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Resumen 

La predicción precisa de la radiación solar es necesaria para estimar correctamente 

la producción de energía de los sistemas solares fotovoltaicos y su integración en la red 

eléctrica. Este trabajo explora hasta qué punto las técnicas de Machine Learning pueden ser 

utilizadas para resolver este problema. La meta es predecir la radiación a corto plazo para un 

objetivo con varios horizontes de predicción. El objeto de las predicciones es una de las 22 

estaciones de redes de piranómetros difusos con observaciones de muestra de resolución 30’. 

Se analizan las prestaciones y limitaciones de un modelo de Support Vector Machine simple 

y dos conjuntos de métodos de aprendizaje más sofisticados – Random Forest 

Regression y Gradient Boosting. Se muestra que todos ellos funcionan bien en condiciones 

climáticas constantes pero no realizan pronósticos fiables durante días en que las condiciones 

climáticas cambian rápidamente. Una selección inteligente de funciones es útil para hacer 

que el modelo sea más eficiente y rápido sin necesariamente mejorar significativamente la 

fiabilidad de los resultados. Con modelos agregados para escenarios específicos, se debe 

prestar atención a seguir algunas reglas para no aumentar innecesariamente la complejidad 

del modelo a expensas de la generalización de nuevos datos. Los modelos de entrenamiento 

en pequeñas cantidades de datos preseleccionados pueden causar sobreajuste o overfitting. 
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Abstract 

Accurate forecasting of solar irradiance is necessary for correct estimates of the 

energy output of solar photovoltaic systems and their integration into the power grid. This 

paper explores to which extent Machine Learning techniques can be applied to solve this 

problem. The objective is to predict short-term radiation for a target with various forecast 

horizons. The target is one of 22 stations of a sparse pyranometer network with sample 

observations of 30’ resolution. The performance and limitations of a simple Support Vector 

Machine model and two more sophisticated ensemble learning methods – Random Forest 

Regression and Gradient Boosting are analyzed. It is shown that all of them perform well in 

steady weather conditions but fail to make reliable predictions for days with rapid weather 

changes. A smart feature selection proves useful to make the model more efficient and faster 

without significantly improving the reliability of the predictions. With aggregated models 

for specific scenarios one has to pay attention to follow some rules in order not to 

unnecessarily increase the complexity of the model at the expense of generalization on new 

data. Training models on small preselected data may cause overfitting. 

 

Keywords 

Short-term solar radiation forecasting, Machine Learning, data mining, decision 

trees, Random Forest regression, Support Vector machine, sparse pyranometer network, 
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1. CAPÍTULO 1 - INTRODUCCIÓN 

1.1. Motivación y objetivos del estudio 

En los últimos años, la energía solar se ha convertido en una fuente de energía barata y limpia 

y ha aumentado significativamente su participación en el suministro de energía global. Sin 

embargo, la irradiación solar depende de algunas condiciones climáticas incontrolables, 

como tener un cielo despejado. Como resultado, la incertidumbre aún representa un riesgo 

enorme para la estabilidad de la red eléctrica. 

Históricamente, las infraestructuras de las redes eléctricas generalmente estaban diseñadas 

para que tuvieran niveles de electricidad relativamente constantes, de modo que la demanda 

y el suministro de energía pudieran coincidir exactamente. Sin embargo, la naturaleza de la 

energía solar significa que a menudo hay caídas repentinas o picos en el suministro de 

electricidad debido a los rápidos cambios de las condiciones climáticas, que crean grandes 

dificultades a los operadores de la red. 

Las predicciones precisas de la irradiación solar exacta en un momento concreto pueden 

usarse para calcular la cantidad exacta de electricidad que se alimentará a la red. Luego, la 

generación de energía podría ser ajustada o se podrían activar una reserva de energía, según 

el caso. Las previsiones precisas pueden permitir la gestión de la capacidad de energía extra 

convencional (nuclear, de gas, carbón, etc.), sistemas de almacenamiento de batería y cargas 

controlables y también pueden ayudar a operar con electricidad fotovoltaica y con la gestión 

de plantas de energía. 

La predicción es, por lo tanto, un factor crucial para integrar la energía solar en el sistema 

de energía a bajo costo. Sin embargo, las técnicas de predicción fiables siguen presentándose 

como un gran desafío. 

Se han desarrollado modelos sofisticados de pronóstico de irradiación solar y se ha logrado 

una mejora significativa en la precisión de los pronósticos. Las dos grandes categorías de 

predicción solar son la utilización de sistemas de imágenes de nubes que rastrean el 

movimiento de la nube y las simulaciones/optimizaciones numéricas. Sin embargo, todavía 

hay mucho margen de mejora. 
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Este proyecto tiene como objetivo rellenar este vacío avanzando en la previsibilidad de la 

irradiación solar. Específicamente, los objetivos de este estudio son: (i) seleccionar un 

algoritmo de aprendizaje automático para predecir la irradiación a corto plazo para un 

objetivo basado en observaciones en tierra de una red de piranómetro difusa1, (ii) entrenar 

este modelo, (iii) optimizar la selección de características, (iv) evaluar estos modelos 

predictivos con datos de prueba, y (v) analizar los resultados con sistemas de medición 

apropiados. 

1.2. Estructura de la tesis 

El Capítulo 2 presenta los métodos utilizados para el estudio. Después de una breve 

descripción general de los conceptos fundamentales del Aprendizaje Automático (“ML”, 

por sus siglas en inglés), el Capítulo describe las principales categorías. A continuación 

describe con más detalle algunos algoritmos de ML para las tareas de regresión. De este 

modo, el foco principal se encuentra en los modelos ampliamente establecidos como el 

modelo Support Vector Machine (“SVM”), pero también en los métodos de conjunto 

Random Forest y Gradient Boosting, que rara vez se han utilizado para la predicción de la 

radiación solar. Además, se mencionan las bibliotecas de Python en relación con su 

implementación práctica. Finalmente, este Capítulo describe la base de datos utilizada, 

llamada “Inforiego”, y explica en términos generales la idea detrás de este estudio. 

El Capítulo 3 explica cómo se generan las características de entrada para el modelo 

utilizando Pysolar como un modelo de cielo despejado para transformar la irradiación 

absoluta en irradiación relativa. Se proporciona un resumen de los diferentes enfoques que 

se han aplicado para la selección de características y se describen los pasos que se han 

tomado en la preparación y en la limpieza de datos. Después de resaltar las cualidades 

específicas de los algoritmos elegidos, se describe su proceso de entrenamiento y evaluación, 

con énfasis particular de las importancias características derivadas. 

El Capítulo 4 ilustra inicialmente la compensación sesgo/varianza en ML y propone varias 

mediciones para medir la precisión de los modelos ML. Se demuestra la idea de usar un 

                                                 
 1 Un Piranómetro es un instrumento para medir la irradiación solar utilizando una termopila generadora de 
voltaje que se excita por exposición a la irradiación solar [Zh17]. 
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modelo básico como referencia. Los resultados de la evaluación de los modelos entrenados 

en el conjunto de prueba se muestran e ilustran con algunas parcelas. El capítulo se cierra 

con un enfoque para predecir escenarios fáciles y difíciles con un modelo agregado. 

La conclusión resume los principales hallazgos de nuestro estudio y sugiere algunos 

enfoques interesantes que podrían explorarse más a fondo en el futuro. 
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2. CHAPTER 1 - INTRODUCTION 

2.1. Motivation and Goals of the Project 

In recent years solar power has emerged as a cheap and clean energy source and has 

significantly increased its share in the global energy supply. However solar irradiation 

depends on some still uncontrollable weather conditions such as having a clear sky. As a 

result, uncertainty still poses an enormous risk for the stability of the electricity grid. 

Historically, the infrastructures of power grids were typically designed to carry relatively 

consistent levels of electricity such that power demand and supply could be matched exactly. 

However, the nature of solar energy means that often there are sudden drops or surges in 

electricity feed-in due to quick changes of weather conditions, which grid operators greatly 

struggle to cope with.  

Precise predictions of the exact solar irradiation at any given time may be used to calculate 

the exact amount of electricity that will be fed into the grid. Power generation could then be 

adjusted or a reserve of power activated accordingly. Accurate forecasts may enable the 

management of extra conventional power capacity (nuclear, gas, coal, etc.), battery storage 

systems and controllable loads and may also help trading with photovoltaic electricity and 

scheduling powerplants. 

Forecasting is thus a crucial factor for integrating solar energy into the energy system at low 

cost. Yet reliable prediction techniques remain a particularly challenging problem.  

Sophisticated solar irradiance forecasting models have been developed and significant 

improvement in accuracy has been achieved. The two big categories of solar forecasting are 

the cloud imagery that tracks the cloud movement and numerical simulations/optimizations. 

However, there is still a lot of room for improvement. 

This project aims at filling this gap by advancing in the predictability of solar irradiation. 

Specifically, the goals of this study are: (i) to select a machine learning algorithm to predict 

short-term irradiation for a target based on ground observations from a sparse pyranometer2 

                                                 
 2 A Pyranometer is an instrument for measuring solar irradiance using a voltage-generating thermopile that 

is excited by exposure to solar radiation [Zh17]. 
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network, (ii) train this model, (iii) optimize feature selection, (iv) evaluate these predictive 

models on test data, and (v) analyse the results with appropriate metrics. 

2.2. Thesis Structure 

Chapter 2 introduces the methods used for the study. After a short overview of the 

fundamental concepts of ML, the Chapter outlines the main different categories, after which 

it describes in more detail some ML algorithms for regression tasks. Hereby the main focus 

lies in the widely established models like the Support Vector Machine model (“SVM”) but 

also in the ensemble methods Random Forest and Gradient Boosting that have rarely been 

used for solar radiation prediction. Also, the Python libraries for the practical 

implementation is mentioned. Finally, this Chapter describes the database used, called 

“Inforiego”, and explains in broad terms the idea behind this project. 

Chapter 3 explains how the input features for the model are generated using Pysolar as a 

clear-sky model to transform absolute into relative radiation. A summary of the different 

approaches that have been applied for the feature selection are given and the steps of data 

preparation and cleaning described. After highlighting the specific qualities of the chosen 

algorithms, their training and evaluation process are described with a particular emphasis of 

the derived feature importances. 

Chapter 4 initially illustrates the bias/variance tradeoff in ML and proposes several metrics 

to measure the accuracy of ML models. The idea of using a basic model as a reference is 

demonstrated. The results of the evaluation of the trained models on the test set are shown 

and illustrated with a few plots. The chapter is closed with an approach to predict easy and 

difficult scenarios separately with an aggregated model.   

The conclusion summarizes the principal findings of our study and suggests a few interesting 

approaches that could be further explored in the future.  
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3. CHAPTER 2 - METHODS 

3.1. Machine Learning 

3.1.1. Fundamental Concepts of Machine Learning 

Since the spamfilter became the first mainstream ML-application in the 1990s, machine 

learning (“ML”) has conquered many domains; among them, speech recognition. Often 

classified as a subfield of artificial intelligence, there are several definitions of what ML 

exactly is. A less abstract and intuitive one is to think of ML as a “method of building 

mathematical models” ([Va16], p.332) to help understand data and give “computers the 

ability to learn without being explicitly programmed” ([Ge17], p.4). The principle is to 

specify some performance measure (usually a cost function) and give tunable parameters to 

the model that can be adapted to the real observed data. This process of “fitting” models to 

previously seen data is the training phase. During the test phase these models can be used to 

predict and understand frequent patterns of newly observed data. 

Furthermore, ML expands the concepts of classical statistical inference to process huge 

amounts of data instead of only a small number of samples [Vo17]. These characteristics 

make ML particularly suited for forecasting or data mining problems that usually involve 

huge datasets, since ML models find solutions for problems for which it is extremely hard 

or impossible to implement a traditional algorithm. An algorithm-based solution would most 

likely end in a very long list of complex rules whereas an ML-model performs better and 

can automatically learn which features are good predictors of a given final result. 

As ML learns from data, it is critical to: first, select a dataset with a sufficient quantity of 

quality data, and second, clean and prepare the data properly, so it can be fed into the 

algorithm. This also involves selecting and engineering the features that are most strongly 

related to the expected outcome. The learning algorithm searches for the model parameter 

values that minimize a cost function that measures the distance to the expected outcome. 

3.1.2. Categories of Machine Learning  

There are many different types of ML systems and algorithms, and as many approaches to 

categorize them. The goal here is to give a quick overview of the broad categories of ML 
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methods at a superficial level, followed by a presentation in more detail of the methods that 

have been selected for our study within this context. 

ML algorithms may primarily be grouped into two main categories: supervised and 

unsupervised learning: 

(i) In supervised learning, labelled training data is fed into the algorithm, i.e. expected 

solutions. The input are called labels. Classification and regression are two typical 

supervised tasks within this category: The previously mentioned spam filter is a 

typical example of a classification supervised task, as the sample emails have to be 

put into two discrete predefined classes, spam or not spam. Regression models on the 

other hand predict continuous numeric target values given a set of features called 

predictors. The task of predicting the specific amount of solar radiation for a 

particular time and location falls into this category.  

(ii) In unsupervised learning, training data comes in a more complex unlabeled form 

and the model has to identify a hidden structure within the data itself without anyone 

facilitating the “teaching/training”. Clustering models detect distinct groups, called 

data clusters. Dimensionality reduction and visualization algorithms map higher 

dimensional data to a 2 or 3D representation without losing too much information. 

This model serves to make your data easy to plot, to assign labels to unknown data, 

and to significantly speed up computation. Many data mining methods to preprocess 

data are also used in unsupervised learning ([Vo17], p.12). 

As in supervised learning, in unsupervised learning labels can also be discrete 

categories (classification) or continuous quantities.  

Additionally, there are other learning methods which fall between supervised learning and 

unsupervised learning; they are the so-called semi-supervised learning methods with 

partially labeled data (See[Ge17], p.7-9, [Va16], p.332-342). 
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3.1.3. Most Important and Established Algorithms for Regression in Supervised 

Learning 

The following algorithms all work equally well for classification tasks. As this study focuses 

on a regression problem, we show the algorithms in this context. It should be evident to the 

reader how to predict a class instead of a value. 

(A) Linear and Polynomial Regression 

Linear regression is the most commonly used regression and simply looks for a linear 

correlation between two features x and y, that fits the training data to a straight regression 

line. The Linear Regression algorithm finds the optimal parameter values for a linear 

equation with bias θ0 and a slope θ1 such that it minimizes a cost function that measures the 

distance between the linear model’s predictions and training labels. Even though this model 

is limited and cannot adapt to non-linear relationships, the advantage is that it can never 

“overfit” the data and generalizes well, i.e. is not influenced by noisy data. 

 

Figure 1: Linear Regression model prediction (example), source: [Ge17], p.109 

Polynomial Regression is more powerful and complex. The model creates additional features 

from the powers of existing features and then trains a linear model on them. This technique 

is capable of detecting non-linear relationships but is prone to overfitting. There are 

regularization methods to detect and avoid this risk. 
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Figure 2: Polynomial Regression model prediction (example), source: [Ge17], p.122 

 

 

Figure 3: High degree of polynomial regression shows overfitting (example), source: [Ge17], S.123 

 

(B) SVM Regression 

The SVM Regression fits the data on a kind of broad street (large margin) and chooses the 

line that maximizes this margin (maximum margin estimator) while limiting margin 

violations. The hyper-parameter ε controls the width of the street. The boundaries and 

predictions are not affected by new samples as long as they fit on the street. Only the samples 

on the edge of the street (support vectors) matter for the fit, which provides high flexibility 

and fast computation.  
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Figure 4: SVM Regression with margins (dashed lines) and support vectors (circles), source: [Ge17], p. 155 

 

The SVM is a kernel-based model, i.e. the model can improve by transforming the inputs, 

which is done by projecting the features into higher-dimensional space similar to a 

polynomial regression. 

With complex polynomial or rbf (‘RBF’)’-kernels the data can be projected into higher-

dimensional space defined by polynomials and Gaussian basis functions ([Va16], p.411). 

Thus, the SVM can perform linear and nonlinear regression and even outlier detection.  

The hyper-parameters C and gamma γ control the flexibility of the margins, i.e. the tolerance 

of margin violations by outliers. Both act as regularization parameters and have a similar 

influence. Decreasing γ and C makes the model more general with more influence for 

individual samples. In case of overfitting, γ and C should be reduced [Ge152]. 

(C) Decision Trees 

Decision Trees are typically known for performing classification tasks but they can equally 

be used for regression. They work very intuitively as in each node a question is asked to 

predict the class of the sample or a value, respectively (regression).  

The samples are split (generally binary) such that their average value comes as close as 

possible to the target prediction value of a node such that the value in the leaf node finally 

represents the average target value of the samples associated with this leaf. During this 

process, the algorithm performs a linear regression that approximates a sine curve. 

Overfitting can be controlled by limiting the parameters max_depth for the maximum depth 

of a tree and min_samples_leaf for a minimum of samples required in a leaf. Otherwise the 
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curve will get very dense and the algorithm will badly overfit training data without filtering 

out the noise [Ge17], p.175-176.  

 

Figure 5: Decision Tree regression, source:  

http://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html 

 

(D) Ensemble Learning and Random Forest 

 

 

Figure 6: AdaBoost Classifier that shows adaptive boosting, source:  

http://vinsol.com/blog/2016/06/28/computer-vision-face-detection/ 

In general, ensemble learning means that a few simple predictors are combined into an even 

more powerful predictor. One technique is to aggregate very diverse predictors, that have 

been trained with different algorithms that are as independent from each other as possible. 

Another way is to use the same training algorithm for every prediction but train them on 

different random subsets of the training set. If these samples are drawn with replacement 

http://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html
http://vinsol.com/blog/2016/06/28/computer-vision-face-detection/
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(boot-strapping), this is called bagging. Random forests are an example of a bagging 

ensemble method built on decision trees with the bootstrap-parameter set to true by default.  

Contrary to the simple decision trees this model is less intuitive and more of a black box.  

The accuracy of every individual tree is improved by averaging the vote of the individual 

subtrees. Each of the multiple decision trees is built on a random subset of the training 

samples. During the training process a specific number of features is selected at random to 

find the best split of the data. The model accuracy can be evaluated on the OOB-samples, 

i.e. the “out-of-bag” samples that have not been used for the tree growing and are unknown 

to the algorithm [Zh17]. 

There are several more examples for the application of the above principle.  

Another ensemble method is to combine a couple of weak learners into a strong learner. 

Predictors are trained sequentially, each trying to improve the previous result. The most 

popular algorithms that use this method are AdaBoost and Gradient Boosting. AdaBoost 

assigns higher weights according to the prediction error of the instances such that the next 

predictor focuses more on hard cases ([Ge192], S.192). 

Gradient Boosting is another sequential learning technique, where the predictors all correct 

their previous predictor. This in each iteration the new predictors are being fit to the 

unexplained errors of the regression line ([GE17], p.195-197). 

 

 

Figure 7: Gradient Boosting, source: [Ge17], p.197 
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3.1.4. Python packages and libraries used for the implementation 

• Jupyter: Package for computational environment.  

• NumPy: Efficient manipulation and storage of n dimensional homogenous data 

with ndarrays objects. 

• Pandas: Efficient manipulation and storage of heterogeneous and labeled data in                    

dataframe objects.  

• Matplotlib: Data visualizations and plotting. 

• Scikit Learn: Efficient and clean implementations of the most common ML 

algorithms. 

3.2. Database 

3.2.1. Research Area 

The approach for this study is to choose an existing pyranometer network to obtain ground-

based observations of downward solar irradiation in a given region. These real-time 

measurements would ideally provide a high level of accuracy with a high temporal 

resolution. This is very relevant for short-term irradiation-forecasting with the horizon of 

two hours as the accuracy of the predictions depends on the quality of the training data for 

the machine learning algorithms. The final model can afterwards be applied to other datasets 

of other networks. An alternative method consists of getting less accurate meteorological 

data from remote sensing via satellites, that are not restricted to a specific area which allows 

forecasts with longer forecast horizons across space and time [Zh17]. 

Inforiego is a governmentally-funded and publicly accessible platform in Castilla y León, an 

autonomous community in North-western Spain. They maintain a network of more than 50 

stations across the region in the different provinces that provide various meteorological data 

mainly for agricultural purposes with a resolution of 30 minutes3 via a FTP-server and a Rest 

                                                 
3 At least the data used in this study (2015 to 2017) consists fully of 30’observations (monitored period 
Inforiego: 2001 - now). 
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API (web service): precipitation (mm.), temperature (°C), humidity (%), solar 

irradiation(W/m2), wind velocity (m/s) and wind direction (°).  

 

 

Figure 8: Inforiego: selected stations and target TA 

3.2.2. Idea 

Our target station is in the North of Valladolid province (see Figure 8, VA01) idea is to pick 

a target station in the center of a local region and the 21 surrounding stations in highest 

proximity (See Figure 8). The objective is to predict the solar irradiance at the target TA for 

a specific time, based on samples from the other stations with the following parameters. Our 

intuition is that choosing the closest stations may help to improve predictions. 

• Prediction horizon or offset: defines the temporal difference between the sample 

closest to the predicted value and time of prediction, i.e. from 8 a.m. if we want to 

predict with a prediction horizon of two hours for 10 a.m. [see example in figure].  

• nsamples: number of samples that will be included from a station, for example n 

samples = 3 for a given station, if we use data from 7 a.m., 7.30 a.m. and 8.00 

a.m. to predict radiation at 10. 
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Figure 9: example for nsamples- and offset-parameters 

In the training X, Y matrix with known values every X, Y-row represents a sample. A row 

consists of all the input features X and the output value Y – the target value. Y will hold the 

value measured at the prediction time corresponding to X (See Figure 10).  

The radiation is expressed as relative global horizontal irradiance (“GHI”), i.e. the ratio of 

measured GHI and the expected radiation given optimal weather conditions (clear-sky 

model). This ratio serves the model to indirectly derive day of year and hour.  

To support this idea of a time-series, azimuth angle and zenith angle will be additionally 

included as extra features for the sample closest to prediction time, if necessary. All values 

will be normalized, i.e. converted to the range [0, 1]. Especially SVMs are sensitive to feature 

scales ([Ge17], p.146) whereas Random Forests do not require feature scaling. 

Precipitation, temperature, humidity, wind velocity and wind direction are not further 

considered to be included as input parameters for the model as these measures tend to create 

noise in the computation.  

The idea for this study is to test if a machine-learning model can detect a kind of signal 

similar to the motion of clouds that travels between the stations over time, or at least 

recognize patterns that indicate a drop of radiation. These patterns will have to be discovered 

and it is not known whether a drop of radiation may be due to a local storm or a kind of mist. 

 

 

 

 

Figure 10: built X, Y matrixes (example) 



 24/41 

4. CHAPTER 3 - MODELLING APPROACHES 

4.1. Solar Model for Relative Radiation 

To determine the exact GHI for all the stations given a clear sky, a model is necessary that 

computes the solar position as accurately as possible. The Solar Position Algorithm (“SPA”) 

by the National Renewable Energy Laboratory (“NREL”) of the United States is currently 

the most common solution with the highest accuracy used for PV-applications in general, 

including the calibration of pyranometers (See [Re08], p.1). There exist several applications 

based on this algorithm, including a freely available one that implements it in Python: 

Pysolar. Pysolar is a collection of Python libraries for simulating the irradiation of any point 

on earth and chosen as the best solution for this study as it is specially aimed at modeling 

photovoltaic systems. Sunpy for example is a similar application but focused in solar physics 

modelling. 

Pysolar expects a timezone-aware datetime as input parameter together with longitude and 

latitude of the location to compute azimuth angle and zenith angle (altitude). With datetime 

and altitude the GHI is obtained. The ratio of the measured radiation and the ‘ideal’ GHI 

represents the relative radiation of a specific location at a specific time. 

4.2. Feature Selection  

As described in section [3.2.2] we create the X, Y training matrix with the n values from t-

prediction horizon to t-1h-n*30’ of relative radiation of all 22 stations as the samples all have 

a period of 30 minutes. The basic model is to take nsamples = 3 with a prediction horizon of 

2 hours. As we start at 5 am the first predicted value is at 8 am, the last is at 10 pm. The 

samples of the target station itself are also included. 

For this study different methods have been used to select features: 

• By trial and error: just build models, select different sets of features and check with 

which features performance is improved; 
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• by looking at the standard correlation coefficient4 to look for linear correlations 

between a feature and the target value; and 

• by evaluating the feature importance with the Random Forest algorithm. 

The first option is clearly the most intuitive. It has actually been applied many times, for 

example to analyse for which stations it makes sense to include azimuth angle and altitude. 

The best result was to also include the azimuth angle for every radiation sample from every 

station and the altitude only once for the target station at the target time. Naturally, not all 

possible constellations can be tested with this approach. 

Another fast and simple method to check for a correlation between a pair of continuous 

variables for a regression problem is the standard correlation coefficient. It gives a value 

from the interval [-1,1] with -1 meaning a perfect negative, 1 a perfect positive and 0 no 

correlation at all ([Ge17], p.56). Unfortunately, this method only gives information about 

linear correlation, while features can be perfectly correlated in a non-linear way. 

A less obvious, but very elegant method is to find data correlation with Random Forests and 

Decision Trees ([Ts10], p.11) that will be used to determine the key features for our different 

models (See [Training and evaluating on the Training set]). These algorithms find out the 

statistical usages of each feature which can be accessed with the feature_importances 

attribute that gives the relative importance of each feature where the sum of all importances 

is 1 ([Ge17] p.190).  

Finally, with the Principal Component Analysis (“PCA”) algorithm it is possible reduce the 

dimensionality of the input features (see unsupervised learning algorithms in [Categories of 

Machine Learning]). PCA indeed can be an efficient way to reduce complexity and perform 

a feature selection. For our study we did not use PCA. 

                                                 
4 Also called Pearson’s r, the covariance of two variables X and Y, standardized by the product of their standard 
deviations. 
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4.3. Data Preparation 

4.3.1. Detection and Replacement of Outliers 

A ratio for relative radiation >1.0 was considered an outlier as the GHI gives the maximum 

theoretical value. Most outliers were either in the early morning or late evening. This may 

be due to the fact that Pysolar quickly rises from 0 to high values and the same in the evening 

in reversed form. That makes the curve very steep, whereas the measured values go up more 

gradually. The samples were kept and filled backward with the next valid value. As a day 

had samples beginning from 5 a.m. always with a value of 0, this value was at most the first 

valid value. 

4.3.2. Replacement of Missing Values 

There are quite a lot of gaps in the dataset, sometimes only for specific stations, sometimes 

for each station, but usually datasets for whole days were missing. It showed the method of 

gap-filling strongly affected the model. If all samples containing at least one null-value were 

just dropped up to 100 days would have been lost for a whole year.  

A sample with n individual values from 22 stations normally forms a vector of n*22 values. 

It was decided to keep a sample if it had already one instance for the n individual values. At 

this point, some models had already been trained and the correlation coefficients of the 

different stations were known. The replacement algorithm works like this: If for example it 

comes across a missing value for t-2h at station LE02, it first checks, if the corresponding 

value t-2h is present for the target station VA01, and if possible, and it replaces it.  

If the value is also missing, it looks at the second most correlated station and so on until all 

other stations have been checked. If the value is nowhere to be found the sample is finally 

dropped. This happens with all values and it proved to be a good solution as the correlations 

between the stations did not differ very much, so a lot of samples could be saved that would 

otherwise have created important gaps in our evaluation. This was especially 

disadvantageous for the graphic plots. 
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4.4. Model Selection  

The original problem definition of this study proposed to use a Support Vector Machine 

(“SVM”) model to solve the given task. This is a very powerful and flexible model for 

supervised learning capable of performing classification and regression tasks. Indeed, 

according to a paper, the SVM figures among the most effective and frequently employed 

algorithms for the prediction of short-term solar irradiance. Yet the paper states that the 

mostly applied solutions are Artificial Neural Networks (“ANNs”), that yield similar results 

compared to an SVM in terms of accuracy of the prediction. Yet it is indicated that the 

training of ANNs entails considerably more effort and is intense in computing power. 

Therefore, it is advisable to rather use SVMs.  

It is concluded that aside from SVM, all algorithms related to regression trees and especially 

random forest, bagging and boosting, may be of great interest in the future though there is 

not much evidence yet and this has to be further explored ([Vo17], S.22). For this reason, 

our study will focus on the SVM approach and also try Random Forest and a Boosting 

technique. 

4.5. Training and Evaluating on the Training Set 

4.5.1. Results of Cross Validation 

For evaluating, the Cross Validation method is used to avoid overfitting without having to 

split the training data into a smaller training and test set. Instead, using Cross Validation, the 

training set is randomly split into k distinct subsets called folds. Then the model is trained 

and evaluated k times, selecting a different fold for evaluation every time and training on the 

other k-1 folds. The scoring method is RMSE (see section [4.2]) for relative radiation values. 

Cross validation only allows to get an estimate of the model performance and the precision 

(its standard deviation) ([Ge17], p.70-71). For training on the whole-year-period of 2015, 

the following average results of 10 folds were obtained for the three models: 
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Model RMSE Standard 

deviation 

Nr. 

features 

Nr. of 

samples 

Support Vector regression 0.14770 0.01422 133 10178 

 Gradient Boosting 

regression 

0.13516  0.02043 133 

Random Forest regression 0.13578 0.02090 133 

Random Forest 

regression 

with best features 

0.13368 

 

0.01968 

 

32 

 

Table 1: Results of Cross Validation of different algorithms 

4.5.2. Extracting feature importances with Random Forests 

In the original trainset, we trained with 133 features and samples. With the feature 

importances – attribute of the Random Forest algorithm (See [Feature selection]) we created 

the following feature ranking5: 

Rank Feature Importan

ce 

Rank Feature Importance 

1 altitude target t 0.541054 17 radiation LE07 t-1 0.005789 

2 azimuth ZA06 t-3 0.069402 18 radiation P07 t-2 0.005652 

3 radiation LE02 t-1 0.035668 19 radiation P08 t-1 0.004655 

4 radiation LE05 t-1 0.030819 20 azimuth LE09 t-2 0.004507 

5 azimuth ZA05 t-3 0.025496 21 azimuth ZA01 t-3 0.004102 

                                                 
5 t-1 is closest to the prediction time t, t-3 is the farthest. 
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6 azimuth LE06 t-3 0.024477 22 azimuth P04 t-3 0.004098 

7 radiation ZA01 t-1 0.013982 23 azimuth LE02 t-3 0.004025 

8 radiation P07 t-1 0.012791 24 azimuth LE08 t-3 0.003956 

9 radiation LE06 t-1 0.012335 25 azimuth LE09 t-3 0.003824 

10 azimuth LE07 t-3 0.008936 26 radiation ZA04 t-1 0.003812 

11 azimuth VA08 t-3 0.008915 27 azimuth P03 t-1 0.003810 

12 azimuth VA0101 t-1 0.008714 28 radiation ZA06 t-1 0.003742 

13 radiation LE04 t-1 0.008707 29 azimuth P02 t-3 0.003647 

14 radiation target t-1 0.008612 30 radiation P02 t-3 0.003483 

15 radiation LE03 t-1 0.007769 31 radiation VA08 t-1 0.004054 

16 radiation LE08 t-1 0.006508 32 radiation VA101 t-1 0.004036 

 

Table 2: Extraction of the most relevant features with Random Forest 

These 32 features together have an importance of 0.9 out of 1. The remaining 100 features 

add very little and leaving them out makes the model much more efficient. Azimuth angles 

and the altitude of the target station are very relevant. They could be added to the persistence 

model to form a somewhat advance reference for comparison. It’s noticeable that the newest 

radiation value from target station is only on position 14, as well as some other remarkable 

features that do not follow the general scheme (in yellow).  

The resulting model is not only slightly more precise, the lower standard deviation also 

indicates more precision, as the other 100 features presumably add a lot of noise.  
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4.5.3. Training with different forecast horizons 

Forcast 

horizon 

RMSE Standard 

deviation 

Nr. features most relevant features 

1.5 h 

 

0.02787 

 

0.15075 

 

133 altitude target t 

azimuth LE06 t-3 

azimuth VA101 t-3 

azimuth ZA05 t-3 

 0.026077 0.15340 10  

1.0 h 0.02237 0.142550 133 altitude target t 

azimuth LE06 t-3 

radiation ZA01 t-1 

azimuth LE02 t-3 

 0.02372 

 

0.1495293 

 

13  

0.5 h 0.1394029 

 

0.02200 

 

133 altitude target t 

radiation LE02 t-1 

azimuth ZA05 t-3 

azimuth LE07 t-3 

 0.14265 0.02227 13  

 

Table 3: Predicting with different forecast horizons 
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As before, altitude at target time and station is always by far the most important feature. The 

next 10 to 13 features make up for around 80% of the feature importance and were chosen 

for a second more compact model. 
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5. CHAPTER 4 - RESULTS 

5.1. The Bias/Variance Tradeoff 

In supervised ML, optimizing one parameter often means that another gets worse – as in 

described in section [4.5.1] - when the (R)MSE is minimized during training and the standard 

deviation augments.  

One has to understand that the generalization error of a model is composed of three parts: 

Bias, Variance and the Irreducible Error. The last one describes the noisiness of the data and 

we already tried to minimize it by data cleaning and intelligent feature selection. Trying to 

minimize Bias and Variance at the same time is impossible and will probably result in 

overfitting the data.  

Instead one should make the right assumptions about the data in order to detect correlations 

while avoiding an excessive sensitivity to small fluctuations in the training data ([Ge17], 

p.127). To prevent overfitting the algorithms can be regularized by special parameters (See 

[Most important and established algorithms for Regression in supervised learning]) or 

increasing the training data also helps generalize more. 

5.2. Metrics for Evaluation of Model Accuracy for Individual Samples 

It is relatively simple to evaluate if a classifier works well by just quantifying correct and 

false predictions. For regression models it is quite difficult to find appropriate performance 

measures to evaluate the accuracy of the models or to compare their performances. We will 

use the standard performance measures for ML and also define a couple of own metrics. 

(i) MAE (Mean Absolute Error): also called Average Absolute Deviation - measures 

the Manhattan distance between the target- and the prediction-vector, where you can 

only move along orthogonal paths within a grid. This measure is less sensitive to 

outliers than the RMSE. 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑿𝑿,ℎ) = 1
𝑚𝑚
∑ |ℎ(𝑥𝑥(𝑖𝑖)) − 𝑦𝑦(𝑖𝑖)| 𝑚𝑚
𝑖𝑖=1       ([Ge17], p.39)  

Where m is the number of samples, x(i) is the vector of all the feature values of the ith 

instance in the dataset, y(i) the label for that instance and h the system’s prediction 

function (hypothesis) that computes a prediction h(x(i)) = ŷ(i) 
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(ii) RMSE (Root-Mean-Squared-Error): a typical performance measure for regression 

problems that gives an idea of how much error the system typically makes in its 

predictions with a higher weight for large errors: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑿𝑿,ℎ) = �1
𝑚𝑚
∑ (ℎ�𝑥𝑥(𝑖𝑖)� − 𝑦𝑦(𝑖𝑖))2𝑚𝑚
𝑖𝑖=1       ([Ge17], p.37) 

(iii) MSE(X,h): the parameter that is usually minimized by the training algorithm (cost 

function). The scoring function in Scikit Learn usually is the opposite of this (as 

absolute or relative value) ([Ge17], p.70). 

5.3. Metrics for measuring the prediction quality for days 

(i) s(day):  error vector (s) generating a vector per day like:  𝒔𝒔(𝑑𝑑𝑑𝑑𝑑𝑑)  =
� �(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑑𝑑𝑑𝑑,ℎ) − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑,ℎ))2   �,∀ℎ,ℎ ≥ 10: 00 ,ℎ ≤ 22: 00  
 

(ii) Similarity measure: to compare similarity between the signals (real and predicted) 
It consists on the scalar product of the two signals, divided by the product of its 
norms: 

   ∑  𝑖𝑖=22:00
𝑖𝑖=10:00 (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖)∗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)

�∑  𝑖𝑖=22:00
𝑖𝑖=10:00 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖) 2    ∗ �∑  𝑖𝑖=22:00

𝑖𝑖=10:00 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)2
 

(iii) Score: integer number for each day that measures the quality of its sample 
predictions. We define a threshold parameter that determines if the difference 
between a predicted and a real value is too high. We evaluate the difference for 
each half-hour-sample and add it to the score if it exceeds the threshold. The higher 
the score for a day the worse are the predictions for this day. We use the number of 
days with high scores (depending on your threshold) as a final “overall” metric for 
the test set - i.e. number of poorly predicted days. 

5.4. Validation on the test set 

The test set included the whole year 2016 (10 days were missing). 

Model RMSE Standard 

deviation 

Nr. features Nr. of 

samples 

Support Vector regression 0.13227 0.04588 133 10308 
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Gradient Boosting regression 0.11623 0.03569 133  

Random Forest regression 0.1185 0.036436 133 

Random Forest regression 

with best features 

0.11965 0.03708 32 

 

Table 4: Validation of different algorithms on the test set 

5.5. Reference Models 

Another method that can provide a rough idea of how well your model works is to compare 

it with other models. The most ‘trivial’ or so-called ‘naive’ forecasting model is to assume 

‘things stay the same’. I.e. it just takes the last valid value from the sample vector for the 

target station as a prediction. This ‘persistence’ model basically demonstrate, if our 

forecasting has any effect at all ([Vo17], p. 21). 

 

Figure 11: MAE for the Persistence model, SVM and Random Forest for the whole test set (aggregated by days) 
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5.6. Graphic evaluation  

 
Figure 12: Random Forest model predicts radiation for a sunny day (easy scenario) 

 

 

 

 

 

  

Figure 14: Random Forest predicts radiation for a day with unstable weather conditions (difficult scenario) 

Figure 13: Random Forest predicts radiation for a cloudy day (easy scenario) 
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5.7. Aggregated model 

To improve the quality of our predictions we wanted to train two different models for 

“difficult”, i.e. hard to predict days and for ‘easy’ to predict days. To identify those days we 

used the metrics for individual days, see paragraph [4.3]. For this experiment training and 

test set were exchanged. From the last validation set (year 2016) with the Random Forest 

model the samples with a score > 0.3 and a score <=0.3 respectively were selected as the 

two new training sets for the two separate models to predict difficult and easy days. Their 

feature importances were the same and both were retrained with 42 key features. 

For the validation the old trainset (year 2015) was split into two categories: ‘easy’ and 

‘difficult’ days. This time the GHI from Pysolar with absolute radiation values was used 

together with the absolute radiation labels to compute a score. To break the test set into 

similar proportions as the training set, the threshold for the score was 7500. The models were 

then individually tested on the two test sets and afterwards the results were combined. 

Model RMSE Standard 

deviation 

Nr. features Nr. of 

samples 

Random Forest  

for “easy” days 

0.08250 0.02800 133 5229 

Random Forest  

for “difficult” days 

0.15913 0.01150 133 5079 

Random Forest  

for “easy”  days 

with optimized features 

0.08101 0.02888 42 5229 

Random Forest  

for “difficult” days 

with optimized features 

0.15992 0.01020 42 5079 
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Aggregated Model for 

“difficult” and “easy” days 

(on test set) 

0.09963 

 

0.03196 

 

42 10178 

Random Forest for 

“easy” days (individual) 

(on test set) 

0.13032 

 

0.04672 

 

42 4743 

Random Forest for 

“difficult” days (individual) 

(on test set) 

0.13454 

 

0.04218 

 

42 5435 

Table 5: Aggregated model for “easy” and difficult predictions 

 

Model  Nr. of poorly predicted 
samples 

Nr. of total 
days 

not aggregated Training set 5079 359 

Aggregated Test set 3653 349 
Table 6: Aggregated model: Nr. of poorly predicted samples 

The number of mis-predicted samples decreased significantly with the aggregated model and 

the model may predict very well for some specific days. However, the variance of the data 

increases enormously. An explanation for this could be that the combined model overfits the 

data and does not generalize well. The reduced number of training instances for each 

individual model may also be responsible that the algorithm is more sensitive to individual 

data.  

Unfortunately, training and test set were exchanged for this experiment that made a more 

detailed comparison with the non-aggregated Random Forest model impossible. 
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6. CHAPTER 5 - CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions 

The temporal tracking of signals did not really succeed as older samples did not prove useful 

for the predictions and only the newest ones were relevant. Nonetheless, the selected models 

all perform well in clear-sky situations or on completely cloudy days but do not predict well 

for partly cloudy days with quick weather changes. The Random Forest model facilitates the 

feature selection by giving direct access to their importances. This leads to the idea of a 

highly complex model where for every point in the dataset the best combination of features 

could be used to build the ideal model. Yet therefore, an instance is needed that tells us with 

100% accuracy beforehand the best feature selection for the given scenario. The approach 

of developing aggregated models for different scenarios comes with a high risk of overfitting 

the data and may not generalize well on unknown data. 

6.2. Future Work 

A way to improve our model could be the engineering of new features. An interesting 

approach would be for example to create a new feature vector with the differences between 

consecutive samples, that kind of approximates to the derivative. As increasing the 

complexity of our models comes with a high risk of overfitting we should rather try to 

increase the quality and variety of our dataset. Though difficult to obtain a network with 

higher resolution and maybe a more dense grid structure may be key to realize the idea of a 

model that is more responsive to the signals of surrounding stations and sensitive to quick 

weather changes. We could try to built aggregated models with very diverse predictors that 

could work on the same dataset and implement a voting system among them. We could also 

apply the SVM on different randomly selected subsets of the training set and implement a 

sort of bagging method similar to the Random Forest algorithm. Also feature selection could 

be done randomized and then improved by the algorithm. 
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7. CAPÍTULO 5 - CONCLUSIONES Y TRABAJO FUTURO 

7.1. Conclusiones 

El seguimiento temporal de las señales no tuvo realmente éxito, ya que las muestras más 

antiguas no resultaron útiles para las predicciones y solo las más recientes fueron pertinentes. 

No obstante, los modelos seleccionados funcionan bien en situaciones de cielo despejado o 

en días completamente nublados, pero tienen un rendimiento deficiente para los días 

parcialmente nublados con cambios rápidos de clima. El modelo Random Forest facilita la 

selección de características al dar acceso directo a las importancias. Esto lleva a la idea de 

un modelo altamente complejo donde para cada punto del conjunto de datos podría usarse la 

mejor combinación de características para construir el modelo ideal. Sin embargo, se 

necesita una instancia que nos indique con 100% de precisión de antemano la mejor 

selección de características para un escenario o circunstancias concretas. El enfoque de 

desarrollar modelos agregados para distintos escenarios viene aparejado con un gran riesgo 

de overfitting de los datos y puede que no se generalice bien con datos desconocidos.  

7.2. Trabajo futuro 

Una forma de mejorar nuestro modelo podría ser la ingeniería de nuevas características. Un 

enfoque interesante sería, por ejemplo, crear un nuevo vector de características con las 

diferencias entre muestras consecutivas, que de algún modo se aproxima a la derivada. Como 

aumentar la complejidad de nuestros modelos implica un alto riesgo de sobreajuste o 

overfitting, deberíamos intentar aumentar la calidad y la variedad del conjunto de nuestros 

datos. Aunque es difícil obtener, la utilización de una red con mayor resolución y tal vez una 

estructura de red más densa puede ser clave para realizar la idea de un modelo que responda 

mejor a las señales de las estaciones circundantes y sea sensible a los rápidos cambios 

climáticos. Podríamos tratar de construir modelos agregados con predictores muy diversos 

que podrían funcionar en el mismo conjunto de datos e implementar un sistema de votación 

entre ellos. También podríamos aplicar el SVM en diferentes subconjuntos seleccionados al 

azar del conjunto de entrenamiento e implementar una especie de método de ensacado 

(bagging method) similar al algoritmo de Random Forest. La selección de características 

también podría hacerse de forma aleatoria y luego mejorada a través del algoritmo. 
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