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1. Introduction

In this paper an extension of the multivariate Toda hierarchy introduced in [1], associated with multivariate orthogonal polynomials
(MVOP), is given to general multivariate biorthogonal polynomials (MVBOP). For this new integrable hierarchy, which has the MVOP
as a particular reduction, we find the multivariate linear spectral transformations.

1.1. Historical background and state of the art

Sato [2,3] and Date, Jimbo, Kashiwara and Miwa [4-6] introduced geometrical tools, like the infinite-dimensional Grassmannian
and infinite dimensional Lie groups an Lie algebras, which have become essential in the description of integrable hierarchies. In
Mulase’s seminal paper [7] the factorization problem, dressing procedure, and linear systems were shown to be the relevant keys
for integrability. Multicomponent versions of the integrable Toda equations [8-10] played a prominent role in the connection with
orthogonal polynomials and differential geometry. In [11-15] multicomponent versions of the KP hierarchy were analyzed, while
in [16,17] we can find a study of the multi-component Toda lattice hierarchy, block Hankel/Toeplitz reductions, discrete flows,
additional symmetries and dispersionless limits. In [ 18,19] the relation of the multicomponent KP-Toda with mixed multiple orthogonal
polynomials was discussed.

Adler and van Moerbeke showed the prominent role played by the Gauss-Borel factorization problem for understanding the strong
bonds between orthogonal polynomials and integrable systems. In particular, their studies on the 2D Toda hierarchy - what they called
the discrete KP hierarchy - neatly established the deep connection among standard orthogonality of polynomials and integrability of
nonlinear equations of Toda type, see [20-24] and also [25]. Let us also mention that multicomponent Toda systems or non-Abelian
versions of Toda equations with matrix orthogonal polynomials were studied, for example, in [26,27] (on the real line) and in [28,29]
(on the unit circle).

Darboux transformations for multivariate orthogonal polynomials and Toda hierarchies were first studied in [1,30]. These transforma-
tions are multidimensional extensions of the Christoffel transformations. In [30] a multivariate extension of the classical 1D Christoffel
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formula in terms of quasi-determinants [31-33] and poised sets [30,33] was given. In this general multidimensional framework in the
paper [34] a Christoffel formula for multivariate Laurent polynomials orthogonal with respect to a measure supported in the unit torus
was found. In [35] linear relations between two families of multivariate orthogonal polynomials were studied. Despite that [35] does
not deal with Geronimus formulas it deals with linear connections among two families of orthogonal polynomials. This is a first step
towards a connection formulas for the multivariate Geronimus transformation. Elwin Christoffel, when discussing Gauss quadrature
rules in [36], found explicit formulas relating sequences of orthogonal polynomials corresponding to two measures dx and p(x)dx,
with p(x) = (x — q1)- - - (x — qn). The so called Christoffel formula is a classical result which can be found in a number of orthogonal
polynomials textbooks, see for example [37-39].

Within a linear functional approach to the theory of orthogonal polynomials, see [40-44], given a linear functional u € (R[x]) its
canonical or elementary Christoffel transformation is a new moment functional given by it = (x—a)u, a € R, [38,45,46]. Its right inverse
is called the Geronimus transformation, i.e., the elementary or canonical Geronimus transformation is a new moment linear functional
i such that (x — a)l = u. In this case we can write I = (x — a)"'u 4+ £8(x — a), where & € R is a free parameter and §(x) is the
Dirac functional supported at the point x = a [47,48]. Multiple Geronimus transformations [49] appear when one studies general inner
products (-, -) such that the multiplication by a polynomial operator h is symmetric and satisfies (h(x)p(x), q(x)) = f p(x)q(x)d u(x) for
a nontrivial probability measure .

In [50] Vasily Uvarov considered the multiplication of the measure by a rational function with prescribed zeros and poles, and
got determinantal formulas - in terms of the original orthogonal polynomials and its Cauchy transformations - for the perturbed
polynomials. That is, he worked out in [50, §1] the linear spectral transformation without masses. Moreover, he also introduced
in [50, §2] the so called canonical Uvarov transformation the moment linear functional u is transformed into &t = u + &8(x — a)
with & € R, and presented a determinantal formulas - in terms of kernel polynomials - for several masses of this type, =
u+&6(x—ay)+---+&vS(x—ay). The Stieltjes function F(x) := Z;”;O (:’,;f;) of a linear functional u € (R[x]) is relevant in the theory of
orthogonal polynomials for several reasons, is in particular remarkable on account of its close relation with Padé approximation theory,
see [51,52]. Alexei Zhedanov studied in [53] the following rational spectral transformations of the Stieltjes function

Fx) v Fr) = A0F0) + BY)
~ COF() +D(x)’

as a natural exgergsion of the above mentioned three canonical transformations. Here A(x), B(x), C(x) and D(x) are polynomials such that
Flx) = > BX) s a new Stieltjes function. Linear spectral transformations correspond to the choice c(x) = 0, of which particular

n=0 xn+1 B
cases are the canonical Christoffel transformations F(x) = (x —a)F(x) — Fy and the canonical Geronimus transformation of F(x) = F()’:)_%FO

Every linear spectral transformation of a moment functional is given as a composition of Christoffel and Geronimus transformations [53].

Regarding orthogonal polynomials in several variables we refer the reader to the excellent monographs [54,55]. Milch [56] and Karlin
and McGregor [57] considered multivariate Hahn and Krawtchouk polynomials in relation with growth birth and death processes. Since
1975 substantial developments have been achieved, let us mention the spectral properties of these multivariate Hahn and Krawtchouk
polynomials, see [58]. Orthogonal polynomials and cubature formulaon the unit ball, the standard simplex, and the unit sphere were
studied in [59] finding a strong connections between both themes. The common zeros of multivariate orthogonal polynomials were
discussed in [60] where relations with higher dimensional quadrature problems were found. A description of orthogonal polynomials on
the bicircle and polycircle and their relation to bounded analytic functions on the polydisk is given in [61], here a Christoffel-Darboux
like formula, related in this bivariate case with stable polynomials, and Bernstein-Szeg6 measures are used, allowing for a new proof of
Ando theorem in operator theory. Bivariate orthogonal polynomials linked to a moment functional satisfying the two-variable Pearson
type differential equation and an extension of some of the characterizations of the classical orthogonal polynomials in one variable
was discussed in [62]; in the paper [63] an analysis of a bilinear form obtained by adding a Dirac mass to a positive definite moment
functional in several variables is given.

The approach to linear spectral transformations and Toda hierarchies used in this paper, which is based on the Gauss-Borel
factorization problem, has been used before in different contexts. We have connected integrable systems with orthogonal polynomials
of diverse types:

(i) As already mentioned, mixed multiple orthogonal polynomials and multicomponent Toda was analyzed in [19,64]. This technique
has applications to random walks beyond birth and death [65,66].
(ii) Matrix orthogonal Laurent polynomials on the circle and CMV orderings were considered [67]. The Christoffel transformation has
been recently discussed for matrix orthogonal polynomials in the real line [68-70].
(iii) Applications to semiclassical discrete orthogonal polynomials and Laguerre-Freud equations can be found in [71-73].

1.2. Results and layout of the paper

Previously, see [1], we have considered semi-infinite matrices G of multivariate bimoments and discussed the corresponding
symmetries, which are of generalized Hankel type. In this paper we will extend this setting. In Section 2 we explore different scenarios
by assuming that the matrix G is the Gram matrix of a bilinear form, which has a Gauss-Borel factorization and is related to multivariate
biorthogonal polynomials. We first give the general setting for this integrable hierarchy, finding the corresponding Lax and Zakharov-
Shabat equations and the role played by the Baker and adjoint Baker functions. Some reductions, like the multi-Hankel that leads to
MVOP, and extensions of it are presented. We also consider the action of the multivariate linear spectral transformations and find
the Christoffel-Geronimus-Uvarov formula in this broader situation. Finally, we find generalized bilinear equations that involve linear
spectral transformations.
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1.3. Preliminary material

Following [30], a brief account of complex multivariate orthogonal polynomials in a D-dimensional real space (MVOP) is given.
Cholesky factorization of a semi-infinite moment matrix will be keystone to build such objects. Consider D independent real variables
X = (X1,X,...,%p) " € RP, and the corresponding ring of complex multivariate polynomials C[x] = C[x;, . .., Xp]. Given a multi-index
o = (ay,...,ap)" € Z of non-negative integers write * = x{'---x3” and say that the length of e is |a| := Zla):] ag. This length
induces a total ordering of monomials: ¥* < ¥ o || < |&'|. For each non-negative integer k € Z introduce the set

[k] = {x € Zi :ee| = ki,
build up with those vectors in the lattice Z’i with a given length k. The graded lexicographic order for a1, ot € [k] is
o < 0y & EIp{O, 1,...,D— 1} such that 01,1 =021,...,01p =02p and A1p+1 < 02 p+1,

and if a® e [k] and a® € [I], with k < I then & < &"). Given the set of integer vectors of length k use the lexicographic order and
write

0] = o, o, ... o)} with &0 < ¥,

Here |[k]| is the cardinality of the set [k]. This is the dimension of the linear space of homogeneous multivariate polynomials of total
degree k. Either counting weak compositions or multi-sets one obtains the multi-choose number, |[k]| = ((})) = (°*{""). The dimension
of the linear space Ci[x1, ..., xp] of multivariate polynomials of degree less or equal to k is

D+
Nk=1+|[2]|+~--+|[k]|=< ; ‘).

The vector of monomials

X1
X[O] xdz D
x = | X0 where xa=| * | X" = (l_[xf))((xl’], o xph).
: : 1
XK ¢
will be useful. Observe that for k = 1 we have that the vectors ot( )= =e, fora e {1, ..., D} form the canonical basis of R”, and for any

a; € [k] we have o = Z'a) 19 de,. For the sake of simplicity unless needed we will drop off the super-index and write a; instead of
( )

, as it is understood that |e;j| = k.
Con51der semi-infinite matrices A with a block or partitioned structure induced by the graded reversed lexicographic order

Ay (@ rrreeen Aw
Apro1  Aporrrcce olf.of} ol ey
A Afqrq1eceeee . . K I
A= |2 An . Al = e i
: : Ay (rnenes Aw ©
k%1 IR

Use the notation Opg ¢ € C™M>IMI for the rectangular zero matrix, Oy € C/¥I! for the zero vector, and Iy € CIKIXII for the identity
matrix. For the sake of simplicity just write O or I for the zero or identity matrices, and assume that the sizes of these matrices are the
ones indicated by their position in the partitioned matrix.

The vector space of complex multivariate polynomials Ci[x] in D real variables of degree less or equal to k with the norm

H Z|a\<k WwXE|| = Z\a\<k |Py|, gives a nesting of Banach spaces C,[x] C C,1[x] whose inductive limit gives a topology to the space
C[x]. The elements of the algebraic dual u € (C[x])*, which are called linear functionals, are linear maps u : C[x] — C; the notation

P(x) > (u, P(x)) will be used. Two polynomials P(x), Q(x) € C[x] are said to be orthogonal with respect to u if (u, P(x)Q(x)) = 0.
The topological dual (C[x]) has the dual weak topology characterized by the semi-norms {|| ||p} PR)CC]’ lullp == [{u, P(x))|. This

family of seminorms is equivalent to the family of seminorms given by |ul|®) = SUp q ) |{Ut, ¥*)|. Moreover, the topological dual
(C[x]) is a Fréchet space and (C[x]) = (C[x])* and every linear functional is continuous. Linear functionals can be multiplied by
polynomials (Qu, P(x)) := (u, Q(x)P(x)), VP(x) € C[x]. It can be also shown, that in this case the space of generalized functions (C[x])
coincide with the space of formal series C[[x]]. For more information regarding linear functional’s approach to orthogonal polynomials
see [40,41,43,44].

Definition 1. Associated with the linear functional u € (C[x])" define the following moment matrix

-
G = (u, x(®)(x(®)) ).
In block form can be written as

G[O],[O] G[O],[]] ......
G = G[1],[0] G[l],[]] ......

Truncated moment matrices are given by

Glooy -+ Gloy -1
Gl .= :
G0y~ Gli—11.(1-1]
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Notice that from the above definition we know that

Proposition 1. The moment matrix is a symmetric matrix, G = G'.

This result implies that a Gauss-Borel factorization of it, in terms of lower unitriangular and upper triangular matrices, is a Cholesky
factorization.
In terms of quasi-determinants, see [1,30,33,34,74], we have

Proposition 2. Let us assume that the last quasi-determinants ©,(G**1), k € {0, 1, ...}, of the truncated moment matrices are not singular.
Then, the Cholesky factorization

G=S"'HSsT, 1)
with
I. . O:: ............. H[o] 0 A
sT1= (57:)[1],[01 1 H— ?-,..Hm.__
(S o S rm e | s ,
and symmetric matrices Hyy = (Hpq)', can be performed. Moreover, the rectangular blocks can be expressed in terms of last quasi-

determinants of truncations of the moment matrix

Hig = 0.(G* 1), (S pa.m = Ox(GL e (G,

Definition 2. The monic MVOP associated to the linear functional u are
Pyo)(%) P X) PR

K
: 0
P(x) = Sx(x) = | Pu® | pyy(a) = > Sumxn®) = : C Pao=)"Y"Sw a](nx“f : (2)
: “—o i i

P (%) =0 j=1
ikl

Observe that Py (X) = xx)(%) + Bix xik—11(X) + - - - is a vector constructed with the polynomials P,,(x) of degree k, each of which has
only one monomial of degree k; i.e., we can write Py, (X) = ¥* + Qq,(x), with deg Q,, < k. Here g is th semi-infinite matrix with all its
elements being zero but for its first subdiagonal g = subdiag;(8[1, B2y, - - - ) with coefficients given by By = Sy, k-1

Proposition 3 (Orthogonality Relations). The MVOP satisfy <u, P[k](x)(Pm(x))T) = 8k 1Hyk, or, equivalently, the orthogonality relations

(u, Py (Pu®) ') = (u, Py®) (xu@®) ") = 0, 1=0,1,....k—1, (3)
(u, P[kJ(X)(P[kJ(X))T) = (u, P[kJ(X)(X[kJ(X))T) = Hyy. (4)
Therefore, the following orthogonality conditions

MO

(u, Pay«)(X)Pa](t)(X)) = (u, P oo(x)x7 ) =0,
are fulfilled for € {0, 1,...,k—1},ie {1,...,|[k]]} and j € {1, ..., |[I]|}, with the normalization conditions
(U, Po(%)Py(X)) = (U, Poy;(X)X%) = Hy oy, 1,j € {1, ... [[KII}.
Let us introduce the matrices A, that represent the multiplication by x, in the lexicographically ordered basis of monomials.
Definition 3. The spectral matrices are given by
0.. (Aa)orm 0 ..................

: . (Adnz
A= e (Al | ae{l,...,D},

where the entries in the first block superdiagonal are

(Ag)agk),aj(_kJrl) = 8a§">+ea,a§k+”’ ae{l,...,D}, ie{l,...,|[kll}, jell,...,|lk+ 11|},
and the associated vector A := (A, ..., Ap)'. Finally, we introduce the Jacobi matrices

Ja=SA4,5"Y, ae{1,...,D}, (5)
and the Jacobi vector

J=0.....0n)".
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Proposition 4.
(i) The spectral matrices commute among them
AgAp = ApAyg, a,bE{],...,D},

(ii) The spectral properties

Aax(X) =Xqax(x), ae{l,...,D} (6)
hold.
(iii) The moment matrix G satisfies
AG=G(A)", ae{l,....,D). 7)

(iv) The Jacobi matrices J, are block tridiagonal, with blocks of increasing sizes, and satisfy
]aH:H]J, aef{l,...,D}.

Definition 4. The Christoffel-Darboux kernel is
n

Ka(x.3) = > (Pm(®)  (Him) ' Pim(®)

m=0

In terms of the Christoffel-Darboux kernel and a linear functional u we define the operator
Sa(F)®) = (u, f(¥)Kn(y, %)) -
Proposition 5.
(i) If P(x) = ijo cpjiPyi(x) € C[x] is an arbitrary multivariate polynomial, we have
n
Su(PYX) =) € P (). ®)
m=0
(ii) For any vector n € CP, the following Christoffel-Darboux formula is fulfilled
(n-(x—y)Kn(x. )
= (P[n+11(x))T((" : A)[nJ,[n+lJ>T(H[nJ)_lP[nJ(y) - (P[HJ(X))*(H[nJ)_l("' Ay, n+1Pin 1 ()-
2. Multivariate 2D Toda lattice

We explore the situation described in Section 1.3 but not specifically with multivariate polynomials in mind. The block structure

of the semi-infinite matrices has been described there. In [1] we considered a semi-infinite matrix G such that A,G = G(A,)T,
a € {1,...,D}, a Cholesky factorization
G=S"H(S) T,

and flows preserving this structure. In that manner we obtained nonlinear equations for which the MVOP provided solutions. Then,
in [30] we derived a quasi-determinantal Christoffel formula for the multivariate Christoffel transformations for MVOP. A similar
development could be performed here with the more general linear spectral transformations, but we will follow a more general
approach.

The Toda type flows discussed in [1] for multivariate moment matrices can be extended further. The integrable hierarchy has the
MVOP as solutions, but this is only a part of its space of solutions, as the MVOP sector corresponds to a particular choice of G. In this
paper we will analyze this Toda hierarchy, that we name as multivariate 2D Toda hierarchy, on its own, associated as we will see to
non standard orthogonality. Therefore, we now consider any possible block Gauss-Borel factorizable semi-infinite matrix

G=(S1)H(S) "

where, S1, S, are lower unitriangular block semi-infinite matrices, and H is a diagonal block semi-infinite matrix. Recall that the blocks
have increasing size.

2.1. Non-standard multivariate biorthogonality. Bilinear forms

Definition 5. In the linear space of multivariate polynomials C[x] we consider a bilinear form (-, -) whose Gram semi-infinite matrix
is G, i.e.

(P@).QU) = Y PuGapQs. Gap= (¥ #P). ®
|| <deg P
|B<|degQ

Whenever the sum Zm, pez? P,Gq pQp converges in some sense, the corresponding extension of this bilinear form to the linear space
of power series C[[x]] can be considered.
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In general, the semi-infinite matrix G has no further structure and, consequently, we do not expect it to be symmetric or to be related
to a linear functional, for example. We say that we are dealing with a non standard bilinear form. The bilinear form (9) induces another
bilinear form which is a bilinear map from semi-infinite vectors of polynomials (or power series when possible) into the semi-infinite
matrices.

Definition 6. Given two semi-infinite vectors of polynomials v(x) = (v,,,(x))aezg and w(x) = (w“(x))aez?r , with vy, wy € C[x] (or C[[x]]
when possible) we consider the following semi-infinite matrix

(v(x), (w(x) ) = ((v(x), (w) "), ﬁ), (o). (w(x) "), , = (val). wpx)). . B € Z°.

A similar definition holds for a polynomial p(x) € C[x], i.e.,

.
((x), p(x)) = (<v,,(x),p(x)>) Lo (P, (@) = (((p(x% va<x)>),,€zp>-

€L

Proposition 6. Given three semi-infinite vectors v{)(x) = (vg)(x))aezu, i e{1,2,3), the formule
+

(1M@), (P@) NP(z) = (@), (VP@) v (2)), (10)
(UG)(Z))T(U“)(Z), (v(Z)(x))T> — <(v(3)(2))TU(1)(X), U(Z)(X))
hold,

Using this non standard bilinear form we have the corresponding Gram matrix
T
G=(x®), (x@®) ). (11)

When there is a linear form u ((C[x])’ such that (P(x), Q(x)) = (u, P(x)Q(x)) we find that G = (u, X(x)(x(x))T> is the corresponding
moment matrix.

Proposition 7. For any polynomial Q(x) € C[x] we have
T

QA)G = (Q@)x@®). (x@) ). 6(2(A)" = (x(x). (x(®) o).

Proof. Use (6). O
2.2. A multivariate 2D Toda hierarchy

In terms of the continuous time parameters sequences t = {tq, t;} C R given by

ti == {fi,a}aezga ie{l,2},
we consider the formal time power series

(x) = ) hax", ie€{1,2},

aezl

the following vacuum wave semi-infinite matrices

W) = exp( ) tiad®). i€ (1,2),

acz?

and the perturbed semi-infinite Gram matrix

6(t) = wt)6(We) (12
Notice that these flows do respect the multi-Hankel condition, if initially we have A,G = G(A,)", a € {1, ..., D}, then, for any further

time, we will have A,G(t) = G(t)(Aa)T, a e {1,...,D}. Hence, G(t) = G(t; — t3).
We will assume that the block Gauss—Borel factorization do exist, at least for an open subset of times containing t = 0

G(t) = (S1(6) H(O)(S2(0) (13)
Then, we consider the semi-infinite vectors of polynomials
Pi(t, %) == S1(6)x(x), Pa(t, x) == Sp(t)x (%), (14)

being its component P; 4(t, %), i € {1, 2}, @ € Z2, a t-dependent monic multivariate polynomial in x of degree |«|.
Then, the Gauss-Borel factorization (13) implies the bi-orthogonality condition

(P1a(t, %), P (t, X)) = S iHyg (1)
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Here we used the bilinear form (-, -) with Gram matrix G(t). We also consider the wave matrices

Wi() = SiOW(t), Wat) =Sy (Wi(B)) (15)
where S, := H(£)(S(t)) .
Proposition 8. The wave matrices satisfy

(Wi(0)) " Walt) = G. (16)

Proof. It follows from the Gauss—Borel factorization (13). O

Given a semi-infinite matrix A we have unique splitting A = A, + A_ where A, is an upper triangular block matrix while is A_ a
strictly lower triangular block matrix. The Gauss-Borel factorization (16) has the following differential consequences

Proposition 9. The following equations hold

451 -1 _ o -1 ﬁ -1 _ (¢ T\% & \—1
Tl CZA V) IR~ IR CIVR NG I
3S, - S, ~

G = (s14%s07)

+ 8[’2’,,(

o G =~ (S(4)G) -

Proof. Taking right derivatives of (16) yields

8W1 1 3W2 -1 .
w = —(W, ,ie({1,2}, € Zy,
ati,a( 1) 3ti,a( 2) (1,2}, jeZy
where
oW, 1 AT 1 _ oW, _ 051 _
Wi = N S1A%(S1)7", w)) = s
3f1,a( 1) 3&“( 1) +514%(51) Btz,,x( 1) 3tz,a( 1)
AW, S -, AW, S 2y = s
%% = S s %% = S S (A S s
3f1,a( 2) 8&“( 2) Btz,,x( 2) 3tz,a( 2) 7 4+ 5(AT)%(Sy)
and the result follows immediately. O
As a consequence, we deduce
Proposition 10. The multivariate 2D Toda lattice equations
d dHy _ T _
(J(Hm) l) +(Aa)lkj,lk+1JHLk+1J((Ab)[kj,[km) (Hug) ™"
8t2,eb atua
.
—Hyy ((Ab)[k—l],[k]) (Hpe—11) (Adpe—11,161 = O
hold.
Proof. From Proposition 9 we get
9Hi - 3B T _
= (Hi) ™" = Bra(Ad)ik=11.ik) — (A, ik+11Bik11s —— = Hiyg ((Ab)[k—l],[k]) (Hpe—1)) ™"
8t1,ea 3f2,eb
where By € CIKXIk=1I"k — 1,2 ..., are the first subdiagonal coefficients in S;. O

These equations are just the first members of an infinite set of nonlinear partial differential equations, an integrable hierarchy. Its
elements are given by

Definition 7. The Lax and Zakharov-Shabat matrices are given by
Liq = S144(S1)7", La = 5(4a)"(5) 7",
Bio == ((Ly )“)Jr, Bo = ((L2)*)_.
The Baker functions are defined as
Wi(t,z) = Wi(t)x(z), W, z) = Wa(t)x*(2),
and the adjoint Baker functions by
Wit 2) = (Wh(0)) " x*(2),  W5(t,2) == (Wa(t)™ " x(2),

here we switch for x € R? to z € C. We also consider the multivariate Cauchy kernel

C(z,x) =
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Proposition 11. The Lax matrices can be written as
Lia(t) = Wi(O)AdWi(E) ™!, Lza(t) = Wa(t)(Ad) T (Wa(6)) 7",
and satisfy commutativity properties
[L1,a(t), L1p(t)] = 0, [Laq(t), L2p(t)] =0, a,befl,...,D},
and the spectral properties
Lio(E)¥1(t, 8) = xWi(t, X),  (Lpa(t)) W5 (L, X) = x, W5 (t, %), ae{l,...,D}.
The Cauchy kernel satisfies

(x®) x*@)=c@.x)., |zl > x|, ie{l,....D}.

(17)

(18)

Theorem 1. The Baker functions can be expressed in terms of the biorthogonal polynomials, the multivariate Cauchy kernel and the bilinear

form as follows
Wi(t,z) = e1W Py(t, 2),
W (t,z) = e 2@ (H(1)) TPy(t, 2),
Uy(t, z) = (W(t, X), C(z, X)), 1zi| > |xil, iefl,...,D},
(wi(t,2) " = (c(z, %), (%56, %) '), \zil > Ixil, ie{1,...,D},

Proof. Eq. (19) follows easily

Wy (t, X) =W (t)x1(x), from Definition 7
=S1(OW ()X (%) see (15)
—el1® Si(t)xa(x) consequence of (6)
=el1™p (t, x) directly from (14).

To get (20) we argue similarly

w(t, z) :(Wz(t))fo(z), from Definition 7,
—HTS,()(W(t2)) " x(2) see (15)
—e 2O gT5, 1)y (z) consequence of (6)
—e 2O TPy (t, 2) follows from (14).

To show (21) we proceed as follows, assume that |z;| > |x;|,i € {1,...,D}.

Py(t, 2) =Wa(t)x*(2) from Definition 7
=Wi(t)Gx*(z) use the factorization (16)
=Wi(t)(x (%), (X(x))T)X*(z) introduce the bilinear form expression (11)
=(W1(t)x (%), (X(x))TX*(z)) use properties (10)
=(¥4(t, X), C(z, X)) consequence of (18) and Definition 7.

We now prove (22), for |z;| > |x;|,i € {1,...,D},

wi(t, z) =(W1(t));r)(*(z) from Definition 7
=(W2(t))7TGT x*(2) follows from factorization (16)
=(wx(t) " ((x*2) '6)"

T T T " . .
=(Wx(1)) (((X @) xx). (x(x) )) use the bilinear expression (11)
_ T
=(Wa(0) " (fez. 2, (x(x) ")) see (18)
B TWT
=([e@ . (W2(0) " x) )
TW\ T N .

=(<C(Z, x), (¥(t, %)) >) from Definition 7, again. O

Proposition 12 (The Integrable Hierarchy). The wave matrices obey the evolutionary linear systems

ow, ow, ow, e
atl,a — D1,aVV1, tZ,a — D2,aVV1, tha — D1,aVV2, atla — D2,aVV2,

8
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the Baker and adjoint Baker functions solve the following linear equations

811/1_3 ” 8!1/1_3 ” o, B W 811/2_3 ”

e 1,e%1, e 2,a¥1, e 1,%2, T 2,a¥2,

vy T o, T o ow.f

= —(B1.a) ¥, = —(Bya) ¥/, 2 — _(Bi4) ¥, 2 — _(Byo)'¥y,

3t1,a ( l,a) 1 at2,oz ( Z.a) 1 8t1,a ( 1,a) 2 at2,a ( 2.06) 2
the Lax matrices are subject to the following Lax equations

aL; q

atj,a = [Bj,aa Li,a]»
and Zakharov-Sabat matrices fulfill the following Zakharov-Shabat equations

0By o  0Big

ati,o{ 8[‘1-/’“, + [Bi.a7 Bi’,u/] =0.

Proof. Follows from Proposition 9. O

2.3. KP type hierarchies

In [1] it is shown that the KP type construction appears also in the MVOP context. Here we show that they admit an extension to
this broader scenario not linked to MVOP of multispectral Toda hierarchies.
Definition 8. Given two semi-infinite matrices Z;(t) and Z,(t) we say that

o Zy(t) e W if Z1(t)(W§°)(t1 ))7] is a block strictly lower triangular matrix.
o Zy(t) e uW ¥ if Zz(t)(Wz(O)(tz)) ~"is a block upper triangular matrix.

Then, we can state the following congruences

Proposition 13. Given two semi-infinite matrices Z(t) and Z,(t) such that

o Zy(t) e W?,
o Zy(t) e uW,
[ ] Z1(t)G = Zz(t).

then
Zy(t)=0,Z(t) =0.

Proof. Observe that
Z,(t) = Z1(t)G = Zy(6) (Wi (1)) " Wile),

where we have used (16). From here we get
-1 -1 B -1
(W) ($i1(0) T = ZO(We) T ($a(0)
and, as in the LHS we have a strictly lower triangular block semi-infinite matrix while in the RHS we have an upper triangular block
semi-infinite matrix, both sides must vanish and the result follows. O

Let us write t; 4,4,
(Vabdizps -+ )

ap) to denote t; , with o = €, +- - - +€,, and introduce the diagonal block matrices V, , = diag((Vap o1, (Va,b)i115

B 9811
L Ap, (Vap) = LI

Vap =
TR Itra

(Ap)—11,1> Uap = —Vap — Vi, (23)

in terms of the first block subdiagonal g of S;.

Proposition 14. The Baker function ¥, satisfies
W %W
Oti(ap)  Oty40t2p

+ Ugp¥1. (24)

Proof. On the one hand,

oW, ( aS1 )
= +5A Ab)w (t1)
8tl.(a,b) atl,(a,b) a 1 \1
2w, 925, 051 35, o
= Ap+ - Ag+S1A.A )w t
3t1,aatl,b (at]’aaﬁ’b + atl,a b + at],b a + 14lqdp 1 ( ])

9
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so that

9 92 351 3ﬂ1 ©)
— (W)=—< b+ — )W (t1) + W
<at1,(a,b) 8t1,a8t1_b) ! 8t1,a at1p 1 1

and, consequently,

0 92 d d
< - b1 gy 2y, )(Wl)=rw§°’.
Otrp) Ot1adtiy  Otig ot1p
On the other hand,
AW as 92W. 928
= 2wt e T ()

= 5), =
tiap  Bti@pn) dt1qdt1p  It1adlrp
Now, we apply Proposition 13 with

z= (" > Uap |(Wi), i=1,2
T\ Bt Otiadtip ob A

to get the result. O

Proceeding similarly we can reproduce the results of [ 1] for this more general case. The proofs are essentially as are there with slight
modifications as just shown in the above developments. Associated with the third order times t; (4 » ) we introduce the following block
diagonal matrices

Va,p,c = diag((Va,b,c)io1» Vab,c i1 (Vabedizrs - -+ )
with
9 (2) 8,8]

ApAe —
Bta LR T

ﬂl [k] 9B1,1k
(Vab,c )i :< 3t1a (Ab)[k—z],[k—l] - 3t (Ab)[k—l],[k]'BL[k] (AC)[k—l],[k]’

The Baker functions ¥ satisfies the third order linear differential equations

Y A2 v v v
= —Vapb— —Vea
atl,(a,b.c) 8tl,aaﬁ,batl,c

Vabe == ApBiAc,

at, oty b,

(av”"’ Woe | Ve Lyt Vyea 4V )w
3t1c 3t1,a 3t1b a,b,c b,c,a c,b,a 1,

)

and a matrix type KP system of equations for 8, and ,B%)k] emerges [1]. For example, if we denote ¢;") = t3(q,a.,q) and tgzc)l = t1,(q,q) WE

get the nonlinear partial differential system

a | 9B g7 1% 10p
= aﬂl Ag— = 2 A a(2)
Btm Btm atm 2 at],ﬂ 43[1’0

0> [108 9B . 0B
0=3— | o5 — = +2-—Adb
0, 2062 o7, " Totia

9 | B 9B ﬂ 8ﬁ(2)
2 — A A
+ T |: atia Btfz + Agf1 — Aq aP1 a

i) i) 1087 9287 50
+ 3 2 /31 Aa 52) + - 18(12) _ 21 Ag _ ﬁl Aa .3 Aa
Btm at]’a 2 atl,a Btl,a 8t1 a 8['] a

0, [azﬂl , 981 1%}1 P

+3 A B (A

AB — =
e ‘| a2, Tong abr 20t 4 ot?

.a
2.4. Reductions
Let us explore some simple reductions.
Definition 9. Given two polynomials Q(x), 9,(x) € C[x] a semi-infinite matrix G is said to be (Q1, Q)-invariant if
91(A4)G = GQy(AT) (25)
We will use the notation

L=y, ..., Lip)", Ly=a1,....Lp)".
10
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Observe that according to Proposition 7 this reduction implies for the associated bilinear forms
T T
(Qi@)x(®). (x(®) ) = (x(®). (x(x)) Qa(x)).

Proposition 15. Given two polynomials Q(x), Q(x) € C[x], with powers written as

(@) = Y Aa¥ () = ) O "

aezl) aezl
and a (Q1, Q;)-invariant initial condition G we find that
(i) The Lax semi-infinite matrices satisfy
Q1(Ly) = Qa(La). (26)

(ii) Forn € {1, 2, ...} the wave matrices satisfy

Z QmaW] Z Q“a = W1(Q1(A)) ,

anD aEZ +
(27)
T\
Zglaat +Z Z“Bt = Wy(22(4"))",
anD a€EZ +
and the Lax matrices fulfill the invariance conditions
8L1 8L1
2 ez, + 2 Gy, =0
aeczl aezl
3 L2 (28)
z%wt+z%a -
anD oceZJr

Proof.

(i) Use (16), (17) and (25) for (26).
(ii) Observe that

Z Q] aB1 o — ((Q](L1 ) Z QZ OLBZ(x - ((Ql(LZ)) )_
anD anD
and, consequently,
Z Q1 oBra + Z Qb Bra = (Qi1(Ly ))n = (Qz(Lz))n,
an?r anR
and systems (27) and (28) follow from Proposition 12. O

An illustration of these type of reductions is the case studied in previous sections involving multivariate orthogonal polynomials,
for a given linear functional u € (C[x]), with G (u, xx 7). the matrix of bimoments. As we know this implies A,G = G(A4)7,

ae{l,...,D},sothat L, ; = S1AS] = SZATS =1IL4 a €{1,...,D}. The Lax matrices L; , and L, , are lower and upper Hessenberg
block matrlces respectively. Consequently, we have a tridiagonal block matrix form; i.e., a Jacobi block matrix
Li=L=].

Moreover, these conditions imply an invariance property under the flows introduced, as we have that G(t) = Wl(o)(tl — )G, i.e., there
are only one type of flows, or in differential form

(01,0 + 02,0 )Wq = W1 A7, (D10 + dr.a)Wy = Wo(AT),
(01,0 + 02,¢)L1,0 =0, (01,0 + 02,¢)L2,¢ = 0.

2.5. The linear spectral transformation for the multivariate 2D Toda hierarchy

Following [53], we give the linear spectral transform for the multivariate Toda lattice just discussed. As a main result in Theorem 2
we get quasi-determinantal expressions for the transformed Baker function (¥1)y(t) and the quasi-tau matrices Hy(t).

Definition 10. Given two coprime polynomials Q;(x) and Q,(x), deg Q; = m;, we consider an initial condition G and a perturbed one
G such that
an(AT) = Qi(A)G. (29)

We can achieve the perturbed semi-infinite matrix G in two steps, using an intermediate matrix G. First, we perform a Geronimus type
transformation

GOAT) =G (30)
11
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and second, a Christoffel type transformation

G = i(A)G. 31)
Proposition 16. Under the evolution prescribed in (12) if (29), (30) and (31) we have
G(6)Qa(AT) = Qi(A)G(D),  G(1)Qa(AT) = G(B),  G(t) = Q1(A)(E)
Proof. We just check the first as the others follow in an analogous manner:
G(0)2a(AT) =W (0)G(WS (1)) ng(AT)
OtnGoa AT (W) "

Ot (W)
=Q1( )G(t). O

In terms of bilinear forms (30) reads
(x@). (x(®) " Q) = (x(x). (x(®) ")

so that assuming we can divide by polynomials inside these bilinear forms a solution to (30) is

- (xx)"
¢ <X(X)’ o (x)

where v € ((C[x])/ and (Q,(x)) C Ker(v). In fact, a more general case will be

T

)+ (0, x@(x @) "), (32)

-
y (x(®))
G= (X(X),

Qa(x)
where A is a semi-infinite matrix with rows having only a finite number of non vanishing coefficients.

J+ (v Ax((x )

Definition 11. We introduce the resolvent matrices
-
1

w1(0) = $iOQA)(SH0) T @a(t) = (S0 G(0) ) -

Proposition 17. The resolvent matrices satisfy

H(t)wo(t) = w1 ()H(L). (33)

Matrices w1(t), wy(t) are block banded matrices, having as non-zero blocks only the first my block superdiagonals and the first m, block
subdiagonals. The blocks are of increasing size.

Proof. From the LU factorization we get

($1(0) T (Sa() T @a(AT) = 2i(A)(Si(0) T HE)(S2()
so that

1

A A SN\ . -
AO(S:02:0E0) ") =S )(sio) Ho. o

We have the following important relation connecting the original multivariate orthogonal polynomials and the perturbed ones

Proposition 18 (Connection Formulas). We have
(6P (t, %) = Qu(X)Pi (t, X),
(wz(t))Tﬁz(fv X) = Q(X)Py(t, ).
Definition 12.
(i) We introduce the semi-infinite matrix
R(t) = Si(£)G(t). (34)
(ii) If k > m,, take an ordered set of multi-indices
M= (B € (2. : 1Bl < kAT,
with cardinal given by

Temy = [Mil = Neer — Neemy—1 = |k = ma]| + - - + |[k — 1]].
12
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(iii) Associated with this set consider the truncations

Rik-my1.8, - -- R[kfmz].ﬂ,k’mz
RMkl .— .
Ru., - Ri-np,

Ry = (Ra.py - - Ruagy, )
(iv) Then, the set M is said to be poised if the corresponding truncation is not singular

Ri-mpy - Rie-m gy,

. . |20
Ri-np - Ru-np,,

Proposition 19. The matrix R(t) can be expressed as follows

(xx)"
(%)

R(t) = <P1(t, X), > + (v, Pi(t, ) (x(x) ). (35)

Proof. Recall (32) and (34). O

Proposition 20. We have the following relations
(@1(t)R(E ), = 0, 1=0,1,...,k—1,
(@1(E)R(E)) k1, g = Hpg(£)-

Proof. Just follow the following chain of equalities

(t) from (16)
= HOG(0) T, (36)
and the matrix w4R is an upper triangular block matrix with H as its block diagonal. O
For k < m, we can write
(@)w101(8)s - -+ (@1 repmy ~11(1)) =
—(Q1(4) 4y pegmy) Ricemyo1(6): - Riteemy 1. k=106, W pieemy) (6 P2 -+ Weemy (€. Py, )

Ry 101(t) e Rioy (k—1)(t) Yt p1) fa (s Pryjgm, ) -

Rikrm—11000(6) -+ Riermi—1.0-11(6) - Wrperm—1(t. 1) oo im0 (6 Pryg )
while for k > m,

(@1, k=m0, - - - (@i, emy —1(8)) =

_(QI(A))[,C]V[,H,"]](R[k+m1],ﬂ1(t)a . R[k+m1],ﬂ,2”(.m2 (6), Y1, peemy ) (6, P1)s - s W pierm ) (6 Pryj g )
-1

R[k—mz],ﬂl(t) - R[kfmZ]’ﬂrz\k,mz (t) WL[k—mz](ta DP1) . l1’1,[k—m2](tv Prijim, )
Rikymy—11.8,(€) ... R[k+m1—1],;<1r2|k_m2 () Yrperm -1t 1) oo gm0 (C Pryg )
We also have

(1(Eik thetmy) = (QI(A))[k]‘[anlr

Now we give the quasideterminantal expressions for the perturbed Baker-Akhiezer functions in terms of the original ones and the
R factors:

Theorem 2 (Christoffel-Geronimus-Uvarov Formula for Multispectral Toda Hierarchy). A linear spectral transformation, as in (29), for the
multispectral Toda hierarchy has the following effects on the Baker function W, py(t) and the quasi-tau matrices Hp(t). Given a poised set

13
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Sk, of multi-indices and nodes, we have a perturbed Baker function

(Ql(’l))[k],[km]]
Q1(x)
Rjoy,10(t)

‘i’l,m](t,x) =

Rjoy, (k—1(£) ¥ 1oy(t, 1)
X O, ;
Y1 tkbmy (€, P1)

Rigeemy 1, k=1 () Rigemy1,ik—11(t)

and a perturbed quasi-tau matrix

A (©) = (Q104)) g

Ryo1.01(t) Rioy, ik—11(t) 1 01(t, P1)
X O, :
Rik+my,tk-1(1)

Rikerm 1 ie=11(8) 1, kg (€, P1)

When k > m, we have the shorter alternative expressions
(QI(A))[k],[k+m1]
Q1(x)
R[k*mz].lﬁ(t)
X 6,

Vit X) =

R[kfmz]ﬁrz'k‘mz (t) W1 k—my(t, P1)

Rikcmy1., () Ritetmy 1.8y, (£) Pt (£, P1)

Iq[k](t) = (Ql(A))[k],[k+m1]
Rit—m;1.,(t)
X6,

R[k+m1],ﬂ1 (t)

R[k—mzj,ﬂrz‘kymz(t) W1, k=my)(t, P1)

R[k+m1].[i,2‘kvm2(t) Y1, tkrmy (€, P1)
and

N T

H[kl(t)((QZ(A))[kfmzl,[k]) = (1) iy ey

R[k—mz],ﬁQIk_W2 (t) Y1, 0—my(t, P1)
R[lan],/srmm2 (t) Y1, k=—my(t, P1)

Rik—mj).8,(t)

R[k*mz]»ﬁl(t)
X O,

Rik+m1.8,(t) R[k+m1],/3r2|k'm2(t) Y1 tkmy (€, P1)

Physica D 434 (2022) 133202
¥110)(t, X)

11016 Pryjen, )

lplq[k+mﬂ(t7 pr”k_ml ) lpl,[k-%—m]J(t’ X)

Y 10)(t, Prijm, ) Rioy, 1k (t)

1 eamy 16 Pryjgm, ) Rikermy i ()

Y tk-ma) (6 Prijem, ) Wik-my) (€, X)

1, tkmy (8, Prijm, ) W ikemy (L, X)

V1 tk-m) (6 Pryjgm, ) Rikema i (£)

Y tkerm) (6 Prijgm, ) Ritermy1.a ()

V1 1k-m) (6 Pryj ) Hik—my) (€)
lI/l,[kfmz](tv pl’”k‘m1 ) 0

WA ety 1 (6 Projem, ) 0

Regarding the Baker function ¥, and its behavior under a general linear spectral transformation, using (21), we have for each

component

‘i’z,uq(f, z)= (lj/l.[kj(t’ X),C(z,x)),

and consequently Theorem 2 provides quasi-determinantal expression for @Zm performing the following replacements

Y1 n(t, X)

@) k 4+ mq}.

W (. %) — ( ,c(z,x)), letk—m,. ...

Alternative expressions are achieved if the relation (36) is recalled. Indeed, it implies

d(t, 2) = o R(WS()) " x*(2).

(37)

Then, using (35) we conclude that the replacements to perform in Theorem 2 to find a quasi-determinantal expression for Q/Nk] are

w €z, X)

(e, <P t, x), et
1.(t, X) — (Pyp(t, x), e o)

>+ (v, €2 Py (e, x)C(z, X)), L€ {k—my, ...,

k 4+ mq}.

In this general setting G is not restricted by a Hankel type constraint, thus given a polynomial Q(x) € R[x] we have GQ(AT) # 9(A)G.
For example, instead of (29) we may have considered 0,(A)G = GQ1(AT) In this case a transposition formally gives GT Qx(A") =
01(A)GT, which can be gotten from (29) by the replacement G — G' and G GT; ie, at the level of the Gauss-Borel factorization

(13)
Hr H',
A AT,

S] (g Sz,

S] [l Sz,

Szi—>51,

§2|—>.§1.

Thus, previous formulas hold when the replacing P; by P, and the transposition of the matrices Hy and I:I[k] is performed.

14
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A quite general transformation, which we will not explore in this paper, corresponds to
Q5(4)Ge(AT) = Qf(4)6ei(AM),

for polynomials Qﬁ(x), Q’f(x), Qé(x), Q’g(x) € R[x]. This transformation is preserved by the integrable flows introduced above;
i.e., Q5(A)G(£)Q¥(AT) = OR(A)G(£)QL(AT). Notice that this transformation for a multi-Hankel reduction A,G = G(A,)",a € {1, ..., D},
is just the one considered in previous sections.

2.6. Generalized bilinear equations and linear spectral transformations

We are ready to show that the Baker functions at different times and their linear spectral transforms satisfy a bilinear equation as
in the KP theory, see [4-6]. In the standard formulation [4-6] discrete times appeared in the bilinear equation, which in this case are
identified, see for example [75], with the linear spectral transformations. To deduce the bilinear equations we use a similar method as
in [16,17,23].

We begin with the following observation

Proposition 21. The wave matrices Wi(t), i € {1, 2} and their linear spectral transformed wave matrices W,-(t’), i € {1, 2}, according to
the coprime polynomials Q1(x), Q,(x) € C[x], fulfill

Wi(t)Qi(A)(Wi(6)) " = Walt)Qa( AT (Walt)) .
Proof. We have G = (Wl(t))_lwz(t) and G = (Wl(t/))_lwz(t’). Hence, using (29) we deduce

QA (Wi (1) Walt) = (Wa(t) ' Wa(t)2y(AT). O

Now, we need

Lemma 1. Given two semi-infinite matrices U and V we have

1 % T 1 T T
U= —— Ux(@2) (VT x*(2)) dz;---dzp = —f Ux*(z)(V' x(2)) dz;---dzp.
(27'[ l)D 0(r) ( ) (27T I)D TP(r) ( )
Proof. Observe that
Zki—t Z—t o Zkat
Z[o],[o] Z[o],[” 1 Zk27£1 zkz—ez . zkz—lw”
xO)T = [4n Zn Zije =
. . ’ YARERY)] : : :
k=t kg~ Zkog 4l

If we now integrate in the polydisk distinguished border TP(r) using the Fubini theorem we factor each integral in a product of D
factors, where the ith factor is an integral over z; on the circle centered at origin of radius r;. This is zero unless the integrand is z;- 1
which occurs only in the principal diagonal. Consequently, we have

yg x@)x*2) dz---dzp = 7{ X*(@)x(2)" dzy - -dzp = (27 )L
TP(r) TP(r)
and the result follows. O

We notice that ¥; and ¥, lead to the computation of finite sums, i.e., polynomials, but ¥;* and ¥, involve Laurent series. We

will denote by %, 4(t) and 27 ,(t) the domains of convergence of ¥, 4(t, z) and ¥ (¢, z), respectively. Recall that these domains are
Reinhardt domains; i.e., if 2 C CP is the domain of convergence then for any ¢ = (c1, ..., ¢p)' € 2 we have that T?(|cq], ..., |cp|) C 2.

Theorem 3 (Generalized Bilinear Equations). For any pair of times t and t’, points r; € Z7(t)andry € D «(t") in the respective Reinhardt
domains and D-dimensional tori T°(r;) and TP(r;), and multi-indices &, o' € Z’i, the Baker and adjoint Baker functions and their linear
spectral transformations satisfy the following bilinear identity

yg li/],ar(t/,z)llfﬁa(t,z)Q1(z)d21 coedzp = 7{ li/z,a/(t/,z)llfz’fa(t,z)Qz(z)da -odzp.
T0(ry) TP(ry)
Proof. From Definition 7 and Lemma 1, choosing U = Wl(t/)QlA) and V = (Wl(t))_] we get

1

WO2DW0) " = o

f @y (t', 2)¥(t,2)Q1(z)d 2 - - - dzp,
TP(ry)

and choosing U = W,(t') and V = QZ(AT)(Wz(t))f] we get
~ _ 1 ~
Wz(f/)Qz(AT)(Wz(t)) ! =09 % t1’2((.'/, Z)‘I/Z*([', 2)9y(z)dzy---dzp.
(27'[ l) 'ﬂ’D(rz)

Then, Proposition 21 implies the result. O

15
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Conclusions and outlook

In this paper we have discussed a type of multicomponent Toda hierarchy that is connected to nonstandard multivariate orthogo-
nality, and also presented corresponding Darboux type transformations. An interesting open point is the Riemann-Hilbert formulation
of this multivariate biorthogonality, see [34] for a presentation of Plemej’s formulas in this context. Another interesting issue is the
possible role of an extended tau function, possibly a quasideterminant, for more on quasi-tau matrices see [1].
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