spacetime. The discussion applies to quantum
theories whose low-energy spectrum contains gravitons
interacting with matter in a flat background, as long as one
accepts that the long wavelength limit is described by a
classical, second-order Lagrangian field theory.

We have explicitly solved the infinite set of iterative
equations that appears when using a standard formalism
based on the tensor field variable 2% for the graviton, thus
complementing previous work in the subject concerning
finite series which appear when specific variables are
considered. To do that we have constructed a proof by
induction and found the formal sum of the resulting series,
starting from a free field theory with a minimal gauge
invariance motivated by the irreducible spin-2 representa-
tion of the Poincaré group. Finally, we have extended and
contrasted our approach with previous discussions in the
literature which start instead from Fierz-Pauli theory, which
has a larger gauge symmetry. The formalism we have used
has permitted us to explicitly show the interplay between
internal gauge invariance (a notion which is clearly
separated from changes of coordinates) and the self-
coupling procedure.

The main conclusions of our analysis are the following:

(i) One obtains field equations which are equivalent to

those of unimodular gravity and general relativity as
the only consistent results of the self-coupling of
gravitons as long as one requires that the amount of
internal gauge symmetry of the linear theory is
preserved, although in a deformed version, in the
self-interacting theory (considering always theories
with up to second derivatives of the fields; beyond

(i)
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that see [30]). The distinction between these two
cases comes from the amount of gauge symmetry
present in the initial linear theory. Beyond the gauge-
preservation condition we have explicitly shown
that the construction is completely natural from
the perspective of flat spacetime and does not need
any information related to geometric notions: the
nonminimal couplings which are necessary in some
cases are nothing but natural surface terms that form
part of the standard ambiguities in the definition of
the stress-energy tensor in flat spacetime.

If one does not require the preservation of gauge
invariance, the self-coupling problem exhibits other
solutions. As far as we can see, the self-interacting
process itself does not tell us whether gauge invari-
ance should or should not be preserved, thus making
this decision an additional input in the construction.
In other words, internal gauge invariance is not
generally preserved in the self-coupling procedure.
This is an interesting point to have in mind when
considering emergent theories of gravity. In this kind
of constructions it is not difficult to obtain excita-
tions with the same degrees of freedom that those
that a graviton would have, but getting the correct
nonlinear dynamics for these excitations is still an
open problem [41].

Even if the resulting theories admit a geometrical
interpretation (it is within this interpretation that we
strictly speak of unimodular gravity and general
relativity), they are naturally some kind of bimetric
theory, similar to the construction of Rosen [1], and
not directly unimodular gravity and general rela-
tivity, which from this perspective have forgotten
the existence of a flat reference metric. In any case,
no observational difference can be extracted while
considering weak field situations; when dealing with
extreme situations (geometries with horizons, cos-
mological solutions, etc.) there still might be some
way to distinguish the two interpretations because
some solutions might be forbidden. Therefore, the
structures of unimodular gravity and general rela-
tivity do appear naturally without recoursing to
curved spacetime notions, but precisely because
of this they appear in a form that does not demand
a geometrical interpretation in terms of a unique
metric. Their form does not demand either the
supplementation of the action with additional sur-
face terms to build the Einstein-Hilbert action. The
geometrical interpretation is certainly appealing as,
on the one hand, it provides a natural interpretation
of the absence of a local meaning for the gravita-
tional energy (a gauge dependent quantity) and, on
the other hand, it makes the theory self-contained,
with no externally fixed elements. However, here we
adhere to Rosen’s comment more than 60 years ago
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[2]: “Perhaps this (flat spacetime interpretation) may
be regarded by some as a step backward. It should be
noted, however, that this geometrization referred to
has never been extended satisfactorily to other
branches of physics, so that gravitation is treated
differently from other phenomena. It is therefore not
unreasonable to wonder whether it may not be better
to give up the geometrical approach to gravitation
for the sake of obtaining a more uniform treatment
for all the various fields of force that are to be found
in nature.” Then, one would postpone to a later stage
the inquiry about the very nature of the background
vacuum and its interconnections with the rest of
the physical system. Let us stress that this does not
need to lead to a bimetric theory in the sense of
having two dynamical Lorentzian metrics, as even
the existence of a preferred flat background can be
an effective feature.

The problem of not having a well-defined local
notion of energy for the spin-2 field is already
present in the linear theory, so it is not something
that emerges due to the self-interactions. On the
contrary, the presence of self-interactions solves
the problem. The solution presents itself as two
mutually exclusive mechanisms. In mechanism
(a) self-interactions preserve the amount of gauge
invariance and also the gauge noninvariance of the
graviton stress-energy tensor. This gauge noninvar-
iance finds a satisfactory explanation within the
geometrical interpretation. In mechanism (b) self-
interactions break gauge invariance so that the
graviton stress-energy tensor acquires a well-defined
meaning. These two alternatives conform with in
principle distinct theories.

From the point of view of self-coupling, there is no
compulsory reason for the global vacuum energy to
gravitate. We have recovered that the minimal gauge
construction of the graviton field leads to the
structure of unimodular gravity, a theory that differs
from general relativity in that only the traceless part
of the total stress-energy tensor enters the field equa-
tions. Any vacuum-energy contribution in the form
of a cosmological constant becomes decoupled from
geometry, although the structure of the theory still
permits the addition of a cosmological constant as a
phenomenological integration constant unrelated to
the physical vacuum energy (see e.g., [42] for a
discussion). In particular, this means that one does
not need to consider curved backgrounds as the
starting point of the iterative procedure, instead of
Minkowski spacetime, to directly obtain a nonzero
cosmological constant as it was done in [43].
However, when using the Fierz-Pauli gauge-
extended version, the global vacuum energy does
appear in the geometrical equations. Thus, although

(iii)

(iv)
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it is interesting that the minimal field-theoretical
realization of the concept of graviton leads through
the self-coupling procedure to a degravitation of the
vacuum energy (an idea which was first considered
in [18]), there is no definite answer in this formalism
concerning this problem. One would need to con-
sider specific models to find a definite answer; for
instance, it would be interesting to study in detail the
situation in string theory [44]. For us, the important
lesson we can draw from the discussion presented
here of the self-coupling problem is that there exists
room for a natural solution to the first cosmological
constant problem in theories of emergent gravity,
along the lines of what is proposed in [38,45].
Notice that, as claimed by Ellis, one can safely admit
that observations prioritize unimodular gravity
rather than general relativity [42]. Whereas in a
geometrical interpretation unimodular gravity seems
rather unnatural in contrast to general relativity, it is
perfectly natural in the field-theoretical approach
and, what is probably more interesting, its occur-
rence is tied up to a nonperfect decoupling from the
background structure in the sense of emergent
gravity scenarios [33]. This may be taken as a hint
in favor of the field-theoretical approach to quantum
gravity or, in a broader sense, to emergent gravity
proposals incorporating in some low-energy regime
a nonperfect decoupling from an underlying flat
spacetime [21].
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APPENDIX: AN ALGEBRAIC IDENTITY

If we evaluate the derivative with respect to the auxiliary
metric and forget momentarily about the symmetrization in
the pair (s, 1), we can write (50) as

DY o, (Y ps VitV ap? ™ ¥ pu¥ gs¥ ¥ = ¥ pu¥ 4p046%)

= },pu},q/)ytﬂyd{iDuypé'seDeﬂeﬂéb' (Al )

Of course, this equation would only be valid when the
terms obtained under the exchange s <> ¢ are added. In the
following we are going to show that this equation holds.
The left-hand side is easier to evaluate; it is composed by
three terms:
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1
Eymyquﬂyde(él‘jé’;,&f + 848,00 + 676400 + 516,0% — 608,,8, — 628,8,)

1
+ Eyp,,yqsyp,yde (848180 + 628,8. + 516,80 + 656,6. — 54656, — 545,6%)

1 4 a P Sy a SU SP a1 U VENEVY ] U
- Eypyyqpafaﬂﬁgagc% + SIS + SLSLTL + SO, — SaBL — SLT ).

The first six terms are

ypsybtézég =+ ypsYqb(sZé;i + 7ps7/tﬂ6zéz + 7p57q/45257 - ypsyqpybt}/ad - ypsyqbytpyad‘

These are followed by the following six terms:

ypbyqs(sﬁ(std + yqsybtézég + 7ppyqs525;1 + yqsytﬂézéz - ypyyqsybt}/ad - ypbyqsym}/ad‘

The last six terms are
Y oY gt OLL = ¥ ¥ b O2SL = ¥ pu¥ i3I8 = ¥ ¥ u O35 + 5954 + sasd
}/pquf uYs 7pt}Iqb uYs Ypuyqt sYp }/ptyqu bYs }Ip/ﬂ/qb st }/pbyqﬂ tUYs-

So we finish with the following expression symmetric in p <> ¢:

(Ypsybtéz&; + 7q57bt555z "H/psyqbé/zé? + yqsypb@(jétd + yps?tﬂazég + yqsyluézaz + ypsyquézég

N[ =

A VsV puOe 8L = ¥ psV au¥V bV ™ = Vas¥ pu¥ b = ¥ ps¥ oV 1V = Vas¥ ¥ 1 7°C + ¥ pu¥ g5 526¢
+ }/qﬂ}/pbé?ég - ypbyqtéﬁég - }/ptyqb525?_7pyyqt5?52 - }/q;ﬁ/ptézag)'

This expression must be still symmetrized under s <> . When one does this some of the terms cancel,
3 < 16, 4 < 15, 7 < 18, 8 « 17,

leaving the simplified result:

1
5 (7ps7bt5zég + 7qs7ht555f7+7psytyézég + }/qsytﬂézég - ypsyqﬂybtyad - yqsypu}/btyad

- ypsyqbytﬂyad - quypbYtﬂyad+},pﬂ7/qb5§!5? + yqyypbéél&i‘l)y_)f

(A3)

(A4)

(AS)

(A6)

(A7)

(A8)

This is the equation which we must compare with the right-hand side of (Al). In this side, there are 36 terms in total,

1
Zl’pquﬂ%ﬁydﬁwz‘s’;&g + 54055, + 8§5yde + 88,5, — 5;5.85 — 5:8,5p)

x (818585 + 515,05 + 875185 + 6555 — 8758, — 34555%)-
The 36 terms are given by (the following expression is multiplied by 1/4)

VpsY b8! ¥ sV i 84 4 ¥ sV quOiS7 + ¥ psVu0585 = ¥ ps¥ auVbi? ™ = ¥ ps¥ bV a7 ¥ g5 587 4 ¥ g5V 5455
T Vo asO58! A Vas¥ S = VoV as¥br? ™ = ¥ pb sV uu?“ 7 pu¥ v 0467 + ¥ p¥ iS85y + 7 ¥ 556!
VoY w58 = Vqu¥ 6558 = VY w048y + ¥ ¥ u 8587 + ¥ qu¥ i858 4 ¥ pu¥ b5+ ¥ g7 1,555
— VoV 68555 = VooV w058 = ¥ pu¥ qs840¢ = VoV asVuiV ™ = VoY 4848 = VooV qsVu¥“* + VasV i85
+Vas?ud30h = Vpst auO507 = ¥ ps¥ au¥bit ™ =V ps¥ b 087 = ¥ ps¥ oV ¥ + ¥ ps¥ i85 + 1 ps¥ 15305

There are several terms which cancel:

1 -33, 3-31, 7-27, 9-125, 14 — 23, 16 — 24, 17 =20, 18 —22.
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The 20 remaining terms are paired, and they correspond to the 10 terms in (AS8):

2+35~1,
10 430 ~ 4,

4436 ~ 3,
11426 ~6,

5+32~5,
12 428 ~ 8,

6+34~7,
13421 ~9,

8+29~2,

15+ 19 ~ 10. (A12)
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