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Abstract 
 

The Basel III Accord requires that banks and other Authorized Deposit-taking Institutions 

(ADIs) communicate their daily risk forecasts to the appropriate monetary authorities at the 

beginning of each trading day, using one of a range of alternative risk models to forecast 

Value-at-Risk (VaR). The risk estimates from these models are used to determine the daily 

capital charges (DCC) and associated capital costs of ADIs, depending in part on the number 

of previous violations, whereby realized losses exceed the estimated VaR. In this paper we 

define risk management in terms of choosing sensibly from a variety of risk models and 

discuss the optimal selection of financial risk models. A previous approach to model selection 

for predicting VaR proposed combining alternative risk models and ranking such models on 

the basis of average DCC. This method is based only on the first moment of the DCC 

distribution, supported by a restrictive evaluation function. In this paper, we consider uniform 

rankings of models over large classes of evaluation functions that may reflect different 

weights and concerns over different intervals of the distribution of losses and DCC. The 

uniform rankings are based on recently developed statistical tests of stochastic dominance 

(SD). The SD tests are illustrated using the prices and returns of VIX futures. The empirical 

findings show that the tests of SD can rank different pairs of models to a statistical degree of 

confidence, and that the alternative (recentered) SD tests are in general agreement.  

 

Key words and phrases: Stochastic dominance, Value-at-Risk, daily capital charges, 
violation penalties, optimizing strategy, Basel III Accord, VIX futures, global financial crisis. 
 
JEL Classifications: G32, G11, G17, C53, C22. 
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1. Introduction 

 

The Basel III Accord requires that banks and other Authorized Deposit-taking Institutions 

(ADIs) communicate their daily risk forecasts to the appropriate monetary authorities at the 

beginning of each trading day, using one one of a range of alternative financial risk models to 

forecast Value-at-Risk (VaR). The risk estimates from these models are used to determine the 

daily capital charges (DCC) and associated capital costs of ADIs, depending in part on the 

number of previous violations, whereby realized losses exceed the estimated VaR (for further 

details see, for example, Chang et al. (2011)). 

 

In 1993 the Chicago Board Options Exchange (CBOE) introduced a volatility index, VIX 

(Whaley, 1993), which was originally designed to measure the market expectation of 30-day 

volatility implied by at-the-money S&P100 option prices. In 2003, together with Goldman 

Sachs, CBOE updated VIX to reflect a new way of measuring expected volatility, one that 

continues to be widely used by financial theorists.  

 

The new VIX is based on the S&P500 Index, and estimates expected volatility by averaging 

the weighted prices of S&P500 puts and calls over a wide range of strike prices. Although 

many market participants considered the index to be a good predictor of short term volatility, 

namely daily or intraday, it took several years for the market to introduce volatility products, 

starting with over-the-counter products, such as variance swaps and other financial 

derivatives. The first exchange-traded product, VIX futures, was introduced in March 2004, 

and was followed by VIX options in February 2006. Both of these volatility derivatives are 

based on the VIX index as the underlying asset. 

 

McAleer et al. (2013a, b, c) analyse, from a practical perspective, how the new market risk 

management strategies performed during the 2008-09 global financial crisis (GFC), and 

evaluate how the GFC affected the best risk management practices. These papers define risk 

management in terms of choosing,using appropriate financial targets, from a variety of 

financial risk models, and discuss the selection of optimal risk models. They forecast VaR 

using ten univariate conditional volatility models with different error distributions. 

Additionally, they analyze twelve new strategies based on combinations of the previous 

standard univariate model forecasts of VaR, namely: Infinum (0th percentile), Supremum 
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(100th percentile), Average, Median and nine additional strategies based on the 10th through 

to the 90th percentiles.  

 

Such an approach is intended to select a robust VaR forecast, irrespective of the time period, 

that provides reasonable daily capital charges and number of violation penalties under the 

Basel II Accord. They found that the Median is a GFC-robust strategy, in the sense that 

maintaining the same risk management strategy before, during and after the GFC leads to 

comparatively low daily capital charges and violation penalties under the Basel II Accord. 

Chang et al. (2011) apply a similar methodology for choosing the best strategy to forecast 

VaR for a portfolio based on VIX futures. 

 

These prior methods focus on the first moment of the DCC distribution. Alternative criteria 

may consider mean-variance trade-offs, as in substantial areas of financial research, or general 

evaluation criteria that incorporate higher moments and quantiles of the underlying 

probability distributions. These will all provide appropriate rankings of models and strategies.  

 

As an alternative, a robust approach might seek weak uniform rankings over entire classes of 

evaluation functions, and consider nonparametric distributions of DCC values. In this respect, 

Stochastic Dominance (SD) tests have been developed to test for statistically significant 

rankings of prospects. Assuming F and G are the distribution functions of DCC produced by 

model 1 and model 2, respectively, model 1 first order SD model 2, over the support of DCC 

value dcc, iff ,with strict inequality over some values of DCC. This means that 

the model that produces G is dominant over all merely increasing evaluation functions since, 

for any DCC level, the probability that capital charges are smaller under G is greater than 

under F. In particular, the distribution F will have a higher median DCC than G. Similarly, 

each and every (quantile) percentile of the F distribution will be at a higher DCC level than 

the corresponding percentile of the G distribution. Consequently, model 2 will be preferred to 

model 1 on the basis of lower capital charges.  

 

Higher order SD rankings reference further subclasses of evaluation functions, those that are 

increasing and concave, reflecting increasing risk aversion. 
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The results show that the Gaussian distribution is preferred to Student-t  to  forecast DCC. 

The EGARCH model provides a greater likelihood of higher DCC  in comparison with 

GARCH and GJR  for the Student-t distribution. Using the Gaussian distribution to forecast 

DCC does not lead to  either first or second order stochastic dominance. In respect of the CDF 

and integrated CDF, it seems that the higher expected DCC of GJR or GARCH  may be 

compensated by lower  risk than for the DCC of EGARCH.  

 

The remainder of the paper is organized as follows. In Section 2 the definition, notation and properties 

of stochastic dominance are presented. Section 3 describes briefly the Basel II Accord for 

computing daily capital charges.  Section 4 presents alternative GARCH models to produce daily 

capital charges. Section 5 introduces the data, describes the block bootstrapping method to simulate 

time series, and illustrates the application of stochastic dominance to enhance financial risk 

management strategies of banks. Section 6 presents the main results. Section 7 gives some concluding 

comments. 

 

2.  Forecasting Value-at-Risk and Daily Capital Charges   

 

In this section we introduce the calculation of daily capital charges (DCC) as a basic criterion 

for choosing between risk models. The Basel II Accord stipulates that daily capital charges 

(DCC) must be set at the higher of the previous day’s VaR or the average VaR over the last 

60 business days, multiplied by a factor (3+k) for a violation penalty, wherein a violation 

involves the actual negative returns exceeding the VaR forecast negative returns for a given 

day: 

 

 ( ){ }______

60t t-1DCC = sup - 3 + k VaR ,  - VaR  (1) 

 

where  
 

DCCt = daily capital charges, which is the higher of ( ) 60

______

t-1- 3 + k VaR  and  - VaR , 
 

tVaR  = Value-at-Risk for day t, 
 

tttt zYVaR σ̂ˆ ⋅−= , 
 

5 



60

______
VaR  = mean VaR over the previous 60 working days, 
 

tŶ = estimated return at time t, 
 

tz = 1% critical value of the distribution of returns at time t,  
 

tσ̂ = estimated risk (or square root of volatility) at time t, 
 
0 k 1≤ ≤   is the Basel II violation penalty (see Table 1). 
 
 

[Insert Table 1 here] 

 

The formula given in equation (1) is contained in the 1995 amendment to Basel I, while Table 

1 appears for the first time in the Basel II Accord in 2004. The multiplication factor (or 

penalty), k, depends on the central authority’s assessment of the ADI’s risk management 

practices and the results of a simple backtest. It is determined by the number of times actual 

losses exceed a particular day’s VaR forecast (see Basel Committee on Banking Supervision 

(1As stated in a number of previous papers (see, for example, McAleer et al. (2013a, b, c)), 

the minimum multiplication factor of 3 is intended to compensate for various errors that can 

arise in model implementation, such as simplifying assumptions, analytical approximations, 

small sample biases and numerical errors that tend to reduce the true risk coverage of the 

model (see Stahl (1997)). Increases in the multiplication factor are designed to increase the 

confidence level that is implied by the observed number of violations at the 99% confidence 

level, as required by regulators (for a detailed discussion of VaR, as well as exogenous and 

endogenous violations, see McAleer (2009), and McAleer et al. (2010)). 

 

In calculating the number of violations, ADIs are required to compare the forecasts of VaR 

with realised profit and loss figures for the previous 250 trading days. In 1995, the 1988 Basel 

Accord (Basel Committee on Banking Supervision (1988)) was amended to allow ADIs to 

use internal models to determine their VaR thresholds (Basel Committee on Banking 

Supervision (1995)). However, ADIs that propose using internal models are required to 

demonstrate that their models are sound. Movement from the green zone to the red zone arises 

through an excessive number of violations. Although this will lead to a higher value of k, and 

hence a higher penalty, violations will also tend to be associated with lower daily capital 
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charges. It should be noted that the number of violations in a given period is an important, 

though not the only, guide for regulators to approve a given VaR model.  

 

VaR refers to the lower bound of a confidence interval for a (conditional) mean, that is, a 

“worst case scenario on a typical day”. If interest lies in modelling the random variable, , it 

could be decomposed as follows: 

 

 1( | )t t t tY E Y F ε−= + . (2) 
 

This decomposition states that  comprises a predictable component, , which is the 

conditional mean, and a random component, . The variability of , and hence its distribution, is 

determined by the variability of . If it is assumed that  follows a conditional distribution, 

),(~ 2
ttt D σµε , where  and  are the time-varying conditional mean and standard 

deviation of , respectively, these can be estimated using a variety of parametric, semi-

parametric or non-parametric methods.  

 

The VaR threshold for  can be calculated as: 

  
 1( | )t t t tVaR E Y F ασ−= − , (3) 
 

where  is the critical value from the distribution of  to obtain the appropriate confidence 

level. It is possible for  to be replaced by alternative estimates of the conditional standard 

deviation in order to obtain an appropriate VaR (for useful reviews of theoretical results for 

conditional volatility models, see Li et al. (2002) and McAleer (2005), where several 

univariate and multivariate, conditional, stochastic and realized volatility models are 

discussed).  

 

Some recent empirical studies (see, for example, Berkowitz and O’Brien (2001), Gizycki and 

Hereford (1998), and Pérignon et al. (2008)) have indicated that financial institutions tend to 

overestimate their market risks in disclosures to the appropriate regulatory authorities, which 

can imply a costly restriction to the banks trading activity. ADIs may prefer to report high 
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VaR numbers to avoid the possibility of regulatory intrusion. This conservative risk reporting 

suggests that efficiency gains may be feasible. In particular, as ADIs have effective tools for 

the measurement of market risk, while satisfying the qualitative requirements, ADIs could 

conceivably reduce daily capital charges by implementing a context-dependent market risk 

disclosure policy. McAleer (2009) and McAleer et al. (2010) discuss alternative approaches to 

optimize VaR and daily capital charges. 

 

The next section describes several volatility models that are widely used to forecast the 1-day 

ahead conditional variances and VaR thresholds.  

 

4. Models for Forecasting VaR 

 

ADIs can use internal models to determine their VaR thresholds. There are alternative time 

series models for estimating conditional volatility. In what follows, we present several well-

known conditional volatility models that can be used to evaluate strategic market risk 

disclosure, namely GARCH, GJR and EGARCH, with Gaussian and Student-t 

distributions.These models are chosen as they are widely used in the literature. For an 

extensive discussion of the theoretical properties of several of these models, see Ling and 

McAleer (2002a, 2002b, 2003a), McAleer (2005), and Caporin and McAleer (2012).  
 

 

4.1 GARCH 

 

For a wide range of financial data series, time-varying conditional variances can be explained 

empirically through the autoregressive conditional heteroskedasticity (ARCH) model, which 

was proposed by Engle (1982). When the time-varying conditional variance has both 

autoregressive and moving average components, this leads to the generalized ARCH(p,q), or 

GARCH(p,q), model of Bollerslev (1986). It is very common in practice to impose the widely 

estimated GARCH(1,1) specification in advance.  

 

Consider the stationary AR(1)-GARCH(1,1) model for daily returns, :   

 

 t 1 2 t-1 t 2y = φ +φ y +ε , φ < 1  (4) 
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for , where the shocks to returns are given by:  

 

 t t t t

2
t t -1 t-1

ε = η h , η ~ iid(0,1)

h = ω+αε + βh ,
 (5) 

 

and 0, 0, 0ω α β> ≥ ≥  are sufficient conditions to ensure that the conditional variance 

. The stationary AR(1)-GARCH(1,1) model can be modified to incorporate a non-

stationary ARMA(p,q) conditional mean and a stationary GARCH(r,s) conditional variance, 

as in Ling and McAleer (2003b). 

 

4.2 EGARCH 

 

An alternative model to capture asymmetric behaviour in the conditional variance is the 

Exponential GARCH, or EGARCH(1,1), model of Nelson (1991), namely:  

 

 t -1 t-1
t t-1

t-1 t-1

ε εlogh = ω+α +γ + βlogh , | β |< 1
h h

 (6) 

 

where the parameters ,α   and  have different interpretations from those in the 

GARCH(1,1) and GJR(1,1) models.  

 

EGARCH captures asymmetries differently from GJR. The parameters α  and  in 

EGARCH(1,1) represent the magnitude (or size) and sign effects of the standardized 

residuals, respectively, on the conditional variance, whereas α  and γα +  represent the 

effects of positive and negative shocks, respectively, on the conditional variance in GJR(1,1). 

Unlike GJR, EGARCH can accommodate leverage, depending on the restrictions imposed on 

the size and sign parameters, though leverage is not guaranteed. 

 

As noted in McAleer et al. (2007), there are some important differences between EGARCH 

and the previous two models, as follows: (i) EGARCH is a model of the logarithm of the 

conditional variance, which implies that no restrictions on the parameters are required to 

ensure 0>th ; (ii) moment conditions are required for the GARCH and GJR models as they 

are dependent on lagged unconditional shocks, whereas EGARCH does not require moment 
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conditions to be established as it depends on lagged conditional shocks (or standardized 

residuals); (iii) Shephard (1996) observed that 1|| <β  is likely to be a sufficient condition for 

consistency of QMLE for EGARCH(1,1); (iv) as the standardized residuals appear in 

equation(6), 1|| <β  would seem to be a sufficient condition for the existence of moments; 

and (v) in addition to being a sufficient condition for consistency, 1|| <β  is also likely to be 

sufficient for asymptotic normality of the QMLE of EGARCH(1,1).   

 

The three conditional volatility models given above are estimated under the following 

distributional assumptions on the conditional shocks: (1) Gaussian and (2) Student-t, with 

estimated degrees of freedom. As the models that incorporate the t distributed errors are 

estimated by QMLE, the resulting estimators are consistent and asymptotically normal, so 

they can be used for estimation, inference and forecasting. 

 

4.3 GJR 

 

In the symmetric GARCH model, the effects of positive shocks (or upward movements in 

daily returns) on the conditional variance, th , are assumed to be the same as the effect of 

negative shocks (or downward movements in daily returns) of equal magnitude. In order to 

accommodate asymmetric behaviour, Glosten, Jagannathan and Runkle (1992) proposed a 

model (hereafter GJR), for which GJR(1,1) is defined as follows:  

 

 2
t t-1 t-1 t-1h = ω+(α+γI(η ))ε + βh ,  (7) 

 

where  are sufficient conditions for  and  is an 

indicator variable defined by: 

 

 ( )
1, 0
0, 0

t
t

t

I
ε

η
ε
<

=  ≥
 (8) 

 

 as tη  has the same sign as tε . The indicator variable differentiates between positive and 

negative shocks, so that asymmetric effects in the data are captured by the coefficient . For 
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financial data, it is expected that 0≥γ  because negative shocks have a greater impact on risk 

than do positive shocks of similar magnitude. The asymmetric effect, ,γ  measures the 

contribution of shocks to both short run persistence, 2α γ+ , and to long run persistence, 

2α β γ+ + .  

 

Although GJR permits asymmetric effects of positive and negative shocks of equal magnitude 

on conditional volatility, the special case of leverage, whereby negative shocks increase 

volatility while positive shocks decrease volatility (see Black (1976) for an argument using 

the debt/equity ratio), cannot be accommodated, in practice (for further details on asymmetry 

versus leverage in the GJR model, see Caporin and McAleer (2012)). 

 

4.  Stochastic Dominance1  

The objective is to evaluate each of the alternative conditional volatility models with respect 

to the DCC function. Observe that each model will yield different values of DCC because 

they will produce different VaR forecasts. The stochastic dominance concept is applied  to 

determine which model should be used to produce the lowest DCC for a given investment, 

while not taking into account the number of violations as the primary purpose of the analysis 

is to assist risk managers in choosing among alternative models. Below we briefly describe 

the SD tests that are used in this paper.  

4.1 Definitions and Hypothesis Formulation 

 

Let X and Y  be two random variables with cumulative distribution functions (CDF) FX 

and FY , respectively. For first order stochastic dominance (SD1), Y SD1 X, if FY (z) ≤ FX(z) 

for all  z∈ R. Let WU(F) denote an evaluation function of the form WU(F) =∫U(z) dF(z), where 

F is the distribution of an underlying variable, and U is any “utility” function. SD1 is defined 

over monotonically increasing utility functions, that is, WU(FY ) ≥ WU(FX) for all U(z) such 

that U′(z) ≥ 0.  

 

Technical assumptions for the underlying statistical theory include the following: 

 

1 In this section we follow heavily the exposition in Donald and Hsu (2013), which is basic for  the subsequent 
contribution.  
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Assumption 2.1: 

1.   [0,  ]   .Z z where z= < ∞  

2. FX and FY are continuous functions on Z such that FX (z) = FY (z) = 0 iff z = 0,and FX (z) = 

FY (z) = 1 iff    .z z=  

(see Linton, Maasumi and Whang, (2005) (hereafter LMW), Linton, Song and Whang (2010) 

and Donald and Hsu (2013) for further details). In order to test if Y SD1 X, Donald and Hsu 

(2013) formulate their hypotheses as: 

 ( ) ( )0  :    for all  ,Y XH F z F z z Z≤ ∈  (9) 

 ( ) ( )1  :      for some  .   Y XH F z F z z Z> ∈  (10) 
 

This is different from LMW, who provide a two-way test, namely either Y SD1 X or X SD1 Y.  

 

Assumption 2.2: 

1. 1{ }  N
i iX =  and 1{ }  M

i iY =  are samples from distributions with CDF’s FX and FY , respectively. 

Some authors deal with independent samples and observations. LMW allow dependent time 

series and possibly dependent X and Y. 

2. M is a function of N satisfying that M(N) → ∞ and N/(N +M(N)) → λ ∈ (0, 1) when N → 

∞. 

The CDF’s FX and FY are estimated by empirical CDFs: 

, ,1 1

1 1ˆ ˆ( )   1(   ),  ( )   1(   ),
N N

X N i Y M ii i
F z X z F z Y z

N M= =
= ≤ = ≤Σ Σ  

where 1(·) denotes the indicator function. The Kolmogorov-Smirnov test statistic is given by: 

 

, ,
ˆ ˆ ˆsup ( ( )  ( ))N Y N X M

z Z

NMS F z F z
N M ∈

= −
+

. 

 

Let 
2
 hΨ denote a mean zero Gaussian process with covariance kernel equal to 2 2 h H∈ , 

where H2 denotes the collection of all covariance kernels on Z × Z. For FX and FY satisfying 

Assumption 2.1, let ,
2  X Yh  denote the covariance kernel on Z × Z such that: 

 ,
2 1 2 1 2 1 2 1 2( ,  )   · ( )(1  ( ))  (1  ) · ( )(1  ( ))  for    X Y

X X Y Yh z z F z F z F z F z z zλ λ= − + − − ≤ (11) 
 

with λ defined in Assumption 2.2. Then, 

 
2, , ,

ˆ ˆ/ ( ) (  ( )   ( ) (  ( )   ( )))  Y M X N Y X h X YNM N M F z F z F z F z+ − − − ⇒Ψ  
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from which one has the following typical results (for example, see Donald and Hsu (2013)): 

 

Given Assumptions 2.1 and 2.2, then 

1. Under H0 in (2.1),  

2. Under H1 in (2.2), ˆ  
D

NS ∞→  

 

Several approaches for resampling and subsampling implementation of SD tests have been 

proposed. Some methods simulate .  These include the Multiplier method, bootstrap with 

separate samples, and bootstrap with Combined Samples.  Simulated processes weakly 

converge to the same process as the limit process, conditional on the sample path with 

probability approaching 1. For further details, see Donald and Hsu (2013).   

 

4.2  Re-centering Functions. 

  

Donald and Hsu (2013) and LMW (2005) use a re-centering method introduced by 

Hansen (2005) to construct critical values for the Kolmogorov-Smirnov type tests. This 

approach provides a test with improved size and power properties compared with the 

unadjusted test using the Least Favorable Case (LFC). The re-centering function proposed by 

Donald and Hsu (2013) is: 

 
 ( ) ( ) ( )( ) ( ) ( )( )( ), , , ,

ˆ ˆˆ     · 1       .N Y N X N Y N X Nz F z F z N F z F z aNµ = − − <  

 

For α < 1/2, let 

 
{ ( ) ( )( )( ) }

,ˆ  max{ ,  },

ˆ ˆ sup | sup     1  

bb bb
N N

bb u bb
N z Z N

c c

c c P N D z N z c

η η

µ α∈

=

= + ≤ ≤ −




 

. 

If the decision rule is to reject the null hypothesis, H0 : FY (z) ≤ FX(z) for all z ∈ Z when  

,
ˆ ˆbb

N NS cη  , then the Donald-Hsu test has the same size properties as in the simplest 

independent random samples case.  

 

4.3  Weakly Dependent Data 
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Let ( ) 1{ ,  }  N
i i iX Y = be a strictly stationary time series sequence with joint distribution function 

FXY on Z2 and marginal CDF’s FX and FY , respectively. Suppose that Assumption 1 of LMW 

holds. Then under the null hypothesis that H0: FY (z) ≤ FX(z) for all z ∈ Z, ( )
2

ˆ sup
D

N z Z hS z∈→ Ψ

, where 

 
( ) ( ) ( ))

( ) ( )))

2 1 2 1 1 1 1
1

1 2 2 2 2

1,    lim  (1(   )  1(   )     ,  

1  (1(   )  1(   )     

N

N i i Y X
i

N
i i i Y X

h z z Cov Y z X z F z F z
N

Y z X z F z F z
N

→∞
=

=

= ≤ − ≤ − +


≤ − ≤ − +Σ

∑
(12) 

  
 

which is the long-run covariance kernel function. In order to simulate 
2hΨ , Donald and Hsu 

(2013) propose the blockwise bootstrap as in LMW because the multiplier method and the 

bootstrap methods do not account for the weak dependence of the data. Then under the same 

conditions as in LMW, we have 
2

(·) (·)
p

bb
N hN D ⇒Ψ  where h2 is defined in 

Error! Reference source not found..  

We adopt the Donald and Hsu tests as they are less conservative under the null and at 

least as powerful under the alternative. Consider the multiplier method (mp), bootstrap with 

separate samples (bs), and bootstrap with combined samples (bc), and note the critical value 

of the Barret-Donald-type test for k = mp, bs and bc is as follows: 

 

 ˆˆ sup |  sup ( )   1  . 
 

k u k
N z Z N

NMq q P D z q
N M

α∈

   = ≤ ≤ −  +   
 (13) 

 
 

The critical value ˆk
Nq for k = mp, bs and bc is bounded away from zero in probability. Since η 

can be chosen to be arbitrarily small, we can assume that ˆk
Nqη  , which implies that 

,ˆ ˆk k
N Nc qη ≤  given that , ˆk k

N Nc qη ≤ . Thus, Donald and Hsu (2013) are able to show that, given 

Assumptions 2.1, 2.2, and α < ½,  

,
ˆ ˆˆ ˆ(   )  (   )k k

N NP S q P S cη> ≤ >  , for k = mp, bs and bc. 

This would imply that the power and size of these tests are never smaller than those of BD. 

 

4.4  Linton, Maasoumi and Whang's Subsampling Test 
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LMW estimate the critical value by the subsampling method proposed in Politis and Romano 

(1994). Donald and Hsu (2013) introduce LMW’s test with a minor modification that allows 

for different sample sizes. For s ≥ 1, let Xs denote the collection of all of the subsets of size s 

of {X1, ...,XN}: 

 

 { }1 1 {  ,  . . . , } |{ ,  . . . ,  }  {1,  . . . , } .
ss r r sX X X r r N≡ ⊆  

 

A random draw denoted by 1{ ,  . . . , }b b
sX X from Xs would be a random sample of size s 

without replacement from the original data. Let ,
ˆ b

X sF  be the empirical CDF based on the 

random draw, 1{ ,  . . . , }b b
sX X . Define ,

ˆ b

Y sF  similarly. Let sN and sM denote the subsampling 

sizes for the X and Y samples, respectively. The subsampling critical value ˆS

Nc  is given by 

  

 , ,
ˆ ˆˆ   sup |  sup ( ( )  ( ))   1  .

  M N

s u b bN M
N z Z Y s Y s

N M

s sc c P F z F z c
s s

α∈

   = − ≤ ≤ −  +   
 

 

Assume that: 

 

1. sN → ∞, sM → ∞, sN/N → 0 and sM/M → 0 as N → ∞. 

2. sN/(sN + sM) → λ, where λ is defined in Assumption 2.2. 

 

The first part is standard for the subsampling method. The second part requires that the 

subsample sizes from the two samples grow at the same rate and that the limit of the ratio of 

the subsample sizes be the same as that of the original samples. This condition is important if, 

for example, sN/(sN + sM) → λs ≠ λ, so that, under the null hypothesis: 

 

 
* ; *

ˆ ˆ sup ( ( )  ( ))  sup  ( ) 1  ( ) 
  M N

D
b bN M

z Z s Y s z Z s G s F
N M

s s G z F z B G z B F z
s s

λ λ∈ ∈− → − −
+

   (14) 

   
 
conditional on the sample(s) with probability one (denoted as D→ p). When λs ≠ λ,  in the 

limit the left-hand side of (14) will not be a good approximation to the limiting null 

distribution of the original test statistic. 
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5. Data  

 
5.1. Data description 

 

The data used for estimation and forecasting are closing daily prices (settlement prices) for 

the 30-day maturity CBOE VIX volatility index futures (ticker name VX). They were 

obtained from the Thomson Reuters-Data Stream Database for the period 26 March 2006 to 

29 November 2013 (2526 observations). The settlement price is calculated by the CBOE as 

the average of the closing bid and ask quote so as to reduce the noise due to any 

microstructure effects. The contracts are cash settled on the Wednesday 30 days prior to the 

third Friday on the calendar month immediately following the month in which the contract 

expires. The underlying asset is the VIX index that was originally introduced by Whaley 

(1993) as an index of implied volatility on the S&P100. In 2003 the new VIX based on the 

S&P500 index was introduced.  

 

VIX is a measure of the implied volatility of 30-day S&P500 options. It is independent of an 

option pricing model and is calculated from the prices of the front month and next-to-front 

month S&P500 at-the-money and out-the-money call and put options. The level of VIX 

represents a measure of the implied volatilities of the entire smile for a constant 30-day to 

maturity option chain. VIX is quoted in percentage points (for example, 30.0 VIX represents 

an implied volatility of 30.0%). In order to invest in VIX, an investor can take a position in 

VIX futures or VIX options.  

 

Although VIX represents a measure of the expected volatility of the S&P500 over the next 

30-days, the prices of VIX futures are based on the current expectation of what the expected 

30-day volatility will be at a particular time in the future (on the expiration date). Although 

the VIX futures should converge to the spot at expiration, it is possible to have significant 

disparities between the spot VIX and VIX futures prior to expiration. Figure 1 shows the daily 

VIX futures index together with the 30-day maturity VIX futures closing prices. VIX has a 

correlation (0.96) with the 30-day maturity VIX futures. VIX futures prices tend to show 

significantly lower volatility than VIX, which can be explained by the fact that VIX futures 

must be priced in a manner that reflects the mean reverting nature of VIX. For the whole 

sample, the standard deviation is 9.99 for VIX and 8.58 for VIX futures prices. 
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[Insert Figures 1-2 here] 

 

If tP  denotes the closing prices of the VIX futures contract at time t, the returns at time t ( )tR  

are defined as: 

 ( )1100*log / −=t t tR P P . (15) 
 

Figure 2 shows the daily VIX futures returns, and the descriptive statistics for the daily 

returns are given in Table 2. The returns to the VIX futures are driven by changes in 

expectations of implied volatility. Figure 3 shows the histograms for the daily returns, 

together with the theoretical Gaussian and Student-t probability density functions and a kernel 

density estimator. The Student-t density fits the returns distributions better than does its 

Gaussian counterpart.  

 

[Insert Figure 3] 

 

Regarding the returns volatility, several measures of volatility are available in the literature. In 

order to gain some intuition, we adopt the measure proposed in Franses and van Dijk (1999), 

who define the true volatility of returns as: 

 

 ( )( )
1/22

1| −
 = −
 t t t tV R E R F , (16) 

 

[Insert Figure 4 here] 

 

where 1−tF  is the information set at time t-1. Figure 4 presents Vt in equation 

Error! Reference source not found. as “volatilities”. The series exhibit clustering that 

should be captured by an appropriate time series model. Until January 2007, a month before 

the first reports of subprime losses, the volatility of the series seems to be stable. The 

volatility reached an all time peak on 27 February 2007, when it climbed to 26% (the mean 

(median) for the entire sample is 2.62(1.78)), as the US equity market had its worst day in 

four years. Then it remained above historic levels, but the VIX futures volatility increases 

again after August 2008, due in large part to the worsening global credit environment, with a 

maximum again on 3 November 2008. Then the volatility remained low until the news about 
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the sovereign debt crisis in the Euro zone created another spike in volatility in the first week 

of May 2010, when the VIX futures reached 35 with a high volatility in returns. Finally, at the 

end of September 2011 we observe another maximum of 42 because of the 2011 US debt 

ceiling episode.  

 

5.2. The Block Bootstrapping 

 

In order to test for SD rankings between risk models using different conditional volatility 

models for forecasting VaR, we implement the Circular Block Bootstrapping (CBB) method 

developed in Politis and Romano (1992) for resampling the VIX futures through the MFE 

toolbox of Kevin Sheppard. The block bootstrap is widely used for implementing the 

bootstrap with time series data. It consists of dividing the data into blocks of observations and 

sampling the blocks randomly with replacement. 

 

In the CBB, let the data consist of observations{ }: 1,...,iX i n= , and let { }1,..., 1l n and b∈ ≥

denote the length and the number of blocks, respectively, such that lx b n≤ . Let n and m be 

the initial data size and the bootstrap sample size, m n≤  and k the number of blocks chosen. 

CBB consists of dividing the time series into b blocks of consecutive observations denoted 

by: 

( )( )1 1 , ..., 1,...,i ili lB X X i n− += =  

A random sample of k blocks, 1k ≥ , * *
1 , ..., kB B  is selected with replacement from * *

1 , ..., kB B . 

Joining the k blocks with m = k×l observations, the bootstrap sample is given as: 

( )( )* * * *
1 1 1, ..., , ..., ..., .l lk lX X X X− +  

The CBB procedure is based on wrapping the data around a circle and forming additional 

blocks using the “circularly defined” observations. For i n≥ , it is defined that 1 ni
X X= , 

where  modni i n=  and 0 nX X= . The CBB method resamples overlapping and periodically 

extended blocks of length l. Notice that each Xi appears exactly l times in the collection of 

blocks and, as the CBB resamples the blocks from this collection with equal probability, each 

of the original observations X1, ..., Xn receives equal weight under the CBB. This property 
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distinguishes the CBB from previous methods, such as the non-overlapping block bootstrap of 

Carlstein (1992).  

 

5.3. Daily Capital Charges (DCC) and Evaluation Framework: Stochastic Dominance 

 

The primary objective is to evaluate each of the alternative conditional volatility models with 

respect to the DCC function. Each model will imply different values of DCC as they will 

produce different VaR forecasts. The stochastic dominance concept is used to determine 

which model should be used for producing the lowest DCC for a given investment, not taking 

into account the number of violations. The main purpose of the analysis is to assist risk 

managers in choosing amongalternative financial risk models. 

 

Analysing risk management, McAleer et al. (2013b) forecast VaR using ten univariate 

conditional volatility models with different error distributions. Additionally, they analyze 

twelve new strategies based on combinations of the previous standard univariate forecasts of 

VaR, namely: Infimum (0th percentile), Supremum (100th percentile), Average, Median and 

nine additional strategies based on the 10th through to the 90th percentiles. This was intended 

to select a robust VaR forecast, irrespective of the time period, that provides reasonable daily 

capital charges and number of violation penalties under the Basel Accord. They found that the 

Median is a GFC-robust strategy, in the sense that maintaining the same risk management 

strategy before, during and after the GFC leads to comparatively low daily capital charges and 

violation penalties under the Basel Accord. Chang et al. (2011) apply this model selection 

criterion for choosing the best risk management strategy when dealing with VIX futures. 

 

For each criteria above there corresponds an implied utility measure that selects a particular 

function of the distribution, or a quantile. “Uniform” evaluations based on large classes of 

utility functions, and/or distribution functions, may be used either instead of or to augment 

existing methods. SD rankings may provide a robust method for selecting and reporting risk 

models based on the entire DCC distribution. This method offers the advantage of always 

being consistent with expected utility maximization, while not requiring an actual 

specification of a utility function.  
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Consider the probability density functions of the DCC from two alternative models, model 1 

and model 2, as shown in Figure 1. Making choices according to previous criteria would 

imply choosing model 2 as the mean DCC from model 2 is lower than from model 1. 

However, from Figure 5 the DCC values of model 2 are more uncertain, with a greater 

probability of either small or large DCC. Figure 5 also shows the CDF for models 1 and 2. 

Choosing model 2 would imply a greater risk during periods of turmoil, and hence greater 

uncertainty. 

 

Stochastic dominance can provide a theoretically consistent ranking of alternative models for 

forecasting DCC that can overcome some of the limitations of the previous approaches. This 

concept has been used widely for choosing among several portfolios or alternative income 

distributions. To the best of our knowledge, it is the first time that stochastic dominance has 

been used to choose from alternative models for forecasting VaR.  

 

The way that SD may be used to choose the best risk management strategy is as follows. For 

notational simplicity, we write 1 2
FSD

Model Model  and 1 2
SSD

Model Model whenever Model 1 

dominates Model 2 according to FSD and SSD, respectively. Let Y and X be the DCC 

produced using model 1 and model 2, respectively. Based on the previous definition, if Y 

first-order stochastically dominates X, then Y will involve higher DCC than X in the sense 

that it has a higher probability of producing higher values of DCC. Therefore, Y must be 

associated with a higher DCC than X if both X and Y require the same initial investment. In 

this context, 1 2
FSD

Model Model  would mean that the risk manager would prefer Model 2 

because the probability that the bank will have to set aside less money for covering losses is 

higher.  

 

In summary, the decision rule would be as follows:  

 

Decision Rule 
H0: Y FSD X 

If do not reject H0: 

Y dominates X 

DCC of Model 1 

is likely to be higher than of 

Model 2 

Risk manager 

prefers 

 Model 2 to Model 1 

Y= DCC of Model 1 

X= DCC of Model 2 
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Graphically, FSD exists when the cumulative distribution functions do not intersect; if they do 

cross, then the FSD results are indeterminate. This is the case shown in Figure 5, where the 

right box includes CDFs for models 1 and 2 from the previous example. As the two CDFs 

cross, first order stochastic dominance cannot be established. From this figure, a lot of 

information in the probability distribution would be lost examining only the first or second 

moments. For example, for low values of DCC, model 2 provides a higher probability of 

having higher values of DCC, while for high values of DCC, a higher probability would be 

more likely under model 1.  

 

We can test for second order stochastic dominance (SSD) in order to account for risk aversion, 

over increasing and concave utility functions. Model 2 SSD model 1 when the area under the 

cumulative distribution for model 2 is less than the corresponding area for model 1, at every 

point on the support. In Figure 6, model 2 SDD model 1, with the graph on the right showing 

the difference in areas, which is always greater than zero over the entire range of possible 

values of DCC. This means that model 2 yields higher DCC for all but one set of 

circumstances. If this case is not too severe, SSD indicates that model 1 is better than model 2. 

This testing strategy may be extended to consider cases where a limited part of the support is 

of interest.  

 

6.-  Results 

 

Table 3A describes the different alternatives analysed in the paper. Tables 3B and 3C present 

rejection rates from three different tests, namely Donald and Hsu (2013) (BB), Barret and 

Donald (BD) (2003), and Linton, Maasoumi and Whang (2005) (LMW) for the null 

hypothesis: H0: Y SD X. For example, in alternative 1, failing to reject H0 would imply that 

DCC produced by GARCH with a Student-t distribution (Y) FSD the DCC produced by 

GARCH with a Gaussian distribution (X). Following Donald and Hsu (2013), when 

implementing the blockwise bootstrap, the block sizes are set to 12 and 24, andthe 

subsampling size is set at 25. For each simulated time series of DCC, the p-values for the 

blockwise bootstraps method are approximated based on 200 replications and the p-values for 

the subsampling method are approximated based on 176 possible subsamples. The 

significance level is set at 5%. 
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[Insert Tables 3A, 3B and 3C here] 

 

(1)For alternatives A, B and C in Table 3B, the BB and BD tests clearly show that the DCC 

values, assuming the Student-t distribution, FSD Gaussian distributions for all three GARCH 

models. As these results imply a higher likelihood of higher DCC under the Student-t 

distribution, they are preferred to the Gausssian distribution. Figure 7 shows the Cumulative 

Distribution Function (CDF) and the integrated CDF (ICDF) for alternative A. Regarding 

CDF in the left panel, dashed line, DCC produced by GARCH for the Student-t distribution 

lies ahead of the solid line, DCC produced by GARCH assuming the Gaussian distribution. 

The right panel in Figure 7 shows that DCC produced by GARCH assuming the Student-t 

distribution SSD DCC produced by GARCH assuming the Gaussian distribution, as the 

dashed line is always below the solid one. This means that GARCH assuming the Gaussian 

distribution would be preferred by a financial risk manager. 

 

(2) Assuming the Gaussian distribution, alternatives D, E and F, the three tests conclude that 

neither EGARCH nor GJR FSD GARCH, and GJR does not FSD EGARCH. Figures 8-10 

show the CDFs and ICDFs for the alternatives for one of the 500 daily simulations for DCC. 

In each case, Y CDF (dashed line) crosses X CDF (solid line), therefore we do not find FSD. 

Not having found FSD, we check for SSD, but again, the hypothesis is rejected in all three 

cases. The rejection rates for SSD are given in Table 3C. Even though we cannot establish SD 

of any order, it is worth examining Figure 8 to shed light on the richness of the information 

provided by the DCC probability distributions. For low values of DCC, GARCH provides a 

higher likelihood of higher DCCs (the solid line lies ahead of the dashed line), but this is 

reversed for high values of DCC. The right panel shows the dashed line (EGARCH) lies 

above the blue line (GARCH), and the difference between them (dashed minus solid) is 

always positive. This means that DCC produced by GARCH SSD DCC produced by 

EGARCH. GARCH would be preferred to EGARCH for forecasting DCCas the higher 

expected DCC of GARCH for low DCC values can be compensated for a lower degree of 

uncertainty. Similar intuition can be drawn from Figure 10 for alternative F comparing DCC 

probability distributions produced by EGARCH (solid) and GJR (dashed). Even though these 

tests cannot establish either first or second order stochastic dominance for this particular 

simulation, the CDFs nevertheless cross. The left panel shows that the dashed line generally 

lies ahead of the solid line. However, in the right panel it seems that the higher expected DCC 

produced by GJR is compensated by lower uncertainty (dashed line, beneath solid line in the 
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right panel), making this strategy more desirable. Therefore, based on Figures 8 and 10, 

GARCH and GJR would be preferred to EGARCH for forecasting DCC (for the Gaussian 

case). 

 

(3) Assuming the Student-t distribution, EGARCH FSD GARCH (alternative G) and 

EGARCH SSD GJR (alternative O). Neither GJR FSD GARCH (alternative H) nor GARCH 

FSD GJR. Figure 11 for alternative G shows that the CDF of DCC produced by EGARCH 

lies ahead of the solid line, CDF of DCC produced by GARCH. This implies a higher 

likelihood of high DCC values under EGARCH, in which case GARCH would be preferred. 

The left panel in Figure 12 shows the solid CDF (GJR) underneath the blue CDF (GARCH) at 

low quantiles, then crosses the dashed one, stays above during some quantiles, and then 

returns below the dashed CDF. Accordingly, we do not find either first or second order SD. 

Figure 13 shows the last case, EGARCH versus GJR using the Student-t distribution 

(alternatives I and O). Even though the tests in Table 3B show that EGARCH FSD GJR 

(alternative O), the selected case2 for Figure 13 does not provide clear evidence in favour of 

the hypothesis. 

 

In summary, the Gaussian distribution is preferred to Student-t for forecasting DCC.  

EGARCH seems to provide a higher likelihood of higher DCC when compared with GARCH 

and GJR when using the Student-t distribution. Using the Gaussian distribution for 

forecasting DCC does not lead to either first or second order stochastic dominance. However, 

on the basis of the CDF and integrated CDF, it seems that the higher expected DCC values of 

GJR or GARCH may be compensated by lower uncertainty than for EGARCH. These results 

lend support to the empirical findings in Table 5 of Chang et al. (2011), where it is shown that 

EGARCH provides the highest average DCC for all periods in comparison with GARCH and 

GJR. Moreover, Chang et al. (2011)  also show that GJR always provides higher DCC values 

than GARCH. These results notwithstanding, the SD criterion does not seem to show any 

dominance between these two models.  

 

7. Conclusions 
 

In the spectrum of financial assets, VIX futures prices are a relatively new product. As with 

any financial asset, VIX futures are subject to risk. In this paper we analyzed the performance 

2 Individual simulation number 250 of 500 simulations was chosen for illustrative purposes.  

23 

                                                           



of a variety of strategies for managing the risk, through forecasting VaR, of VIX futures under 

the Basel II Accord.  

 

The alternative strategies for forecasting VaR of VIX futures, and for managing financial risk 

under the Basel II Accord, are several univariate conditional volatility models, specifically 

GARCH, EGARCH and GJR, with each based on either the Gaussian and Student t 

distributions. The main criterion for choosing among the alternative strategies was 

minimizing average daily capital charges. In the paper we used a methodology based on 

stochastic dominance that permits partial ordering of strategies by accommodating the entire 

distribution of DCC values. This methodology provides a search for uniformly higher ranked 

volatility models, based on large classes of evaluation functions and the entire DCC 

distribution.  

 

The main empirical findings of the paper are as follows: 

 

1. The Gaussian models are generally preferred to their Student-t counterparts.  

2. SD relations between DCC values produced by Gaussian models are generally not 

uniformly ranked. An analysis of CDFs and ICDF seems to show, however, that EGARCH 

provides DCC distributions with greater uncertainty, so the other models would be preferred. 

A lack of uniform rankings by SD also indicates that there exist special utility/evaluation 

functions that may provide complete, albeit subjective, rankings.  

3. Within the class of Student-t distributions, EGARCH SD both GARCH and GJR, implying 

that EGARCH  would be uniformly preferred to GARCH and GJR by a financial risk 

manager.  

4. In general, a stochastic dominance criterion can be used to rank different models of VIX 

futures and distributions, as illustrated in the previous empirical results. Even in cases of no 

FSD and SSD, the tests provide additional information about the entire distribution over 

specific ranges. 

5. The graphs of the CDFs of each pair of models allow a comparison globally for the whole 

distribution, and also locally for a given range of DCC values and probabilities. This allows 

more specific comparisons than previously afforded based on  the mean and other moments of 

the relevant distributions. 
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In this paper we have not found an optimal model in the sense that it outperforms the other 

models during the whole sample period. On the other hand, we have restricted attention to a 

set of widely used, though not necessarily exhaustive set of forecasting models and 

distributions. The paper does not pay explicit attention to the number of violations, as defined 

by the Basel Accords, except in the computation of the DCC. The analysis provided in the 

paper highlights the need for specific evaluation functions when an optimal model is to be 

identified.  

 

The results of the paper suggest that further work is needed to compare, not only univariate 

models, but also combinations of models, such as based on the mean or median. This 

framework presented above should also be applied to a portfolio of assets to determine the 

usefulness of the stochastic dominance approach. This paper performed pairwise comparisons 

for a variety of models. The extension to comparisons among multivariate models is a topic 

for future research, as is a detailed analysis of the useful information that is contained in the 

CDF and ICDF. 
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Figure 1  

VIX and 30-day Maturity VIX Futures Closing Prices 

 26 March 2004 -  29 November 2013 
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Figure 2  

30-day Maturity VIX Futures Returns 

 26 March 2004 - 29 November 2013 
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Figure 3  

Histogram, Normal and Student-t Distributions 

30-day Maturity VIX Futures Returns 

26 March 2006 - 29 November 2013 
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Figure 4  

Volatility of 30-day Maturity VIX Futures Returns 

 26 March 2004 - 29 November 2013 
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Figure 5. DCC probability density functions and CDF -  Model 1 produces DCC with higher mean 

and higher variance than Model 2 

  
 

 

 
Figure 6. DCC ICDF for Models 1 and 2 and their differences 
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Figure 7 

Alternative A.  

Solid line is GARCH-t and dashed line is GARCH-Gaussian 
CDF Integrated CDF  

  
 

 

Figure 8 

Alternative D 

Solid line is GARCH-Gaussian and dashed line is EGARCH-Gaussian 
CDF Integrated CDF  
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Figure 9 

Alternative E 

Solid line is GARCH and dashed line is GJR 
CDF Integrated CDF  

  
 

 

Figure 10 

Alternative F 

Solid line is EGARCH-Gaussian and dashed line is GJR-Gaussian 
CDF Integrated CDF  
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Figure 11 

Alternative G 

Blue line is GARCH-t and green line is EGARCH-t 
CDF Integrated CDF  

  
 

Figure 12 

Alternative H 

Blue line is GARCH-t and green line is GJR-t 
CDF Integrated CDF  
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Figure 13 

Alternative I 

Blue line is EGARCH-t and green line is GJR-t 
CDF Integrated CDF  

  
 
 

 

 

 
Table 1  

Basel Accord Penalty Zones 
 

Zone Number of Violations k 

Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 

Red 10+ 1.00 

Note: The number of violations is given for 250 business days. The penalty 
structure under the Basel II Accord is specified for the number of violations 
and not their magnitude, either individually or cumulatively.   
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Table 2  
 

30-day Maturity VIX Futures Returns  
Histogram and Descriptive Statistics  
26 March 2004 - 29 November 2013 

 
 

0

100
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300

400

500

600

700

800

900

-20 -10 0 10 20

Series: RETURNS
Sample 26/03/2004 29/11/2013
Observations 2525

Mean      -0.014896
Median  -0.273598
Maximum  25.81866
Minimum -23.32617
Std. Dev.   3.800655
Skewness   0.697327
Kurtosis   7.350578

Jarque-Bera  2195.970
Probability  0.000000
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Table 3A  

Alternative 
 

Alternative 
GARCH 
Gaussian 

GARCH 
Student-t 

EGARCH 
Gaussian 

EGARCH 
Student-t 

GJR 
Gaussian 

GJR 
Student-t 

A X Y     
B   X Y   
C     X Y 
D X  Y    
E X    Y  
F   X  Y  
G  X  Y   
H  X    Y 
I    X  Y 
J Y  X    
K Y    X  
L   Y  X  
M  Y  X   
N  Y    X 
O    Y  X 
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Table 3B  
 

Rejection Rates for First-order SD Tests  
 

      

    Gaussian Student-t Gaussian Student 

Design A B C D E F G H I J K L M N O 

BB(12) 0.00 0.00 0.00 0.53 0.50 0.47 0.02 0.49 0.68 0.50 0.51 0.55 0.87 0.28 0.14 
BD(12) 0.00 0.00 0.00 0.45 0.43 0.42 0.01 0.45 0.67 0.42 0.46 0.47 0.87 0.25 0.11 
BB(24) 0.00 0.00 0.00 0.35 0.30 0.32 0.01 0.27 0.51 0.34 0.34 0.37 0.62 0.15 0.07 
BD(24) 0.00 0.00 0.00 0.33 0.28 0.29 0.00 0.25 0.50 0.30 0.31 0.34 0.62 0.14 0.05 
LMW 0.00 0.00 0.00 0.28 0.21 0.26 0.02 0.25 0.52 0.28 0.27 0.28 0.18 0.13 0.05 

 
 
 
 

Table 3C  
 

Rejection Rates for Second-order SD Tests  
 

      

    Gaussian Student-t Gaussian Student 

Design A B C D E F G H I J K L M N O 

BB(12) 0.00 0.00 0.00 0.44 0.38 0.37 0.00 0.40 0.67 0.40 0.46 0.48 1.00 0.19 0.05 
BD(12) 0.00 0.00 0.00 0.41 0.36 0.34 0.00 0.39 0.67 0.37 0.43 0.45 1.00 0.19 0.05 
BB(24) 0.00 0.00 0.00 0.36 0.34 0.31 0.01 0.30 0.55 0.33 0.39 0.39 0.97 0.14 0.05 
BD(24) 0.00 0.00 0.00 0.35 0.33 0.29 0.00 0.30 0.44 0.32 0.39 0.38 0.97 0.14 0.03 
LMW 0.00 0.00 0.00 0.29 0.26 0.30 0.06 0.24 0.44 0.31 0.31 0.31 0.94 0.09 0.02 

 
 
 

41 


	Juan-Ángel Jiménez-Martín
	Department of Quantitative Economics
	Complutense University of Madrid, Spain
	Teodosio Pérez-Amaral
	Department of Quantitative Economics
	Complutense University of Madrid, Spain
	/
	Table 3A
	Alternative
	Table 3B
	Rejection Rates for First-order SD Tests
	Table 3C
	Rejection Rates for Second-order SD Tests

