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Abstract

We study a model of growth of tumors with a free boundary, delaying the
tumor region. We take into account the presence of inhibitors and its interaction
with the nutrients. We study the approximate controllability of the internal
distribution of density of cells, that is proportional to concentration of nutrients,
injecting inhibitor in a small inner region wy.

1 The model

In this paper we study the controllability of the growth of tumors by the internal
localized action of inhibitors on a simplified mathematical model. The tumor, formed
by life cells, is assumed to have a density proportional to the concentrations of a nutrient
o(x,t), x = (21,22, x3), mainly oxygen or glucose. We study the behavior of the tumor
after angiogenesis, the formation of capillary sprouts from blood vessels, in response to
externally supplied chemical stimuli (see, e.g. Chaplain and Anderson [1996]). Once
the angiogenesis occurs, the tumor receives nutrient from the vessels (process named
vasculature). We assume that the tumor occupates a radially symmetric ball of IR* of
radius R(t), which is unknown (reason why is usually denoted as the free boundary of
the problem). Denoting by op the constant nutrient concentration in the vasculature,
r1 the rate, per unit length, of nutrient transferred to the tissue, o satisfies the equation

oo L ~ ~ ~
a—dlAa—rl(aB—U)—l—)\la—l—)\ﬁ:(), lz| < R(t), t € (0, 7).
Here d; is the diffusion coefficient of the nutrient concentration and Ao, )\B represent
the consume rate of nutrient and inhibitor, respectively.
The density of the inhibitor B(l‘, t) is assumed to satisfy a similar reaction - diffusion
equation,

_—dzAB_?Z(ﬁB_B)‘I‘)‘?B:wam |x| < R(t)v le (OvT)v

!Departamento de Matematica Aplicada, Universidad Complutense de Madrid, 28040 Madrid
ZPartially supported by the DGES (Spain) project REN2000/0766



with dy the diffusion coefficient, Gp the critical value of the inhibitor concentration for
vasculature, 7y the rate, per unit length, of inhibitor transferred to the tissue, and Ay
is the inhibitor consumption rate. The permanent supply of inhibitors is assumed to
be localized on a small domain wy with a rate given by f (the control of the problem).

According the mass conservation principle, assuming the cell mass density constant,
the tumor mass is proportional to the volume %WR(t)3. The balance between birth and
death cells is determinate by the concentration of nutrient and inhibitor. Denoting by
S the above balance, after normalizing we obtain the law

d 4 ~ .
—(=mR*(1)) = S(o(x,t )d IR
GGTRW = [ SE 0B, e

According the inhibitor nature and the tumor tissue, the function S has different

representations. In any case we shall assume trough the paper that, Se Whe(IR?).
For the sake of notation we shall assume that the diffusion coefficients are given by

a unique positive constants, d; = dy = d. Thus by normalizing the unknown densities

r1og(rs + A2) + A20p G.mp_ P
(M + A (P2 +A2) ' a4 Ay

o:=0—

and denoting by

o~ o 3 g o 3
rii=T1 4 Aq, ry 1= T+ Ag, S(o,B) = 55(076)’

we arrive to the concrete formulation of the mathematical model under consideration

aa—j—dAa—l—rla—l—)\ﬁ:(), lz| < R(t), t € (0,T), (1.1)
MG = fxw el < R L€ (0.T) (1.2
dR

R(t)Q# = /|$|<R(t) S(o, B)dx, qquadR(0) = Ry, t € (0,7, (1.3)
o(x,0) = oo(x), B(x,0) = Bo(x), |z| < R, (1.4)
o(z,t)=7, Bz, t)= B, lz| = R(t), t € (0,T), (1.5)

where R > 0, the normalized nutrient and inhibitor densities at the exterior of the
tumor 7, 3, the initial densities (00, 3) are assumed to be given. We shall assume that
(00, 0) € W3°(B(Ryp)). The mathematical treatment of this model has a long history,
(see See Greenspan [1972], Adams [1986], Byrne — Chaplain [1996], Byrne [1999], Cui
— Friedman [1999], Reitich — Friedman [1999], Diaz — Tello [1999]). A recent reference
containing details on the notion of weak solution and existence and uniqueness is the
authors work (Dfaz — Tello [2000]). The main results of this paper shows that this type
of action by the inhibitor allows to control (in the usual weak sense typical of parabolic
system) the tumor density. This is formulated in the following terms:



Theorem 1.1 Given T > 0, wy C B(Roexp{—||S||r=T}), ¢ > 0, and 6% € L} (IR®),

(
for some p > 1, there exists f € LP((0,T) x wy) such that, if (o,03, R) is the solution
of the problem (1.1)-(1.5), then

|o(T) — UdHLP(B(R(T))) <, (1.6)

where o

= 6" XB(R(T))-

Due to some technical reasons, we shall prove the theorem firstly for p > 5, (neces-
sary in the proof of Lemma 2.1) and then for all p > 1.

We shall prove the result in several steps. For n € IN, we start by assuming R, ()
prescribed and look for a control f,, in wy such that the solution (o, 3,) of problem
(1.1)-(1.5), satisfies (1.6). Then we obtain R,4; and f,41 from (o,,3,) which allow
to find (0,41, Bn41). The proof of the theorem uses some methods introduced in the
study of the approximate controllability (name attributed to conclusions as (1.6)) by
different authors (see Lions [1990], [1991], Puel — Fabre — Zuazua [1995], and Diaz
— Ramos [1995]). In spite of the large literature on this type of methods, very few
seems to be known for the case of systems (see also Diaz-Ramos [1998] for a higher
order equation). Some numerical experiences could be developed in the line of the
works Glowinski-Lions [1995] and Diaz-Ramos [2000]. Iterating the process we obtain
a sequence (R, fn,0n, 8,), we show that there exists a subsequence such that converges
to the searched control f and the associate solution of problem (1.1)-(1.5).

2 Regularity and uniqueness of problem (1.1)-(1.5)

Although the existence of weak solutions of problem (1.1)-(1.5), was established by
previous authors, (see Diaz - Tello [2000]), we shall need some extra information which
is collected in this section.

In order to prove the regularity of the solutions we use the change of variables and
unknowns, introduced in Diaz — Tello [2000],

Pi (i) = g U= [ R0, (2.1)
u(z,t) == o(R(t(1))z,t(1)) — 7, v(7,1) = B(R(t(1))7, (1)) — B. (2.2)
(Notice since R is a continuous function and R+(t) > 0, we obtain that #(¢) € C'*([0, T]),

and by the Theorem of Implicit Function, there exists the inverse function, (1) €
CH([0,77).
Let B ={& € IR*, || < 1}. Problem (1.1)-(1.5) can be equivalently formulated

as
% — dAu— R*R% - Vu+ R*riu = R*(r@ + Mo + ?)), reB, te (O,T), (2.3)
% — dAv — R*Ri - Vo + R¥ryv = R fys, — R*r,B, ieB, 1e(0,T), (24)



Lemma 2.1 Under the assumptions of Theorem 1.1, for p > 5, the solution (u,v, R)
of problem (2.3)-(2.7), satisfies

we LU0, T : W*(B))nWh(0,T : LY(B)),
for all1 < g < oo and

v e LP(0,T : W2P(B)) n Wr(0,T : LF(B)).

Proof. By Theorem 1 of Diaz and Tello [2000] we know that
(u,v, R) € [L*(0,T : H'(B))]* x Wh>(0,T).

Then the linear parabolic operator

Ly = % —dAv — R*°R'% - Vo + Rzrgv,

admits a fundamental solution (see Friedman [1964]) and, since vy € H*(B), [ €
LP((0,T) x B), we get

v e WH((0,T) x B) N L0, T : W**(B))),

(see e.g. Ladyzenkaya, Solonnikov and Uralceva [1991], Theorem 9.1, Chap IV). Since
p>4, Wh((0,T) x B) C L*=([0,T] x B), and then

u € WH((0,T) x B) N L*(0,T : W**(B))),

for ¢ < oo. Consequently, we obtain R(t) € W#(0,T). a
As a consequence of the lemma we obtain,

Corollary 2.1 By using that Wy (B % [0,T]) C L=(B x [0,T]), if p > 4, then u,v €
L>(B x [0,T7).

On the other hand, the continuous embeddings
Whi((0,T) x Byn L0, T : W*4(B))) C L*(0,T : W"*(B)),
W((0,7) x B) N LP(0,T : W?P(B))) C L*(0,T : W"*(B)),

and the reciprocal change of variables and unknown (2.1), (2.2), leads to
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Corollary 2.2 Under the assumptions of Theorem 1.1, we have

T
| Nl + 180yt < ko,

The uniqueness of solutions is proved in the next proposition.

Proposition 2.1 Let f € LP(wox(0,T)) withp > 5, and (0o—7, ﬁo—?) € W?5(B(Ro))N
Hi(B(Ry)), for s > 4. Then, there exists a unique solution of the problem (1.1)-(1.5).

Proof. We shall show that if we assume that there exist two different solutions,
(o1, 41, R1) and (o2, Ba, R2), we get a contradiction. Let

R() = min{Ba(0), Ba0)}, o =01 —0s  B=0i—n
Then (o, 3, R) satisfies the problem,
do

5 —dAo + 10+ A3 =0, lz| < R(t), t € (0,T), (2.8)
aaf dAB + 13 =0, lz| < R(t), t € (0,T), (2.9)
o(x,0)=0, [(z,0)=0, |z| < Ro, (2.10)
o(z,t) = o1(x,t) — o2, 1), lz| = R(t), t € (0,1, (2.11)
Bz, t) = Bi(x,t) — Pafx, 1), lz| = R(t), t € (0,1). (2.12)

We introduce a new unknown defined by

z=kio — k3,
with
kl = 1, kg = #, lf ™ 7£ T2,
1 A )
k1:§, kgzm, lf T1:T27£0,
and by z = e Mg — G if r1 = ry = 0. By construction we have
0z
a—dAZ—I—Tl,Z—O lz| < R(t), t € (0,T),
2(x,0) = 2| < Ro. (2.13)

z(x,t) = kla(:zj t) — ko2, 1), |x| = R(t), t € (0,T).
Now we prove a preliminary result:

Lemma 2.2 Let z be the solution of problem (2.13) and [ the solution of problem
(2.9), (2.12), then €'z and "' take their mazimum and minimum on |z| = R(t).
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Proof. Multiplying the equation (2.13) by €"' we obtain that e"''z satisfies

Si(entz) — dA(en'z) =0, || < R(t), t €(0,T),
{ z(x,0) =0, |z| < Ro, (2.14)
ez(x,t) = eV (kyo(x,t) — k2B(x,t)), |z| = R(t), t € (0,T).

Repeating the operation, we obtain €' satisfies the equation,

{ 5i(€'8) — dA(e'B) = 0, |z < R(1), 1 € (0,T),
ﬁ(l’,O) = 07 |$| < RO? (215)
' B(z, 1) = ! (Bi(w,t) = Palw, 1)), [2] = R(t), ¢ € (0,T).

By Corollary 2.1, we know that
lo(x,t)| < K, |B(x,t)| < K, for any t € [0,T], and a.e. = € B(R(t)),

and then, "'z and €' are bounded. Let

% %

2 = max{ez(x,t),t €[0,T),2 € IB(R(1))},

Zew = min{eMz(x, 1), t € [0,T),2 € IB(R(1))},

B = max{c™B(z,t),t €[0,T),x € OB(R(t))},

B = min{e™ B(z,t),t € [0,T),z € IB(R(t))}.
Let T, and T* be defined by

, if s>k,
ifs, < k,

and

k, ifs, >k
k _ 9 9 Ty
T(S)_{ s, if s, < k.

Taking To(e"'z — 2**) as test function in (2.14), integrating by parts in B(R(t)), and
by Leibnitz Theorem, after some manipulations, we arrive to

dt/ 7’17,‘ Z**)]de S 07
and we deduce that €'z takes his maximum in |z| = R(¢). In the same way, taking
TO(e"'z — z..) as test function we obtain
T < €Mz < 2 (2.16)
The proof of
Buw < €13 < 377, (2.17)
is analogous. O



End of the proof of Proposition 2.1. Given ¢t € [0, 7], we can suppose, without
lost generality, Ri(t) < Ray(t), otherwise the argument is similar by changing R; for
R;. Using that

RO~ B = [ (S(050) = Sl )~

/ S(o2, B2)de
Ry (t)<|z[<Ra(t)
Since S is bounded, then

/. S(o2, fa)dx| < NIRY(t) = By(1)] < M|Ri(t) — Ra(t))],

(t)<le|<Ra(?)

where M depends only of |S|5~. Since S is Lipschitz continuous, integrating in time,
it results

/ / S(o1, 1) — S(o2, Ba)|dudt <
/ / |S|W1’°°(!R2)(5up|0| + sup|B|)dxdt <
/ / _SUP|Z + ko 3] + sup|B|)dxdt <
/ / C(sup|z| + sup|f))dzdt <
[ COOmIE™ ] s )t <
/0 / C(e|“|Tsup|emZ| 4 ol gupler 8| dadt <

/ / ks(suple™ 2| + suple”' 5| )da

From Lemma 2.2, we know

Iy 2 ) dad < TR [ sup [z )l
sup | z(z, xdt < et — sup |z(x, .
o Jomuy T 4 0 |x|=1§(t)

By Corollary 2.2, we deduce that

T
| el oay + 182l aaedt < Ko,

and consequently,
T
/0 HZH%/Vlyoo(B(R(t)))dt < K.

Since

2 (2,1) = € (ka2 1) = 7) — ka(Bale,t) = B). om |a] = R(t),



we deduce

r T37T 3 T
et —R (t)/ sup |z(a,t)|dt <
1 0 Jel=R()

T
k4/0 |oallwio (B(Ra1))) + | B2llwtoe (BRa()) | B (t) — Ra(t)|dt <

LT
ky sup [Ri(t) — R?(t)|T5/ (o2l (Bro(eyy) T 17200 B(Ra(0))) ) A <
0<t<T 0

kosup [Ru(t) — Ro(1)|T.
o<t<T

In the same way,

t 1
L[ kasuplB] <k sup [Rit) — Ra(0)|T5.
0 JB(R(t))

o<t<T

Then

/Ot |R2(1)Ru(t) — R2()Ra(t)|dt < Cy sup |Ru(t) — Ro(t)|(T + T7). (2.18)

o<t<T

Denoting by ¢ = maxepo,r{ F1(t) — Rz(t)}, we obtain
|R3(t) — R3(1)] < 3Cod(T +T%),

and since |R3(t) — R3(1)| > 3R2|Ry(t) — Ry(1)|, we conclude, § < kod(T + Tz). Then,
it T < Ty = min{%,l}, necessarily Ri(t) = Ra(t). Since ¢"'z and €' take his
maximum and minimum on R(¢) = Ry(¢) = Ry(t) and it is zero, then § = 0 and z = 0,
and we deduce f =0 and o = 0.

Repeating the same argument, now from T} we conclude the uniqueness of solutions
for a T' > 0 arbitrary. a

3 Approximate controllability: Proof of Theorem
1.1

The next result shows the conclusion of Theorem 1.1 (the so called approximate con-
trollability in L?) under some particular assumptions (mainly when R(t) is a priori
prescribed).

Proposition 3.1 Let wy C B(Roexp{—||S||1=T}, and 09 = By = ¢ = 3 = 0. Let

R e Wh(0,T) a given function such that R(0) = Ry, |R| < 15| Lee Roexpd{]|S]|zeT}.
Then, given ¢ € L% _(IR®), there exists f € LP(wo x (0,T)), with p > 5, such that,
if (0,0) is the solution of problem (1.1), (1.2), (1.4) and (1.5), with R(t) prescribed,
then

lo(T) = || om ) < €

d

where 0% = 3d|B(R(T)).



Proof. Let p' = £, we consider the functional J : LY (B(R(T))) — IR defined
by

: /

= — l’tpdl'dt—l-é o —/ o Od:zj,
% " )| H‘P HL (R(T))) BR(T)) 14
(T

for o € LP (B(R(T))), where v is the component of the solution (,) of the “dual”

problem
—aa—f—dAcp—rlcp:O, lz| < R(t), t € (0,T), (3.1)
—aa—i}—dA;/)—rgg/)—l—)\a,o:O, lz| < R(t), t € (0,T), (3.2)
p(2, 1) = po(x), ¥(x,T)=0,  |of <R(T), (3-3)
oet) =0, Blet)=0, =R, te(0,T) (3.4)

We point out that the existence of a weak solutions of (3.1)-(3.4), (¢, %) can be obtained
as in section 2, by making the change of variable (2.1), (2.2), (see Tello [2001]).

In order to prove the uniqueness of solutions, we suppose there exists two solutions,
(¢1,%1), (92,12), then ¢ 1= @1 — @y, satisfies the equation (3.1), taking |p|”'~%¢ as test
function, and integrating by parts, it results,

d

— Pdy < / r'd
dt B<R<t>>|¢| = B<R<t>>|¢| "

by Gronwall’s Lemma, since o(T') = 0, we obtain ¢ = ¢1 — @2 = 0. Once proved
@ = 0, in the same way, ¢ 1= 1 — 1, satisfies (3.2), taking |¢)|P'~% as test function,
we obtain ¢ = 0, and consequently, the uniqueness is proved.

Let us assume that .J is convex, continuous and coercive (in the sense that lim inf .J —
oo if Hc,oOHLp/(B(RO)) — 00). Then J takes a minimum ¢q (see, e.g., Brezis [1983], Corol-
lary II1.20). Moreover if (£,(¢) is the solution of the problem (3.1)-(3.4) with initial
datum (&, 0). We have

[ e ecan— | o et
(3.5)

0 1-p' 01p'=2 040 _
elle HLP/(B(R(T)))/B(R(T)) [ " " de = 0.

Multiplying (1.1), (1.2) by (&, (), integrating by parts and applying Leibnitz Theorem,
we arrive to

T o¢ T T
—/ <a,—>dt—d/ <U,A§>dt—|—/ / rooEdudit
0 ot 0 o JB(R())

T T ¢ T
AB&dxdt — — >dl —d A dt
/0 /B(R(t)) plde /0 <P o~ /0 <P AC> dit

T T
/ / roBCdudt — / / Fedadt + / otdz)T + / Bede)! =
o JB(RE) 0 Juo B(R() B(R()



where <, > represents the duality Wol’p/(B(R(t)) X Wo_l’p/(B(R(t)). From the choice
of (£,() and since o(0,2) = 5(0,2) = 0 we obtain

—/Z;ﬁMﬁ+/ T)¢dz = 0. (3.6)

Now, let us take f,
f=leF—e.
Substituting it in (3.6) and using (3.5) it results

__dyg0 oy 1-p' 01p'—2 0 _
/B(R(T))(U(T) o) dx + ¢||p HLP/(B(R(T)))/B(R(T)) [ @ éodr = 0,
for all ¢€° € LY (B(R(T))). Taking
& = (o(T) — 0"} € L (B(R(T)))
since p =1+ ]ﬁ, we obtain
[o(T) — O-dHZj;P(B(R(T))) =
ol—p' 01p'—2 0 d| - d

GH‘P HLP'p(B(R(T)))/B(R(T))MQ |p ¥ |U(T)_U |p (U(T) — 0 )dl‘.

Applying Holder inequality, we obtain that

_p! I S _
H‘POHle'p(B(R(T)))/B(R(T)) P20 o (1) =0 |71 (o (T)—o")dz < HU(T)—UdHiP(IB(R(T)))v

which leads to
lo(T) = o Lo r(Ty) < €

and the conclusion holds.
So, it only remains to check the mentioned properties of J:
J is convex. We express J as addition of the functionals,

(O d 0 (O 0
Ji(p”) = —/B(R(T))U ¢ dz, J2(¢") == || HLP'(B(R(T)))7

| T ,
:7/(/ (b7 deedlt.
P Jo e

First we shall see that J3 is convex. Let ¢f, ¢y € LP(B(R(T))) and (¢1,%1) and
(2, 12) be the respective solutions of problem (3.1)—(3.4), and let o € (0,1). Then,
since the system is linear we get

Jo(og + (1 — a)d) = / / (o + (1= o) ddt,

and then
Js(ap] + (1 = a)py) — ads(¢)) — (1 — a)Js(py) =

10



o [y e (1= @ial” = alin]” = (1 = )l .

Since p’ > 1 we obtain
oy + (1= a)vl” — aldr [P = (1 — @)l <0,

and integrating we obtain,
- / / (ot + (1=l —alen " = (1= o)l )dedt <0,

which proves the convexity of J5. Finally J; is linear and so convex and since || -
HLP B(R(T)); is convex, .J, is also convex.

J 1s continuous. By construction, J; and .J; are continuous. Now we shall prove
that Js is continuous too. Let ¢ € LP(B(R(T))) such that ¢° — ¢° and let
(@ns¥n), (0,1) be the solutions of the problem (3.1)-(3.4) with initial data ¢? and ¢°,
respectively. Subtracting both systems and taking

(Ple — eul” e — 00) P10 — VP72 — ),

as test function and using the integration by parts formula (see e.g. Alt and Luckhaus
[1983]) and Young inequality, we arrive to

0 ” ”
3 M CRN U At

Dl — el do + | D] — P dz < 0.
S 17 = A0l = el [ rap! = s — e <

Denoting by
Xa(t) = l¢ — @n”ip'(B(R(t))) + e~ ¢”"ip’(B(R(t)))’

we obtain the differential inequality

— X/ (1) < CX,(t), te(0,71),

1.0 o
XN(T) - HS‘Qn ¥ HLP'(B(R(T))?
where

C = maz{=rip"+ A, =rap’ + |A[}.

Thus we obtain
0 < X, (1) < |X,(T)]e= =T,

But
0< [ 1=l de < (1),

integrating on [0, 7] and taking limits as n — oo we conclude that

/ (o — |7 dedlt </ 1)dt — 0,
0

11



which shows the continuity of Js.
J is coercive. Let ) € L¥(B(R(T))) such that ||¢pll 1 g(per))) — 0, when n —
oo. Now, we shall see

J(py)

lim inf > e
=20 |l o0 o B (R(TY)

Let

0
I :=liminf J(#h)
n==o0 Q0| o (r(T )))

—|lo| e (B (RTY)-

Then there exists a minimizing subsequence, (which we denote again by ©?) such that
J(#n)

=1.
=0 |00 o (B (reTy)

We define

©Y

H%HLP (R(T)))

and denote by (©,,,) the solution of problem (3.1)-(3.4) with initial data (¢2,0).
Since the system is linear we have

@n =

Y

1

(S‘an ¢n) W(S‘an ¢n)
e
Then o .
Ao [T s~ [ otgtde e
H%HLP’(B(R(T))) wo B(R(T)
Now, it is clear that if
T — !
lim inf / P de > ao, (3.7)
n—0oo 0 wo

for some ag then

J(¢?)
120 2o (B (R(TY)

> oontngip_/(lB(R(T))) +e— HadHLP(B(R((T))) X

as n — oo, which proves the property. Let us assume now that lim in f fOT o P dx = 0.
Then there exists a subsequence ), such that

T - '
/ |, [P dedt — 0,
0 wo

therefore ¢, — 0 in L (wy x [0,T]). Taking (0,¢) as test function in (3.2), where
¢ € C*((0,T) x wp), we obtain

/OT . %%dfdt— /OT | A~

T _ T
Tz/ P, Cddt + A/ . Cdadt = 0.
0 wo 0 wo
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Now, passing to the limit when n; — oo it results

T
| [ eutdwat — o, (3.8)
0 wo
where ¢,,; is the solution of the problem
0, : ,
o DiA@,, —rion, =0, |z| < R(t), t €(0,T),
t (3.9)
@ni(0,2) = @°.

Making the change of variable (2.1), and

we obtain
D, X .
. g{’ — DAa, — R*R'%- Vi, + R*ra, =0, |#|<1, {€(0,7),
i, (,1) = 0, # = 1,7 € (0,7), (3.10)
Up, (7,0) = up(2) = @%(:%Ro), 7] < 1,

such that uf) — ug in L (B), and furthermore u,, — u solution of (3.10), with initial
data ug = ¢, . By (3.8), un, — 0, weakly in LP' (B(&)), where & is an open subset
of B, such that &y C &p. Consequently @ = 0 on @&y for all 0 < { < 7. By the unique
continuation for the equation (3.10) (see Chi-Cheung Poon [1996], Theorem 1.1") we
deduce that u = 0 in B x (O,T), and by the uniqueness of problem (3.10), it result
up = 0 and ¢° = 0. Furthermore

— o?3dr = 0,
/B(R(T))

and [ = ¢, from where we deduce that J is coercive. O
Proof of the Theorem 1.1.
We construct the sequence {R,(t)}, such that R, verifies

RAOR(1) = [ o SO O By i), Ru(0) = Ro,

forn > 1, where (02_,, 3:_,) is the solution of the problem (1.1), (1.2), (1.4) and (1.5),
with f =0, and initial data o _;(x,0) = oo(x), 85_1(x,0) = Go(x), and R(t) = R,—1(1),
and (o,—1, 3,-1) is the solution mentioned in Proposition 3.1. We start the process by
taking, e.g. Ry(¢) = Ro. Since S is bounded, R, € W'>(0,T) and we deduce there
exists a subsequence of functions R,, such that converges weakly to R(¢) in W4(0,T),
for all ¢ € (1,00). By Proposition 3.1, for each R, there exists a minimum function 2.

We shall show that the sequence Hc,ogHLp/(B(R(T))) is uniformly bounded. We consider

T !
Jn(992) 3:/0 /w |t |” dadt + 6”992”Lp'(3(3n(T))) - /B(R ) 02993651'7
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where o = 6%\ g(r,(r)). Supposing Hc,ogHLp/(B(Rn(T))) — 00, since J,(0) = 0 and (by

definition of ©?), J,.(¢%) <0,

Jn ()
[

T
— J1,0P -1 7 d-0
= b [, [ Fdwdite= [ olghde <0, @11)

since

oo

d d ~d
/JB(RH(T)) [T (B(1a(T))) (B(Boeap{||S|lc=T})

it results, by (3.11),
T — 1
/ / PP dedt — 0 when n — oc.
0 wo

Repeating the argument used in the proof that J is coercive, we obtain
75— 0in LY (B(R(T)))

and

0
lim inf n(en)

> ¢
21 |

which is a contradiction with (3.11). Consequently Hc,ogHLp/(B(Rn(T))) is uniformly bounded
and so Hc,onHLp/(B(Rn(T))) is also uniformly bounded, and furthermore

| fullzeo,r:Lr(we)) < C, (3.12)

for some (' independent of n.

Making the change of variable (2.1), (2.2), by Lemma 2.1, we obtain that if (u,,v,, R,)
is the transformed of (o, + &2, 3, + 32, R,) then it is uniformly bounded in (W'*(B x
(0,7))2, H%(0,T)), and by compact embedding, there exists a subsequence (i, vni, Rpi)
such that converges strongly in (C*((0,7] x B)?,C'([0,T])), to (u,v, R) for o = ¢,
where (U, v,,;) satisfies

8um d /

5 ﬁAum — R:::Z' Vg + rtg + Ao, =0, |2 < 1, t € (0,7T),

avni d ;” ~ ~
o —EAvni—R—mx - Voni + 1900 = fuXao 7] <1, e (0,T), (3.13)
Uni(T,1) = vu(2,1) =0, |z =1, t € (0,T),
ni(2,0) = i (2), 0ai(2,0) = vy(), 7] < 1,
and (u,v, R) is solution of (2.3)-(2.7). In particular
|u(T) — un(T)Hip(B) — 0, as n; — +00. (3.14)

Moreover
lo(T) = o osrery) = |0(T) = ou(T) | LoB(min{rT) Ra())F
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|0 (T) — 0| LoBEmin(rR(T), Ry} + |0 — 0 Lr(B2(TY):

where
BA(T) = B(R(T)) N B(B(R,(T))), if RT)>R
N X if R(T) < R,(T).
Making the change of variable (2.1), and since
l0(T) = 0|l Lo (Bmingr(T), Ra(1)) < €
we obtain
lo(T) = ol eomerery) < (1) = wa Do) + llo — ooy + €

Since |0 — oPxpxry < |0 — P and p(B;(T)) — 0, by the Lebesgue dominated
convergence theorem we obtain that

. d -
Jim [lo = 0| e(sary) = 0.
Taking limits when n — oo it results
lo(T) = oo rery < €

and the theorem is thereby proved in the case p > 5.
In the case p < 5, we consider the control f for p =5, then

37 37
lo(T) = o\ Lo(B(R(TY) < IB(R(T))HU(T) — 0| s r(TY) < Iewp{THSHLOO}@

taking € = ¢/(Zeap{T||S||1=})"" we conclude the Theorem. O

Remark 3.1 Notice that the final observation is made on the density o(T,-) and that
once we chose the control in order to have (1.6) the free boundary, R(t), and the
inhibitor density B(T,-) are univocally determined.
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