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Raúl Ferreira
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Abstract

We study the behaviour of nonnegative solutions of the reaction-diffusion equation
{

ut = (um)xx + a(x)up in R × (0, T ),
u(x, 0) = u0(x) in R.

The model contains a porous medium diffusion term with exponent m > 1, and a localized

reaction a(x)up where p > 0 and a(x) ≥ 0 is a compactly supported function. We

investigate the existence and behaviour of the solutions of this problem in dependence

of the exponents m and p. We prove that the critical exponent for global existence is

p0 = (m + 1)/2, while the Fujita exponent is pc = m + 1: if 0 < p ≤ p0 every solution

is global in time, if p0 < p ≤ pc all solutions blow up and if p > pc both global in time

solutions and blowing up solutions exist. In the case of blow-up, we find the blow-up rates,

the blow-up sets and the blow-up profiles; we also show that reaction happens as in the case

of reaction extended to the whole line if p > m, while it concentrates to a point in the form

of a nonlinear flux if p < m. If p = m the asymptotic behaviour is given by a self-similar

solution of the original problem.

1 Introduction and main results

This paper is motivated by the wish to understand the blow-up properties of reaction
diffusion equations which combine a localized reaction term with nonlinear diffusion. In
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order to fix ideas, the present study concentrates the nonlinear reaction-diffusion equation

{

ut = (um)xx + a(x)up, (x, t) ∈ R × (0, T ),
u(x, 0) = u0(x), x ∈ R

(1.1)

Nonnegative solutions u ≥ 0 are considered. We take exponents m > 1 and p > 0 and
the coefficient a(x) ≥ 0 is a compactly supported function; this means that the reaction
term acts only locally, and this is the main difference with existing studies of blow-up for
similar reaction-diffusion equations. Thus, the problem may be used to describe a chemical
reaction-diffusion process in which, due to the effect of the catalyst, the reaction takes
place only at some local sites, [BOR]. We remark that the name localized has received
also some other interpretation in the literature of blow-up: a reaction depending only on
the value of the unknown u in some local set, for instance a point R(u(x, t)) = up(x0, t),
but acting throughout the whole domain of interest, see the survey [S]. In our case, we
have R(u(x, t)) = 0 outside the support of a(x). As to the corresponding n-dimensional
model ut = ∆um + a(x)up, there exist several interesting possible choices of the localized
reaction, see [CY]. Some of the results of this paper extend to those situations, this is
the subject of a future work. Finally, the initial value u0 is assumed to be continuous and
nonnegative. More precise assumptions are made below.

Since m > 1, we have slow diffusion: if for instance u0 has compact support then the
function u is in general a solution only in a weak sense, i.e., u and (um)x are absolutely
continuous functions and the equation is understood in the weak sense; u is C∞ in its pos-
itivity set but not globally. Local in time existence, as well as a comparison principle, can
easily be obtained, but the solution may only exist for t ∈ [0, T ) and become unbounded
as t → T for some T < ∞. In other words, the solution may blow up in finite time, and
this is our main concern.

Let us examine what is known in some standard case before presenting our results.
It is well known that blow-up happens for the problem with homogeneous reaction, i.e.,
a ≡ 1:

{

ut = (um)xx + up, (x, t) ∈ R × (0, T ),
u(x, 0) = u0(x), x ∈ R.

(1.2)

All the solutions to this problem blow up if 1 < p ≤ m + 2, while for p > m + 2 they
blow up provided that the initial data u0 are large enough. In this case, the numbers
p0 = 1 and pc = m + 2 are called the global existence exponent and the Fujita exponent,
respectively. This analysis can be extended to equation (1.1) with a(x) ≥ δ > 0. Our
investigation will show that the exponents of the problem with localized reaction are not
the same.

On the other hand, there is a close connection of problem (1.1) with the problem of
diffusion with nonlinear boundary flux conditions. Thus, if we take a sequence of reaction
coefficients converging to a Dirac delta at the origin (i.e., if an(x) → δ0(x)), it is clear from
the weak formulation of the problem, at least formally, that the corresponding solutions
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un should converge to a solution of the problem






ut = (um)xx, (x, t) ∈ (0,∞) × (0, T ),
−(um)x(0, t) = up(0, t), t ∈ ×(0, T ),
u(x, 0) = u0(x), x ∈ (0,∞).

(1.3)

For this boundary reaction problem, it is known that the phenomenon of blow-up occurs
in a similar way as for problem (1.2), but the critical exponents are in this case: p0 =
(m + 1)/2 and pc = m + 1, see [GL, FPQR]. There are a number of coincidences and
differences between the two problems that we will investigate below.

Main results

Our first objective is to identify the critical exponents for problem (1.1). In this respect
we show that the critical exponents for problem (1.1) are the same as for problem (1.3),
instead of problem (1.2). This happens even if the support of a is very large. We have
the following result.

Theorem 1.1 (i) If 0 < p ≤ (m + 1)/2 all the solutions to problem (1.1) are globally

defined;

(ii) if (m+ 1)/2 < p ≤ m+ 1 all the solutions blow up in finite time;

(iii) if p > m + 1 the solutions may blow up in finite time or not depending on the

size of initial data.

In case of linear diffusion m = 1 the above exponents, p0 = 1, pc = 2, were obtained
by Pinsky in [P].

Actually, we are going to show that problem (1.1) can be considered in some way as
an intermediate problem between problems (1.2) and (1.3). As for the critical exponents,
the above theorem says that it behaves like problem (1.3). But in the way the solutions
blow up, the asymptotic behaviour for t ∼ T depends on the reaction exponent p. This is
reflected in the speed at which the solutions blow up, the blow-up rate, and the final shape
of the solution (properly rescaled) near the blow-up time, the blow-up profile. Note that
critical exponents have been studied for a number of related problems, see for instance
[SGKM, L, DL, GL2, GV, PQR], but rarely for localized reaction, [P].

From now on, u stands for a solution to problem (1.1) which blows up at t = T . In
order to study its asymptotic behaviour we need to make two further assumptions on the
data:

(H1) u0 is symmetric and nonincreasing for x > 0;

(H2) u0 satisfies (um
0 )′′ + aup

0 ≥ 0 in D′(R).

As a consequence of (H1), the same two properties hold for the solution u(t) = u(·, t) at
every 0 < t < T ; on the other hand, (H2) implies that the solution is nondecreasing in t
(see [BC]). This last hypothesis is useful in order to get the blow-up rates, but it can be
avoided in some cases. With these assumptions, we have
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Theorem 1.2 Let p > (m+1)/2 and let u be a blow-up solution with blow-up time T > 0.
If u0 satisfies hypotheses (H1) and (H2), then for t ∼ T ,

‖u(·, t)‖∞ ∼ (T − t)−α, (1.4)

where α is defined by

α = max{ 1

p− 1
,

1

2p−m− 1
}. (1.5)

m + 1

2
m m + 1

Global
Solutions

All solutions
blow up

Blow up Solutions
and

Global Solutions

α =
1

p − 1
α =

1

2p − m − 1

p

Figure 1: Critical exponents and blow-up rates

In other words, if p ≥ m we have ‖u(·, t)‖∞ ∼ (T − t)−1/(p−1), the same rate obtained
for the homogeneous reaction problem (1.2), cf. [SGKM], while for p < m we have
‖u(·, t)‖∞ ∼ (T − t)−1/(2p−m−1), the blow-up rate of the boundary reaction problem (1.3),
see [QR]. This is connected to the fact that we may have single-point blow-up or global
blow-up. Remark: hypothesis (H2) can be eliminated in the case p ≥ m.

Once we know the blow-up rates, we rescale the solution accordingly. We define the
exponent

β =















p−m

2(p− 1)
if p ≥ m

p−m

2p−m− 1
if p ≤ m,

(1.6)

and introduce the renormalized function and variables:

f(ξ, τ) = (T − t)αu(x, t), ξ = x(T − t)−β, τ = − log(1 − t/T ), (1.7)

with α given by (1.5). In similarity variables, we arrive at the following equation for f

fτ = (fm)ξξ − βξfξ − αf + b(ξ, τ)fp, (ξ, τ) ∈ R × [0,∞), (1.8)
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where the reaction term takes the form

b(ξ, τ) =

{

a(e−βτξ) if p ≥ m
e−βτa(e−βτξ) if p ≤ m,

(1.9)

Observe the different behaviour of the reaction coefficient b as τ → ∞ depending on p:

lim
τ→∞

b(ξ, τ) =







1 if p > m
a(ξ) if p = m

2Lδ0(ξ) if p < m.
(1.10)

This difference is crucial in what follows. We need another definition: the ω-limit set of
any initial function f0 is the set of all possible limits of the solution f to equation (1.8)
with f(·, 0) = f0, i.e.,

ω(f0) = {F ∈ C(R), F ≥ 0 | ∃ τj → ∞ such that
lim

τj→∞
f(·, τj) = F uniformly in compacts sets of R }.

After these preparations, we have

Theorem 1.3 Assume p > (m + 1)/2 and let u a solution to problem (1.1) which blows

up at time T and satisfies the rates (1.4). Let α and β be defined in (1.5), (1.6), put

f0(ξ) = Tαu0(ξT
β) and let ω(f0) be its ω−limit. Then,

(i) If p > m, then ω(f0) is contained in the set of nontrivial solutions of

(Fm)′′ − βξF ′ − αF + F p = 0, ξ ∈ R. (1.11)

(ii) If p < m, then ω(f0) is obtained by reflection from the unique positive bounded

solution of
{

(Fm)′′ − βξF ′ − αF = 0 ξ ∈ R+,
−(Fm)′(0) = 2LF p(0).

(1.12)

(iii) If p = m, then ω(f0) is the unique nontrivial symmetric solution of

(Fm)′′ − αF + a(ξ)F p = 0, ξ ∈ R. (1.13)

Remark: Uniqueness of the limit profile in the case (i) is still an open problem, see
[SGKM]. In the other cases, the uniqueness implies that

lim
tրT

(T − t)αu(ξ(T − t)β, t) = F (ξ),

uniformly in compact sets of [0,∞).

With the asymptotic behaviour, we are also able to describe the blow-up set,

B(u) = {x ∈ R : ∃xk → x, tk → T−, u(xk, tk) → ∞}. (1.14)

From hypothesis (H1) there are only three possibilities for the blow-up set: global blow-
up, B(u) = R; regional blow-up, B(u) is a bounded interval; or single-point blow-up,
B(u) = {0}.
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Theorem 1.4 Under the above hypotheses, we have

(i) global blow-up if p < m;

(ii) regional blow-up if p = m;

(iii) single-point blow-up if p > m.

The proof of these results is organized in steps in the different sections. In Sections 2
and 3 we characterize the global existence and Fujita exponents, Theorem 1.1; in Section 4
we obtain the blow-up rates, Theorem 1.2; finally Section 5 is devoted to establish the
asymptotic behaviour, Theorem 1.3, and the blow-up sets, Theorem 1.4.

2 Blow-up versus global existence

In this section we perform the proof of part of the classification scheme, and characterize
when solutions with finite time blow-up can exist. Without loss of generality we assume
in this section that the coefficient a(x) is a characteristic function, and by rescaling we
put a(x) = χ[−L,L].

Theorem 2.1 There exist blowing up solutions if and only if p > (m+ 1)/2.

Let us start by the lower range, p ≤ (m+1)/2; we first prove that there are no bounded
solutions (which is called grow-up when it is not blow-up), and then that there are no
blow-up solutions. Moreover, we prove that if p < m the grow-up or blow-up properties
hold globally in space.

Lemma 2.1 Let 0 < p < m. We have:

(i) if u does not blow up, then limt→∞ u(x, t) = ∞ uniformly on compacts sets of R;

(ii) if u does blow up, then B(u) = R.

Proof. Fix R > L and consider the following Dirichlet problem






wt = (wm)xx + a(x)wp, (x, t) ∈ (−R,R) × (0,∞),
w(±R, t) = 0, t ∈ (0,∞),
w(x, 0) = w0(x), x ∈ (−R,R).

(2.1)

We first observe that there always exists an stationary solution W to this problem: it
is obtained by shooting from W (0) = A, W ′(0) = 0, for different values of A > 0.
Actually W is decreasing, concave and, since 0 < p < m, we have that A increases with
R. Moreover, it is easy to prove that W is an attractor for problem (2.1). Now take any
point x0 ∈ R and any number M > 0. It is clear that there exists R > 0 such that the
corresponding stationary solution satisfies W (x0) > 2M .

6



(i) If our solution u to problem (1.1) is global in time, since it is clearly a supersolution
to the above Dirichlet problem when choosing w0 ≤ u0, we have,

u(x, t) ≥ w(x, t) → W (x), as t→ ∞,

and thus u(x0, t) ≥M for t large. We prove in this way global grow-up.

(ii) Assume now that u blows up in a finite time T > 0, and suppose that there
exists x1 > 0 such that u(x1, t) ≤ K for every 0 < t < T . Comparison with the porous
medium equation for x > x1 implies that the interface of u is bounded up to t = T .
Therefore taking R large enough we can get supp(u(·, t)) ⊂ [−R,R], and also u0 ≤ W .
Then u is a subsolution to problem (2.1) and, again by comparison, it is bounded by W ,
a contradiction that implies that the blow-up is global. 2

Lemma 2.2 If 0 < p ≤ (m+ 1)/2 every solution to problem (1.1) is global.

Proof. By means of a comparison we may assume that u0 is symmetric, and nonincreasing
for x > 0, so that the maximum of u(·, t) is achieved at x = 0. The proof uses the following
integral identity

1

2

d

dt

∫

R

u2 = −m
∫

R

um−1(ux)
2 +

∫ L

−L

up+1

which is obtained by multiplying the equation by u. Since p ≤ (m + 1)/2 and by the
previous lemma we may assume u(0, t) ≥ 1, the last integral satisfies

∫ L

−L

up+1 ≤ 2Lu(m+3)/2(0, t) = C

∫ ∞

0

u(m+1)/2|ux|

≤ C
(

∫

R

um−1(ux)
2
)1/2(

∫

R

u2
)1/2

≤ m

∫

R

um−1(ux)
2 + C

∫

R

u2.

Therefore,
d

dt

∫

R

u2 ≤ C

∫

R

u2,

which by Gronwall’s Lemma gives
∫

R

u2 ≤ Cet.

Then using again Lemma 2.1 we get a contradiction if u blows up. 2

We now examine the existence of blow-up solutions in the range p > (m+ 1)/2. The
existence in the case p > m is a direct consequence of the existence of such solutions
for problem (1.2) in bounded domains. On the other hand, when (m + 1)/2 < p ≤ m
the proof uses comparison with a blow-up solution or a blow-up subsolution which we
construct specifically for our problem.
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Lemma 2.3 If p > m problem (1.1) has blowing up solutions.

Proof. We compare with a blow-up solution to the Dirichlet problem







ut = (um)xx + up, (x, t) ∈ [−L,L] × (0, T ),
u(±L, t) = 0, t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ [−L,L],

see [SGKM], which is a subsolution to our problem. 2

Lemma 2.4 If p = m then problem (1.1) admits, for any length L > 0, a unique sym-

metric blow-up solution in the self-similar form

U(x, t) = (T − t)−1/(m−1)F (x). (2.2)

Proof. Substituting U into the equation for u, we have that the profile F satisfies the
equation

(Fm)′′ + a(x)Fm − 1

m− 1
F = 0, x > 0,

plus the boundary condition F ′(0) = 0. First of all we observe that if L ≥ LS = πm/(m−
1), the above equation admits the explicit profile,

F (x) = FS(x) =

{

AS(cos(πx/2LS))2/(m−1), 0 ≤ x ≤ LS,
0, x ≥ LS,

(2.3)

where Am−1
S = 2m/(m2−1), see [SGKM]. For L < LS we construct F by putting together

in a C1 form two pieces, one for 0 ≤ x ≤ L and another for x ≥ L. For x ≥ L, since
a(x) = 0, we have the uniparametric family of explicit profiles,

F (x) = C(L0 − x)
2/(m−1)
+ , (2.4)

for any L0 > L, where Cm−1 = (m − 1)/(2m(m + 1)). We will fix L0 later on. For the
piece of the profile in the inner interval 0 ≤ x ≤ L we consider the function g = Fm,
which satisfies the problem







g′′ + g − 1
m−1

g1/m = 0, x ∈ (0, L),

g′(0) = 0,

g′(L) = −
√

2m/(m2 − 1)g(m+1)/2m(L).

The last condition guarantees F ∈ C1. Shooting from x = 0 with g(0) = A > 0, we look
for the point ℓ > 0 at which g satisfies

g′(ℓ) = −
√

2m/(m2 − 1)g(m+1)/2m(ℓ).

8



and characterize the length ℓ in terms of A. Our purpose is to determine if for every
length 0 < L < LS there exists A > 0 such that ℓ(A) = L. To this end we observe that
multiplying the equation for g by g′ and putting H(s) = s2 − 2m

m2−1
s(m+1)/m, we have the

following conservation

E(x) =
1

2
(g′)2 +

1

2
H(g) ≡ const.

Evaluating this constant at x = 0 we obtain E(x) ≡ E(0) = 1
2
H(A). From this it is easy

to see that for A > AS > 0 (where H(AS) = 0), the profile is decreasing and is given
implicitly by

∫ A

g(x)

ds
√

H(A) −H(s)
= x.

Observe that AS = Fm
S (0), where FS is given in (2.3). Putting also x = ℓ we get

E(x) ≡ E(ℓ) = 1
2
g2(ℓ), i.e. g(ℓ) =

√

H(A). Therefore,

ℓ(A) =

∫ A

√
H(A)

ds
√

H(A) −H(s)
.

On the other hand, one can check that ℓ(A) is monotone decreasing for A > AS and tends
to zero as A → ∞. Of course ℓ(AS) = LS. From this the existence of the piece of the
profile corresponding to 0 ≤ x ≤ L is obtained, for any 0 < L < LS. Uniqueness comes
from the monotonicity of ℓ(A). The free parameter L0 > 0 must now be fixed to satisfy
g(ℓ) =

√

H(A).

Hence, we have constructed the unique blow-up self-similar solution of problem (1.1).
Its support is [−L0, L0], where L0 = LS if L ≥ LS or L0 = L+ cH(A)(m−1)/4m if 0 < L <
LS. 2

Lemma 2.5 If (m+ 1)/2 < p < m there exist solutions to problem (1.1) that blow up in

finite time.

Proof. We construct here a blow-up subsolution. The function obtained in this case is not
of self-similar form but the matching of a self-similar function with a blowing-up parabola.
We fix a point 0 < x0 ≤ L and consider the even function obtained by reflection of

u(x, t) =

{

(A(t) −B(t)x2)1/m 0 ≤ x ≤ x0,
V (x− x0, t) x ≥ x0,

(2.5)

where A(t) and B(t) are taken in order to have a C1 function, and V is a self-similar
solution of the problem,

{

Vt = (V m)xx (x, t) ∈ R
+ × (0, T ),

−(V m)x(0, t) = V q(0, t) t ∈ (0, T ).
(2.6)
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It is well known that this problem admits blowing-up self-similar solutions if q > (m+1)/2,
and they have the form V (x, t) = (T − t)−γf(x(T − t)(m−q)γ), with γ = 1/(2q −m − 1).
Moreover, f has compact support [0, ξ0] if q ≤ m. See [GL].

The above implies that

A(t) = V m(0, t) +
x0

2
V q(0, t), B(t) =

1

2x0

V q(0, t).

Therefore, for 0 ≤ x ≤ x0, the function u is given by

u(x, t) = (T − t)−γI1/m(x, t), I(x, t) = fm(0) +
1

2x0

f q(0)(x2
0 − x2)(T − t)(m−q)γ.

Notice that I(x, t) ∼ const. In order to see that u is a subsolution to problem (1.1), we
only have to look at the interval (0, x0). We calculate

ut = (T − t)−γ−1(γI − m− q

2x0m
I1−m(x2

0 − x2)(T − t)(m−q)γ),

(um)xx = − 1

x0

f q(0)(T − t)−qγ,

up = fp(0)Ip(T − t)−pγ.

(2.7)

Hence the condition for u to be a subsolution when T is small reduces to the inequality

c1 T
−γ−1 ≤ −c2 T−qγ + c3 T

−pγ.

This inequality can be achieved if we take q < min{p, (p+m)/2}. Since (m+1)/2 < p < m
we can choose (m + 1)/2 < q < p in order to get the desired blow-up subsolution. Its
support is given by [−x0 − ξ0(T − t)−(m−q)γ, x0 + ξ0(T − t)−(m−q)γ]. 2

3 Fujita exponent

We complete in this section the proof of Theorem 1.1 by characterizing the Fujita expo-
nent. We divide the proof into several lemmas. The cases (m+ 1)/2 < p < m and p = m
come as corollaries of the results proved in the previous section. The case m < p ≤ m+1
uses the energy method of Levine. Finally, the existence of small global solutions for
p > m+ 1 is proved by means of comparison with a self-similar global supersolution.

Lemma 3.1 If (m+ 1)/2 < p ≤ m then every solution to problem (1.1) blows up.

Proof. We only have to check that the self-similar solution constructed in Lemma 2.4
when p = m or the subsolution constructed in Lemma 2.5 for p < m can be put below
any solution if we let pass enough time. If p < m this holds by means of Lemma 2.1.
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Thus u(x, 0) ≤ u(x, t0) for some t0 > 0. On the other hand, when p = m the self-similar
solution has small initial value if T > 0 is large, but its support is not small, since the
length L0 is not small. We then must use the penetration property of the solutions of
the porous medium equation (the equation in (1.1) with a(x) ≡ 0), which also holds
trivially for our solutions by comparison, to guarantee that there exists t0 > 0 such that
the support of u(·, t0) contains the interval [−L0, L0]. Therefore, taking T large enough,
we have u(x, t0) ≥ U(x, 0). By comparison u must blow up in finite time. 2

Lemma 3.2 If m < p < m+ 1 every solution to problem (1.1) blows up.

Proof. The proof follows the argument of [LS] in three steps.

i) We consider the energy functional

Eu(t) =
1

2

∫ ∞

−∞

|(um)x(x, t)|2 dx−
m

p+m

∫ ∞

−∞

a(x)up+m(x, t) dx (3.1)

and check that a condition to guarantee blow-up if p > m is that there exist some t0 ≥ 0
for which Eu(t0) < 0. This is done in [LS] in a more general case (the concavity argument).

ii) We now observe that the Barenblatt function

B(x, t;D) = t−1/(m+1)(D − kx2t−2/(m+1))
1/(m−1)
+ , (3.2)

k = m−1
2m(m+1)

, D > 0,(which is a subsolution to our equation), satisfies the above require-
ment provided t is large. In fact,

EB(t) = c1t
−(2m+1)/(m+1) − c2t

−(p+m−1)/(m+1)

∫ cLt−1/(m+1)

0

(1 − z2)(p+m)/(m−1) dz

≤ c1t
−(2m+1)/(m+1) − c3t

−(p+m)/(m+1),

and we get EB(t) < 0 for t large whenever p < m+ 1. Notice the effect of L being finite
in the last integral.

iii) We finally choose D > 0 small in order to have B(x, 1;D) ≤ u0(x). Therefore
B(x, t + 1;D) ≤ u(x, t). Since the solution to problem (1.1) with initial value B(·, t1;D)
with t1 large blows up in finite time, so does u. 2

Lemma 3.3 If p = m+ 1 every solution to problem (1.1) blows up.

Proof. We use the method introduced in [G] to prove the blow-up in the case a(x) = 1
for the critical exponent (see also [GL]). Assuming by contradiction that our solution is
global in time, this method consists in the construction, by means of a rescaling and a
limit procedure, of a solution to some problem which has no solution.
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Given a global solution u to problem (1.1), we perform the change of variables

v(ξ, τ) = (t+ 1)1/(m+1)u(x, t), ξ = x(t+ 1)−1/(m+1), τ = log(t+ 1).

We have that v solves, for every τ > 0, the equation

vτ = (vm)ξξ +
1

m+ 1
(ξv)ξ + ρ(ξ)eτ/(m+1)vm+1, (3.3)

where ρ(ξ) = χ{|ξ|≤Le−τ/(m+1)}. We want to pass to the limit v for τ → ∞, but we are not
allowed to do that, we don’t know if this limit exists. Instead of this we consider another
solution, precisely the solution g of equation (3.3) with initial datum

g(ξ, 0) =
(

D − kξ2
)1/(m−1)

+
= B(ξ, 1;D),

(see (3.2)). We observe that the function B(·, 1;D) has negative energy if D is large.
Indeed

EB(1) ≤ D(3m+1)/(2(m−1))(c1 − c2D
m/(m−1)) < 0

for D > D∗. Therefore, if u0(x) ≥ B(x, 1;D∗) we are done. In the general case we take
D > 0 small in order to have v0(x) = u0(x) ≥ B(x, 1;D). This implies g ≤ v, and
therefore g is also a global solution.

For the special form of the initial value, it is easy to see that g is increasing in τ ,
symmetric and decreasing in ξ > 0, see [G]. Therefore there do exist the limit

f(ξ) = lim
τ→∞

g(ξ, τ), (3.4)

finite or infinite. A first step in order to pass to the limit also in the equation is to show
that f is bounded outside the origin. And this must be true for if not g would be large
enough to blow up in finite time. Assume then by contradiction that there exists ξ0 > 0
such that f(ξ0) = ∞. Then by monotonicity we have that given M > 0 there exists τM
large such that g(ξ, τM) > M for every |ξ| ≤ ξ0. Consider g in the original variables, i.e.,
define w(x, t) = e−τ/(m+1)g(ξ, τ). We want to see that taking M large then w blows up in
finite time, contradicting the fact that g is global. To this end we consider a function in
the form W (x) = B(x, t;D) in such a way that

• W has negative energy;

• supp(W ) ⊂ (−ξ0eτM/(m+1), ξ0e
τM/(m+1));

• W (x) ≤Me−τM/(m+1).

The first condition is achieved if D > D∗. The last two requirements are possible for
some t = t∗ provided M is chosen large enough, depending on ξ0 and τM . This implies
that the solution to equation (3.3) with initial value W blows up in finite time, and it lies
below w, which is the desired contradiction.

In summary, the function f defined in (3.4) is finite for every ξ 6= 0.

12



Now, exactly as in [G], by means of a Lyapunov functional, we obtain that f is a weak
symmetric solution to the equation

0 = (fm)′′ +
1

m+ 1
(ξf)′, (3.5)

for every ξ 6= 0. But the only solutions to that equation are the above profiles f(ξ) =
B(ξ, 1;D), D > 0. In particular f(0) is finite, so we can pass to the limit in the reaction
term, in the weak formulation of equation (3.3), to get the boundary condition at ξ = 0+

− 1

2L
lim

ξ→0+
(fm)′(ξ) = fm+1(0).

We end with the observation that the profiles obtained do not satisfy this condition. 2

Lemma 3.4 If p > m+ 1 then there exist global solutions to problem (1.1).

Proof. This result is a consequence of the work [Q], where a global supersolution for the
equation

ut = (um)xx + |x|−σup,

is constructed for p > m + 2 − σ and every σ < 1. These supersolutions decay to zero
and have the self-similar form

u(x, t) = t−µψ(xt−ν), µ =
2 − σ

2p− (m− 1)σ − 2
, ν =

(p−m)µ

2 − σ
.

Obviously the reaction coefficient is bigger than a(x), multiplied by a constant if necessary,
and the above functions are also supersolutions to our problem (1.1). 2

4 Blow-up Rates

Here we calculate the speed at which the blow-up solutions tend to infinity as t approaches
the blow-up time T , i.e., we prove Theorem 1.2. The result and the techniques are different
depending on the sign of p−m.

Lemma 4.1 Let p > m and set α = 1/(p−1). If u0 satisfies (H1) then we have u(0, t) ∼
(T − t)−α.

Proof. The result follows by intersection theory. We want to compare u with a self-similar
solution to problem (1.2) with the same blow up time T . Such self-similar functions have
the form

U(x, t) = (T − t)−αF (ξ), ξ = |x|(T − t)−β,

13



where α = 1/(p− 1) and β = α(p−m)/2. The lower estimate is obtained easily by con-
sidering the constant profile F (ξ) = αα. The corresponding function U is a supersolution
to our problem and, by the maximum principle, it must necessarily intersect u if they
blow up at the same time.

As to the upper estimate, it is well known that for every R > 0 there exists a profile FR

which is positive in [0, R) and vanishes at ξ = R, cf. [SGKM]. Notice that as β > 0 this
profile gives a subsolution to problem (1.1) when extended by zero for ξ > R if RT β < L.

On the other hand, since R goes to zero as FR(0) goes to infinity, it is clear that we
can find 0 < R < LT−β such that U(·, 0) and u0 have exactly two intersections, and also
that u0(0) < U(0, 0). This implies u(0, t) < U(0, t) = F (0)(T − t)−α for every 0 < t < T ,
giving the desired estimate. Indeed, the number of intersections can not increase, see for
instance [SGKM], and this number cannot be zero, as before by the maximum principle;
the symmetry of the solutions does the rest: the number of intersections is always two for
every 0 < t < T .

2

Remark 4.1 The lower estimate of the rate holds for every p > (m + 1)/2, though it is

not sharp when p < m. As to the upper estimate in the case p = m the above profiles

exist only for R > π/2, and we can repeat the same argument only if L > π/2. The proof

for general L > 0 is included in the following lemma.

Lemma 4.2 Let p ≤ m and set α = 1/(2p−m− 1). If u0 satisfies (H1) and (H2) then

we have u(0, t) ∼ (T − t)−α.

Proof. We use a rescaling technique inspired in the work [GK]. The difference lies in the
final step: we do not pass to the limit, but instead we estimate the blow-up time of the
rescaled function which is translated into a blow-up rate for the original solution.

Fix t ∈ (0, T ), put λ = u(0, t) and consider the function

vλ(x, s) = λ−1u(λm−px, λm+1−2ps+ t), (4.6)

which satisfies

(vλ)s = (vm
λ )xx + ρλ(x)v

p
λ, (x, s) ∈ R × (−λ2p−m−1t, λ2p−m−1(T − t)), (4.7)

where ρλ(x) = λm−pa(λm−px). Notice that hypotheses (H1) and (H2) imply

0 ≤ vλ(x, 0) ≤ 1, vλ(0, 0) = 1, (vλ)s ≥ 0. (4.8)

Our purpose is, by means of comparison, to show that vλ blows up in a time c1 ≤ S ≤ c2
with ci independent of λ. Since S = λ2p−m−1(T − t) and λ = u(0, t), we conclude
u(0, t) ∼ c(T − t)−1/(2p−m−1). By symmetry the comparison is made only for x > 0.
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We assume first p < m, and also we begin with the upper estimate. To this end we
consider the function constructed in the proof of Lemma 2.5, with x0 = x0(λ) = λp−mL,
namely

u(x, s) =

{

(S∗ − s)−γI1/m(x, s) 0 ≤ x ≤ x0,
(S∗ − s)−γf(x(S∗ − s)(m−q)γ) x ≥ x0,

where γ = 1/(2q−m−1), f is the self-similar profile corresponding to problem (2.6) with
q ∈ ((m+ 1)/2, p) to be chosen, and

I(x, s) = fm(0) +
1

2x0

f q(0)(x2
0 − x2)(S∗ − s)(m−q)γ.

Denoting A = f(0), we take S∗ = (4A)1/γ . Observe that for λ ≥ λ0 we have Am ≤
I(x, s) ≤ 2Am. We obtain in this way u(0, 0) ≤ 1/2.

To see that u is a subsolution to the equation (4.7) we only have to check that (see
(2.7)),

γ(2A)1/m(S∗ − s)−γ−1 ≤ λm−pAp(S∗ − s)−γp
(

Ap/m − 1

L
Aq−p(S∗ − s)γ(p−q)

)

,

or which is the same

γ(2A)1/m(S∗ − s)γ(p−1)−1 ≤ λm−pAp
(

Ap/m − 4p−q

L

)

.

It is easy to see that as q tends to (m + 1)/2, we have that both γ and A tend to
infinity. Take then q close to (m + 1)/2 in order to get Ap/m − 4p−q/L ≥ 1, and also
γ(p− 1)− 1 > 0. This fixes also S∗ (independent of λ). Hence taking λ large enough, we
obtain the required condition and u is a subsolution to (4.7). We now have to compare
the initial values. Though we know that vλ is large everywhere for s close to S since u
has global blow-up, there is no measurement of this growth. To get then vλ large enough
to put it above u(·, 0) we consider the following problem







zs = (zm)xx x > 0, s > 0,
z(0, s) = 1 s > 0,
z(x, 0) = 0 x > 0.

Its solution is the so-called Polubarinova-Kochina self-similar function z(x, s) = H(x/
√
s),

see [P-K]. By (4.8) we have vλ ≥ z for x ≥ 0, 0 ≤ s < S. On the other hand, since
u(0, 0) ≤ 1/2, and the support of u(·, 0) is bounded independently of λ, it is clear that
there exist a time s0, independent of λ, such that z(x, s0) ≥ u(x, 0). Summing up, we
have

vλ(x, s0) ≥ z(x, s0) ≥ u(x, 0).

Therefore, by comparison we get vλ(x, s + s0) ≥ u(x, s) for λ large. This implies S ≤
S∗ + s0, and the proof of the upper estimate for t close to T is completed.
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In order to obtain the lower estimate, we consider the following problem

{

vs = (vm)xx +Kρλ(x) x > 0, s > 0,
v(x, 0) = 1 x > 0.

(4.9)

If we define w(x, s) =
∫ x

0
v(y, s) dy, the problem satisfied by w is







ws = ((wx)
m)x +K

∫ x

0
ρλ(y) dy x > 0, s > 0,

w(x, 0) = x x > 0,
w(0, s) = 0 s > 0.

Notice that, since ρλ → 2Lδ0, the function w(x, s) = x(1+LKs) is a supersolution to this
problem. Therefore, as w(0, s) = w(0, s), we have v(0, s) = wx(0, s) ≤ wx(0, s) = 1+LKs.

On the other hand, whenever v satisfies v ≤ K1/p, it is a subsolution to problem (4.9).
We then obtain, for 0 < s < 1/K with K large independent of λ, the inequality

v(0, s) ≤ v(0, s) ≤ 1 + L < K1/p.

This implies that the blow-up time for v satisfies S ≥ 1/K, and the proof is concluded in
the case p < m.

When p = m the lower estimate of the rate was obtained in the previous lemma. In
order to obtain the upper estimate we perform the same proof as for p < m but with the
self-similar solution constructed in Lemma 2.4 instead of u. 2

5 Asymptotic behaviour

In this section we prove the stabilization result, Theorem 1.3 and, as a consequence, we
complete the study of the blow-up sets, Theorem 1.4.

Proof of Theorem 1.3 For p 6= m we use the approach introduced in [GV] to deal with
perturbed problems. In fact we consider equation (1.8) as a small perturbation of the
equation with b(ξ) replaced by its limit (1.10). Thus, if p > m, using [G2] we are in the
hypotheses of Theorem 3 in [GV], and therefore we obtain that ω(f0) is contained in the
set of stationary solutions to

fτ = (fm)ξξ − βξfξ − αf + fp, (ξ, τ) ∈ R × [0,∞).

If p < m we obtain the same result with the limit problem

{

fτ = (fm)ξξ − βξfξ − αf, ξ > 0, τ > 0
−(fm)ξ(0, τ) = 2Lfp(0, τ) τ > 0.
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In the case p = m the result follows easily from the existence of a Lyapunov functional.
In fact this functional is explicit,

Lf (τ) =
1

2

∫

R

|(fm)ξ|2 +
m

m2 − 1

∫

R

fm+1 − m

p+m

∫ L

−L

fp+m.

It is bounded and nonincreasing along the orbits. Therefore by standard theory the limit
is a stationary solution to equation (1.8) and thus it is the unique self-similar profile
constructed in Lemma 2.4. 2

Proof of Theorem 1.4 The case p < m has been proved in Lemma 2.1. As for the case
p > m we follow, step by step, the proof given in [G2, FM] in which the case a ≡ 1 is
considered. We obtain that there exists δ > 0 small enough such that

J = (um)x + f(x)up < 0 in (0, s(t) − δ) × (t0, T ),

where here we choose f(x) = λ

∫ x

0

a(s) ds, λ > 0 small. Integrating now this inequality

in x ∈ (0, ε) we get

u(x, t) ≤ c|x|−2/(p−m), in (0, ε) × (t0, T ),

and the only blow-up point is the origin.

We end with the case p = m. This is done by using the convergence to a compactly
supported self-similar profile. Indeed, the support of this limit profile is contained in the
blow-up set of u, B(u) ⊇ [−L1, L1]; outside this support f vanishes exponentially fast,
f(x, τ) ≤ Ce−ατ , see [CDE]. This implies that u is bounded for every |x| > L1 and finally
B(u) = [−L1, L1].
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