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We examine a case study where classical evolution emerges when observing a quantum evolu-
tion. By using a single-mode quantum Kerr evolution interrupted by measurement of the double-
homodyne kind (projecting the evolved field state into classical-like coherent states or quantum
squeezed states), we show that irrespective of whether the measurement is classical or quantum
there is no quantum Zeno effect and the evolution turns out to be classical.

I. INTRODUCTION

The proper relation between the quantum and classi-
cal theories has been a subject of interest, research and
debate from the very beginning of the quantum theory,
specially the quantum measurement processes and their
effects. We may say that at a fundamental level the issue
is not solved yet.

We may refer to some rather formal mathematical lim-
its such as h̄ → ∞ specially inspiring if applied to co-
herent and Gaussian states, and in general classical-like
states [1, 2]. Regarding more practical approaches, the
most popular account refers to decoherence as the prac-
tical mechanism by which quantum paradoxes disappear
leading to the emergence of the classical world [3–6].

Decoherence is the result of the coupling of the system
with a large enough environment: both system and envi-
ronment are modified by this coupling in different forms
according to their different size and complexity. The key
point for us is that this is the basis of measurement on its
more pure form. Inspired by this reasoning, in this work
we follow a promising avenue of research which may be
formulated in this way: Classical dynamics are just ob-
served quantum dynamics [6].

We prove this idea in a very specific arena. We
use a nonlinear single-mode Kerr effect [7], which pro-
duces notable quantum phenomena, such as revivals and
Schrödinger cat states [8–10]. The evolution is observed
via a complex-amplitude measurement of the kind of
double-homodyne detection that, depending on its bal-
anced or unbalanced setting, is governed by projection on
classical-like coherent states or quantum squeezed states,
respectively [11–13]. The idea is that these measurements
may be fuzzy enough to respect the (classical) details
of the evolution. In this regard, coherent and squeezed
states form a variety isomorphic to the phase space, in
our case a plane.

Frequent measurements checking the state of the sys-
tem is the usual arena for the appearance of the Zeno
effect. However, this does not occur in this model. This
is analyzed in some detail in Sec. 4 examining which
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characteristic of the observation procedure is able to im-
pede the appearance of quantum features while inhibiting
the appearance of the Zeno effect.

II. UNOBSERVED CLASSICAL AND
QUANTUM DYNAMICS

A. Unobserved classical dynamics

The Hamiltonian describing the nonlinear part of a
single-mode propagation through a Kerr medium is of
the form [7]:

Hc = χ|α|4, (1)

where χ is the corresponding nonlinear susceptibility in
appropriate units, and α is the dimensionless complex
amplitude of the field mode. For definiteness we consider
the interaction picture where we focus just on the effects
caused by the nonlinear term (1) that results in

α(t) = αe−iΩt, Ω = 2χ|α|2 , (2)

where it must be noticed that |α| is a constant of the
motion.

B. Unobserved quantum dynamics

The quantum version of the Hamiltonian (1) is, in units
h̄ = 1,

H = χn̂2, n̂ = a†a, (3)

where n̂ is the photon-number operator, and a is the
complex-amplitude operator satisfying the commutation
relation [a, a†] = 1. In the quantum case we find ad-
vantageous to express the evolution via the action of the
unitary operator

U(t) = e−itχn̂
2

. (4)

For the sake of illustration we may consider the evolu-
tion of the mean value of a when the field is initially in
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a Glauber coherent state |α〉, defined by the eigenvalue
equation a|α〉 = α|α〉 [14–18]. The result is

〈a〉 = αe−2|α|2 sin2(χt)e−i[χt+|α|
2 sin(2χt)]. (5)

In Fig. 1 we represent the evolution of the real part
of 〈a〉 for α = 4 and α = 1, showing the structure of
collapses and revivals as a consequence of the creation of
Schrödinger cat states [8–10].

FIG. 1: Collapses and revivals on an unobserved Kerr evolu-
tion of the real part of 〈a〉 as a function of χt for an initial
coherent state with α = 4, solid line, and α = 1, dashed line.

III. OBSERVED QUANTUM EVOLUTION

A. Measurement

In the following we may find convenient the decompo-
sition of a in terms of quadrature operators q̂, p̂, satisfy-
ing the typical position-linear momentum commutation
relation

a =
1√
2

(q̂ + ip̂), [q̂, p̂] = i. (6)

As a suitable measurement we will consider the pro-
jection on displaced states

|z〉 = eαa
†−α∗a|ψ〉, z =

(
q
p

)
, α =

1√
2

(q + ip) (7)

where |ψ〉 can be in principle any state. For the whole
procedure it is crucial that the state-labels, either in the
vector form z, or in the complex scalar α, form a variety
isomorphic to the phase space of the observed system.
Thus, the outcomes z can be regarded as an observation
of the phase space.

If |ψ〉 = |0〉 is the vacuum state, then |z〉 are the
Glauber coherent states universally considered as the
most classical-like pure states [14–17]. If |ψ〉 is a squeezed
vacuum state, then |z〉 are squeezed coherent states, and
clearly nonclassical [18]. So, this simple model includes

projection on classical or nonclassical states. We recall
that for any |ψ〉 the states |z〉 provide a resolution of
identity [19]

1

2π

∫
d2z|z〉〈z| = I, (8)

where d2z = dqdp, and I is the identity.

B. Process

Without loss of generality, we consider that the initial
sate belongs to this same measurement family |z〉, and
will be denoted by |z0〉. Otherwise, the evolved state will
be forced to be one of the family |z〉 by the projection
associated to the very first measurement. The quantum
evolution from t = 0 to t is interrupted N times at times
tj = jτ , j = 1, 2, . . . N , to perform a measurement whose
effect is the projection of the system state on some vector
|zj〉. Therefore we have a series ofN continuous evolution
during a time τ governed by the action of the unitary
operator interrupted by N sudden jumps from U(τ)|zj〉
to |zj+1〉.

The fundamental quantity regarding the observed evo-
lution is the conditional probability

p(zj+1|zj) =
1

2π
|〈zj+1|U(τ)|zj〉|2 . (9)

The transition probability p(zj+1|zj) from zj to zj+1

does not depend on the preceding results zj−1, zj−2, . . .
and consequently the process is Markovian as far as there
is no memory. This Markovian character is enforced by
the quantum reduction projecting the evolved state into
one of the states |z〉 depending just on the outcome and
erasing any previous information about the evolution.

In most situations, we will not be interested in keeping
track of the intermediate results, being just interested in
the final distribution for the last outcome z = zN after a
total evolution time t = Nτ , which is

pN (z|z0) =

∫
d2z1 · · · d2zN−1p(z|zN−1) · · · p(z1|z0).

(10)

Roughly speaking, we may imagine that the result is
some random deviation from a mean drift caused by the
Hamiltonian part of the evolution. The fundamental
question to be addressed here is whether this drift re-
sembles the classical evolution or not, and if so, which is
the particular effect of the measurement.

C. Linear approximation

Any progress along this line involves the computation
of the transition probability p(zj+1|zj) in Eq. (9). This is
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in general rather awkward unless some suitable approxi-
mations are allowed. We consider not too quantum and
intense enough fields, so that n̄� 1 and ∆n/n̄� 1 that
allows us to approximate n̂2 by

n̂2 ≈ n̄2 + 2n̄(n̂− n̄) + . . . ≈ 2n̄n̂− n̄2, (11)

where n̄ is the mean number of photons of the initial
state, which is a constant of the motion, so that when
τ → 0

U(τ) ' e−2iχn̄τn̂, (12)

and the evolution becomes a linear transformation

U†(τ)ẑU(τ) 'M(τ)ẑ,

M(τ) =

(
cos(Ωτ) sin(Ωτ)
− sin(Ωτ) cos(Ωτ)

)
, (13)

where

Ω = 2χn̄, ẑ =

(
q̂
p̂

)
, (14)

which is fully equivalent to the classical evolution (2).

D. Observed evolution via measurement

Next we analyze the effect of the measurements. To
this end we prove by induction the following theorem in
Appendix A:

pN (z|z0) = WN

[
M−1(t)z − z0

]
, (15)

where WN (z) are functions determined in Appendix A.
The key point of the theorem is that the complete depen-
dence on the initial z0 and final z phase-space-like coor-
dinates is exclusively of the form M−1(t)z − z0, which is

precisely the classical evolution (2). The difference with
the classical case is the dependency of the functional form
WN (z) on the number of measurements N .

This result includes classical as well as nonclassical
measurements since the states |z〉 can represent paradig-
matic classical-like coherent states, as well as clearly non-
classical states such as arbitrary squeezed states, or even
displaced number states, or many other sophisticated
nonclassical states.

The differences regarding particular choices of |ψ〉
means a different structure for the fluctuations around
the classical trajectory represented by WN (z). This is
the factor that includes the nonclassical features of the
measurement, as far as such fluctuations are of quantum
origin.

E. Gaussian states

In the case of squeezed coherent states we show in Ap-
pendix A that

WN (z) =
1

2π
√

detCN
e−z

TC−1
N
z/2, (16)

where CN is the corresponding covariance matrix ob-
tained via a recursive relation

CN =

N−1∑
j=0

M−jC1

(
M−j

)T
, (17)

being

C1 =

(
cosh(2r) + cos2(Ωτ) sinh(2r) 1

2 sin(2Ωτ) sinh(2r)
1
2 sin(2Ωτ) sinh(2r) cosh(2r)− cos2(Ωτ) sinh(2r)

)
. (18)

where r is the compression parameter that can take any
value between −∞ and ∞.

The properties of the noise added by the observation
can be estimated via detCN which is the Robertson–
Schrödinger form of phase-space uncertainty relations,
being detCN = 1/4 the ultimate quantum limit.

In the case of a classical-like measurement given by

projection on Glauber coherent states, this is r = 0 in
Eq. (18), we get that C1 = I so after Eq. (17) we readily
obtain

CN = NI, (19)

This shows clearly that the only effect of the observation
is to increase the quantum uncertainty around the clas-
sical trajectory in a way proportional to the number of



4

measurements N .

In the particular case of measurements performed on
displaced squeezed states, i. e., r 6= 0 in Eq. (18) we have
that detCN in Eq. (17) can be computed analytically in
all cases, although it leads to expressions too long to be
useful. Fortunately, in some meaningful limits suitable
approximations can be derived. We consider two limits.
On the one hand Ωτ � 1, which is consistent with the
linear approximation (11). On the other hand, we are
interested in the limit Ωt � 1 so that the Hamiltonian
evolution has time to develop itself, since the quantum
behavior, i.e., revivals, appear after a significant number
of oscillations have been performed. Combining Ωτ � 1
and Ωt� 1 implies N � 1. In this case the leading term
of the exact (17) gives√

detCN = N cosh(2r). (20)

So that the uncertainty increases with regard to the clas-
sical like observation in a factor depending on the com-
pression parameter, in agreement with the quantum ori-
gin of these fluctuations.

IV. CONTEXTUAL ZENO EFFECT

The situation where a dynamics is frequently inter-
rupted to detect whether the state remains in the initial
state typically leads to the Zeno effect [24–26]. Since our
initial state |z0〉 belongs to the measurement family |z〉,
we are actually checking whether the evolved state con-
tinues in the initial state |z0〉. This is the usual scenario
that leads to Zeno effect in the form of a complete stop
of the evolution freezing the system in the initial state
|z0〉. But this does not occur in our case, the evolution
is no stopped, the uncertainity increases with N and the
Wigner function spreads over a growing area of phase
space. We think this may deserve a brief analysis.

The key point is the nature of the family of states
where the measurement projects. For example, let us
consider a dichotomic measurement with just two pro-
jectors

∆(0) = |z0〉〈z0|, ∆(¬0) = I − |z0〉〈z0|, (21)

where |z0〉 is the initial state. The standard Zeno analysis
leads to a survival probability P0 that tends to one as
measurement tends to be more frequent, i. e.,

P0
>∼ e
−∆2n̂2(χt)2/N , (22)

so P0 → 1 as N → ∞, where the right-hand side is
computed assuming that all measurement results confirm
that the system is in state |z0〉.

The situation is completely different if the projection
on the initial state |z0〉 is embedded on a continuous fam-
ily of nonorthogonal projectors, such as in the measure-
ment we are considering in this work, this is

∆(z) =
1

2π
|z〉〈z|, (23)

and naturally a key point is the factor 1/(2π). Let
us compute in this case the survival probability in the
best possible scenario Ωt = 2mπ for integer m so that
M−Nz0 − z0 = 0. After Eqs. (15), (A19) and (19) for a
measurement projecting on coherent states we get

P0 = pN (z = z0|z0) =
1

2π
√

detCN
∝ 1

N
, (24)

so that P0 → 0 as N →∞.

During an infinitesimal evolution the state moves from
|z0〉 to an infinitesimally close state U(τ)|z0〉, and it turns
out that within the family |z〉 there is a neighbour state
|z〉 different from |z0〉 closer to the infinitesimally evolved
state U(τ)|z0〉 than |z0〉. This never happens if the mea-
surement states are not so close enough, say as in Eq.
(21). This is to say that the Zeno effect is very sensitive
to the way in which the projection on the original state
|z0〉〈z0| is embedded. In this way we may say that the
Zeno effect is contextual.

A. Overlapping kills the Zeno effect

Let us try to elucidate further the reasons explaining
the lack of Zeno effect. Regarding the measurement ba-
sis |z〉 there are multiple characteristics that might con-
tribute, such as continuity, overcompleteness, and over-
lapping between different |z〉. We can present an ex-
tremely simple scenario with discrete outcomes and with-
out overcompleteness, where the only explanation for the
lack of Zeno effect is the overlap between the elements of
the POVM.

Let us consider a two-dimensional space spanned by
two orthogonal states |1〉, |2〉 and the following POVM,
in such basis

∆1 =

(
cos2 α 0

0 0

)
, ∆2 =

(
sin2 α 0

0 1

)
, (25)

assuming that the outcome-dependent reduced states af-
ter the measurement are the corresponding normalized
states

ρ1 =

(
1 0
0 0

)
, ρ2 =

1

1 + sin2 α

(
sin2 α 0

0 1

)
, (26)

being ρ1 always the initial state. Note that the POVM
is discrete, with just two only outcomes, so there is dis-
creteness and no overcompleteness, while there is a clear
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overlap depending on the free parameter α:

tr (∆1∆2) =
1

4
sin2(2α). (27)

Let the evolution be governed by the Hamiltonian, in
units h̄ = 1,

H = ω

(
0 1
1 0

)
, (28)

so that

U(τ) = e−iHτ =

(
cos(ωτ) −i sin(ωτ)
−i sin(ωτ) cos(ωτ)

)
. (29)

The fundamental conditional probability reads in this
case

p(j|k) = tr
[
∆jU(τ)ρkU

†(τ)
]
, (30)

which can be suitably arranged in a 2× 2 matrix as

T =

(
p(1|1) p(1|2)
p(2|1) p(2|2)

)
, (31)

with

p(1|1) = cos2(α) cos2(ωτ),

p(2|1) = sin2(α) cos2(ωτ) + sin2(ωτ),

p(1|2) =
cos2(α)[cos2(ωτ) sin2(α)+sin2(ωτ)]

1+sin2(α)
,

p(2|2) =
cos2(ωτ)[1+sin4(α)]+2 sin2(α) sin2(ωτ)

1+sin2(α)
. (32)

The survival probability is

p0 =
∑

j,k,...,m=1,2

p(1|j)p(j|k) · · · p(m|1), (33)

which is actually the matrix element (TN )1,1. After some
little algebra, the survival probability (33) becomes

p0 =
cos2 α

2
+

(
1− cos2 α

2

)[
cos2 α cos(2ωτ)

2− cos2 α

]N
. (34)

When there is overlap, i. e., sin(2α) 6= 0, we get lack
of Zeno effect, as far as for N → ∞ only the first term
survives:

p0 →
cos2 α

2
, (35)

pointing to the overlap between POVM elements as the
key feature inhibiting Zeno effect, the larger the overlap
the lesser the survival probability. We also note that
there is no classical-like evolution because the observation
provides no enough density of states.

To further investigate the interplay between Zeno and
lack of Zeno effect, we may consider the situation in which
the overlap may depend on the number of measurements
N through α in such a way that α→ 0 as N →∞. When
N � 1 and α� 1 we get that (34) can be approximated
as

p0 '
1

2

(
1 + e−2Nα2

e−2ω2t2/N
)
. (36)

So if α tends to 0 faster that 1/
√
N Zeno effect occurs,

while otherwise there is no Zeno effect.

V. CONCLUSIONS

We have presented a simple model where the observa-
tion of quantum dynamics leads to a fully classical evolu-
tion. We think there are some interesting points worth to
be followed. We have obtained the same classical trajec-
tory for classical as well as for quantum measurements.
Nevertheless in general there are differences between both
classes of observation in the structure and the amount of
the uncertainty around the classical trajectory. This is
interesting as far as such noise is purely quantum and
introduced by the observation.

There may be two basic features for the emergence of
the classical dynamics presented in this work that might
be further pursued in future research: i) Whether it is
crucial that the manifold of measurement outcomes must
be isomorphic to the phase space of the problem. ii)
Whether it is crucial that the unobserved evolution can
be well approximated linear transformations in the short
time limit. Both points can be strongly dependent on the
basic variables and operators used to parametrize both
the measurement and the phase space. So we cannot
exclude that these results might be universal under a
suitable choice of variables adapted to the problem at
hand.

Finally, we have analyzed the lack of Zeno effect in our
model. In this sense, we have conclude that the cause of
this absence is the overlap between the states where the
measure projects. We support this conclusion with an
example in which the overlap between POVMs elements
is the only possible cause. This dependence on the way of
measuring is what makes us referring to the Zeno effect
as contextual.
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Appendix A: Proof of theorem (15)

The basic transition probability (9) can be computed
using the Wigner-function representation [18, 23]. This is
because of two key properties of Wigner functions: i) Un-
der linear transformations Wigner functions transform as
classical probability distributions do by a simple trans-
formation of arguments, say that for the transformation
(13) we have

W (z; t) = W
[
M−1(τ)z; 0

]
, (A1)

so the Wigner functions of the vectors |zj+1〉 and U(τ)|zj〉
in Eq. (9) are, respectively,

W (z − zj+1), W
[
M−1(τ)z − zj

]
, (A2)

where W (z) is the Wigner function of the state |ψ〉. ii)
The scalar product of vectors can be computed by the
overlap of their Wigner functions, i. e.,

|〈ϕ|ψ〉|2 = 2π

∫
dzWϕ(z)Wψ(z). (A3)

Therefore the transition probability (9) can be ex-
pressed as

p(zj+1|zj) =

∫
dzW (z−zj+1)W

[
M−1(τ)z − zj

]
, (A4)

so we are ready to compute p(z|z0) via the chain in Eq.
(10).

With this we can prove theorem (15) by induction

pN (z|z0) = WN

[
M−N (τ)z − z0

]
, (A5)

where WN (z) are functions to be determined.

So we begin with the first link in the chain (10), this
is (9),

p(z1|z0) =

∫
dzW (z − z1)W (M−1z − z0), (A6)

and for simplicity we skip the dependence of M on τ . We
perform the unit-Jacobian change of variables z′ = z−z1

to get

p(z1|z0) =

∫
dz′W (z′)W

(
M−1z1 − z0 +M−1z′

)
,

(A7)
which proves that p(z1|z0) depends on z1 and z0 just on
the form M−1z1 − z0. For definiteness let us define the
function

W1(z) =

∫
dz′W (z′)W

(
z +M−1z′

)
(A8)

so that

p(z1|z0) = W1

(
M−1z1 − z0

)
. (A9)

To proceed via induction now we assume that after j
measurements pj(zj |z0) is of the form

pj(zj |z0) = Wj(M
−jzj − z0), (A10)

and we have to demonstrate that pj+1(zj+1|z0) fulfills
the theorem. We begin with

pj+1(zj+1|z0) =

∫
dzjp(zj+1|zj)pj(zj |z0), (A11)

so that

pj+1(zj+1|z0) =

∫
dzjW1(M−1zj+1−zj)Wj(M

−jzj−z0),

(A12)
that after the unit-Jacobian change of variables

z′ = M−1zj+1 − zj , zj = M−1zj+1 − z′, (A13)

becomes

pj+1(zj+1|z0) =

∫
dz′W1(z′)

× Wj

[
M−j

(
M−1zj+1 − z′

)
− z0

]
,

(A14)

which clearly shows that pj+1(zj+1|z0) depends on zj+1

and z0 just on the form M−(j+1)zj+1 − z0

pj+1(zj+1|z0) = Wj+1

(
M−(j+1)zj+1 − z0

)
. (A15)

This satisfies the theorem simply defining

Wj+1(z) =

∫
dz′W1(z′)Wj

(
z −M−jz′

)
. (A16)

This completes the proof.

We finally take into account that when the Hamilto-
nian is time independent, the composition of N consec-
utive unperturbed evolutions of duration τ equals a sin-
gle evolution of time Nτ . This is, if zN = M(τ)zN−1,
zN−1 = M(τ)zN−2, . . ., z1 = M(τ)z0, then zN =
MN (τ)z0, and this must be naturally equal to zN =
M(Nτ)z0. Actually, in our case it can be easily checked
the identity

MN (τ) = M(Nτ), (A17)

since M(τ) is just a rotation of angle Ωτ in phase space.

1. Gaussian states

Let us compute explicitly the function WN (z) in the
case of squeezed coherent states, where we can take ad-
vantage of the fact that the Wigner function of |ψ〉 is a
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Gaussian, which by hypothesis is centered at the origin,
say

W (z) =
1

2π
√

detC
e−z

TC−1z/2, C =
1

2

(
e2r 0
0 e−2r

)
,

(A18)
where r is the compression parameter. After the convo-
lutions in Eqs. (A8) and (A16) it is clear that all Wj(z)
are Gaussians centered at the origin, say

Wj(z) =
1

2π
√

detCj
e−z

TC−1
j
z/2, (A19)

where Cj is the corresponding covariance matrix

Cj =

∫
dz zzTWj(z). (A20)

Let us derive a recursive relation for Cj . Starting from
Eq. (A16), and after a tricky change of variables of the
form z′′ = z −M−jz′ we get in few steps to

Cj+1 = Cj +M−jC1

(
M−j

)T
, (A21)

that leads to

CN =

N−1∑
j=0

M−jC1

(
M−j

)T
. (A22)
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