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Empirical correlation of shear wave velocity (vs) 
with spt of soils in Madrid

I. Pérez-Santisteban1*, A. Muñoz Martín2, A. Carbó Gorosabel2 and J.M. Ruiz Fonticiella3 pre-
dict the stiffness and deformability of the soils of Madrid by statistical correlation between Vs 
measured with the ReMi technique or passive seismic, and the standard penetration test (Nspt).

E mpirical correlations are usually used as a predictive 
tool in geotechnical engineering. However, equa-
tions calculated for soils very different to the ones 
to be characterized are frequently used, and so they 

are not representative of their mechanical properties. This 
fact, added to the increasing interest of civil engineering in 
knowing the shear wave velocity (Vs) of the ground, has 
led to the calculation of different empirical equations to 
predict the Vs value of the soils of Madrid. In this study this 
has been achieved by calculating the empirical correlations 
between the Vs value obtained through the ReMi (Refraction 
Microtremor) technique and the Standard Penetration Test 
(500 NSPT values). The empirical correlations proposed are 
applicable to the whole metropolitan area of Madrid, and 
have an excellent predictive capability owing to the incorpo-
ration of the measurement depth to the equations, which has 
an important influence in the resistance properties of soils.

It is always better to have data collected in the studied 
site. But often there are too many difficulties to carry out 
some of these surveys. It may also happen that the surveys 
take too long or are too expensive to carry out. In these situ-

ations, empiric equations can be used to estimate this data. 
In geotechnical engineering, these empiric correlations are 
used frequently as a predictive tool, especially in the project’s 
design primary phases, when vast extensions of terrain are 
to be characterized in a short period of time, and to define 
if the soil fits a specific purpose. Because of this factor, there 
are plenty of estimations published that link between them 
different types of mechanical properties and geotechnical 
parameters.

In the last few years, there has been an increasing interest 
in finding the value of Vs. There are difficulties in estimating 
its value directly, as it is not always easy to identify the S 
wave, especially in urban areas, as it may be disguised by 
ambient noise. These factors have resulted in a great number 
of correlations that establish the value of Vs according to 
lithology and other geotechnical parameters. Of all these 
correlations, clearly the most frequent is the one that links Vs 
to the results of the Standard Penetration Test (Nstp) [1-21], 
as it is a much extended and widely used parameter.

These correlations are very useful when no other data 
directly acquired is available, or when a quick estimation of 

Figure 1 Comparison of the correlation between Vs 
and NSPT for the soils of Madrid and the equations 
proposed in the bibliography.
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cally in every location to be investigated before establishing 
its predictive equations.

Consequently, to obtain predictive equations suitable 
for the soils of Madrid, it will be necessary to perform a 
complete statistical analysis for a sufficiently representative 
amount of soils samples. This study’s goal is to predict the 
stiffness and deformability of the soils of Madrid. To do so, 
the statistical correlation between Vs measured with ReMi 
technique or passive seismic, and the standard penetration 
test (Nspt) has been analysed.

Geological and geotechnical properties of the soils of Madrid
The city of Madrid and its urban surroundings is situ-
ated in a sedimentary intermountain watershed that was 
defined during the Tertiary Era when the central system 
rose. Consequently, its soils are made of Miocene materi-
als that resulted from a sedimentary system based on great 
alluvial fans that started in the watershed bankside and 
that converged towards the central zone in an evaporite  
lake.

Because of this deposition system, the sediments normally 
distribute in concentric bands with the edging facies con-
stituted by immature arkoses prograding over increasingly 
argillaceous and gypseous facies in the centre of the basin. 
This is not as simple as it sounds owing to the discontinu-
ity caused by climate change or to the raising of different 
margins above the cone which causes episodes of gullies, 
more or less energetic, which control the granulometry and 
the progress of the detrital material. These factors provoke 

the terrain’s geotechnical properties is needed. But it is 
always important not to forget what geological conditions 
the correlations were calculated for, and so, if it can be 
used in the particular situation that is to be characterized. 
As each area of investigation is characterized by a different 
geological history, the geotechnical parameters obtained will 
be conditioned by a history of tensions, lithological com-
positions, age, etc. This situation implies that the empirical 
correlations calculated for a specific location may not be 
valid in other locations. Thus, to be able to obtain reliable 
and representative parameters of the ground that is to be 
characterized, it is essential to use equations specifically 
calculated for that kind of soil and with the same geological 
conditions.

Therefore, the empiric equations that can be found in 
the bibliography have been calculated for other kinds of 
soils, and cannot be used to predict the stiffness of the soils 
of Madrid. Figure 1 displays a representation of the relation 
between the values of Vs and SPT measured for this investi-
gation and the most common correlations between these two 
values published. The figure shows that, except in the case of 
Jafari et al. (1997) [16], all the correlations from the bibliog-
raphy calculated very low Vs for the grounds of Madrid. This 
probably happens because most of these studies investigate 
quaternary soils and deposits not very consolidated with Vs 
values much lower than those characteristics of the tertiary 
soils of Madrid. This demonstrates that there is a big grade 
of variability in the Vs predicted by the different empiric 
models, and highlights the need of measuring Vs specifi-

Figure 2  Location of the surveys carried out in the 
metropolitan area of Madrid.
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This empirical relation has a coefficient of determination 
(R2) of 0.53. This indicates that only 53% of Vs values 
are explained by the Nspt values. This R2 value confirms 
that there is a lineal relation between these two variables. 
Nonetheless, it does also confirm that the proposed function 
is not able to explain nearly half of the Vs data measured 
in situ.

The empirical relationship between Vs and Nspt for each 
of the lithological groups is expressed through the following 
equations:

Sands: R2 = 0.37  (6)

Toscos: R2 = 0.42  (7)

Peñuelas: R2 = 0.58  (8)

Gypsiferous clay: 	 R2 = 0.68  (9)

Sands show a very poor correlation between Vs and NSPT, 
improving slightly with the clay content and the consolida-
tion degree. Anyhow, there is not a good correlation between 
Vs and NSPT for any of the lithological groups, and all the 
coefficients of determination are below 0.7 (R2 < 0.7). This 
shows that the Vs cannot be explained only in terms of SPT, 
so the need to include another parameter in the equation has 
to be considered.

We know that the Vs is subject to depth, as it controls 
the consolidation degree and the confining tension of the 
soils. Therefore, the residual values of the equations (r) have 
to be analysed, namely, the difference between the value of 
the variable measured experimentally and the theoretical 

a pronounced discontinuity in the facies and it is common 
to find arkoses of different granulometry interbedded with 
lacustrine deposits.

Therefore, the detrital facies found in Madrid are richer 
in fines the further we are from the watershed bankside and 
up to the transition facies. The transition facies are defined 
by a saline mudflat located between the more distal zone 
of the fans and central lake, where evaporite minerals can 
already be found.

It is common in Madrid to refer to the different facies 
through the following nomenclature, normally used in the 
geotechnical descriptions and publications:
n  ��Arena de Miga: sand with less than 25% fines (particles 

<0,008 mm)
n  �Toscos: Sandy clays or clays with more than 40% fines.
n  ��Peñuelas: high plasticity clays that correspond to the 

transition facies.
n  ��Gypsiferous clay: Interbedded clays with gypsums from 

the evaporite facies.
As per the geotechnical properties of the detrital facies 
(Arenas de Miga and Toscos), the fines content tends to 
increase its resistance.

The Peñuelas of the transition facies are the lithology 
with more variable geotechnical behaviour. Although when 
healthy they are formed by very resistant lithificated clays, it 
is common to find them softened and weathered. This lithol-
ogy also commonly presents calcareous levels associated to 
the basin’s shallowing.

The gypsums of the evaporitie facies are notable for their 
resistance, but also show different geotechnical problems 
associated to karstification.

Relationship between Vs and Nspt for the soils of Madrid
To establish the correlation between the Vs obtained through 
the ReMi technique in the soils of Madrid and the results of 
the SPT tests, a statistical analysis between the 500 values of 
Nspt and the Vs that correspond with the depths tested in the 
boreholes has been made.

A lineal regression analysis through the method of least 
squares was used for the statistical analysis, which minimizes 
the sum of the squared residuals:

(4)

r being the residual, which is the difference between the 
value of the observed variables (Yi) and the value predicted 
in theory by the regression (Yi*).

Through the process, we have obtained an empirical 
relation that is able to predict the Vs values from the results 
of the SPT tests:

(5) Figure 3 Correlation between VS and Nspt for the soils of Madrid.
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the errors’ independence, depth has to be included in the 
analysis.

If the measuring depth is included in the equations, the 
quality of the correlations increases significantly, the experi-
mental data adjusts better to the regression equation, and 
the coefficient of determination increases for all lithologies 
(Figure 5):

All soils: 	 R2=0.76 (10)

Sands: 	 R2=0.78 (11)

Toscos: R2=0.72 (12)

Peñuelas: 	 R2=0.77 (13)

Gypsiferous clays: 	 R2=0.82 � (14)

Analysis of predictive capability
Usually to rate the quality of the regression function, the 
coefficient of determination is used (R2). It represents the 
percentage of variability of Vs explained by the regression 
function. Its value fluctuates between 0 when the independ-
ent variables do not explain the variations in Vs, and 1 when 
it fits perfectly.

Nevertheless, a regression model with a high percentage 
of explained variations may not have a high predictive capac-
ity. This means that the percentage of data not explained can 
have a value very different from the one predicted by the 
equation.

Therefore, for a correct statistical analysis, it is necessary 
to analyse the residual values of the equation, and study 
the predictive capability of the proposed correlations. This 
way, for all the equations posed, a percentage error on the 
estimated Vs has been calculated:

 (15)

where Vsc is the speed calculated by the equation, and Vsm 
is the speed calculated experimentally through the ReMi 
technique.

The relative error for the Vs estimation (equation 15) 
was calculated to analyse the security level of the empiric 
correlations used to predict the Vs. The results are shown in 
relation to cumulative frequency (Figure 6).

This figure shows that 73 % of Vs values calculated 
through the equation that links all soils of Madrid (equa-
tion 12) have an error of less than 20% with regard to the 
measured Vs.

When applying the same analysis to the different litho-
logical groups, 80% of the values calculated by equations 13 
and 14 for sands (Arena de Miga) and toscos have an error 
of less that 20% with regard to the measured Vs.

value calculated by the correlation equation. By measuring 
these residual values the predictive capability of the equa-
tions can be studied, and we can determine if they have a  
bias.

Depth influence
If we compare the residuals of equation 5 versus depth (Z), 
it shows that there is an evident positive lineal tendency 
of the residuals with depth (Figure 4). This indicates that 
the errors rest on this variable that was not taken into  
consideration.

Residuals are positive for high depths. This indicates 
that the Vs calculated with this relation for depths of more 
than 12 metres are underestimated. This demonstrates that 
the previous equations introduce a bias, and that to assure 

Figure 4 Graphic of the residuals of equation 6 versus depth (omitted vari-
able).

Figure 5 Model showing the relation between Vs with depth and the Nspt 
values.
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tions (except for Peñuelas) also have an excellent predictive 
capability, with more than 70% of the calculated parameters 
having an error of less than 20% as regard to the measured 
in situ.

The equations for the Peñuela facies lithology have 
proved to be the less predictable ones. This is because 
of the variability of its geotechnical properties. Its Vs is 
very sensible to the variability in resistance that distin-
guishes its lithological group, detecting changes in cementa-
tion and weathering when they have enough thickness. 
However, the same does not happen with other analysed 
parameters (Z, NSPT), which are not able to explain the 
variation of Vs either because of the difference in measuring 
scale or because of the different factors that control each  
parameter.

The influence of depth has been analysed, and it has 
been demonstrated that it is an indispensable parameter for 
predicting the stiffness of soils. The soils under high confin-
ing tensions behave as more rigid materials than identical 
soils under less confining tensions. The influence of depth 
is also greater in the younger lithologies, with less cohesion, 
pre-consolidation and without diagenesis. The analysis ques-
tions if a bias has been introduced in the published equations 
that correlate Vs directly to other geotechnical param-
eters, which would also explain the important difference  
between them.
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However, for peñuelas, the predictive capability of the 
equation is lower. Only 60% of the Vs values calculated 
show an error of less than 20%. For clays with gypsum, 85% 
of the Vs values calculated with equation 16 show an error 
of less than 20%.

Depth influence in the prediction of the stiffness of soils 
In the empiric correlations analysed, it has been demon-
strated that to predict the stiffness and the deformability of 
the soils of Madrid it is necessary to include in the equa-
tions the depth measuring point. If the depth is not included 
as an explanatory variable, the values of Vs calculated 
below 10-12 metres depth are underestimated. This happens 
because the compaction of soils owing to the weight of the 
overlying materials is not taken into account. It has also 
been demonstrated that to assure the independence in the 
predictive equation’s error, it is necessary to include the depth 
measuring point in the correlations.

In all correlations, Vs is subject to depth and lithology 
(percentage of fines, age, cementation, grade of overcon-
solidation, etc.). For the analysed equations, the influence of 
depth is stronger in sands, and it diminishes as the amount 
of fines increases, or cementation levels rise. This is owing 
to sands not being pre-consolidated, and consequently 
easier to compact than other lithologies. This lithological 
group barely has cohesion or cementation, and so its Vs 
values basically depend of the depth measuring point. 
For this reason, the correlations of this lithological group 
are the improved when this variable is included in the  
equations.

As for Toscos, depth still has an important influence 
on the stiffness. But Vs is also affected by other factors 
related to the clay content, as cohesive forces or saturation  
grade.

The influence of depth on Peñuelas is small, because it 
is lithified clay difficult to compact and also very variable 
depending on the saturation and cementation grade. Lastly, 
as for the clays with gypsums, depth barely has any influence 
on stiffness, especially if the gypsiferous levels are high.

Conclusions
Empiric correlations are a very useful tool for estimating the 
different geotechnical parameters when other direct tests are 
not available. They always need to be used as a measure, 
and their limits have to be known. It is indispensable to use 
equations calculated for the same soils that are to be charac-
terized, and if possible, based on its lithology.

The correlations presented in this study were calculated 
for number of parameters sufficiently representative of all 
the lithologies and at different depths. Consequently, these 
equations can be extrapolated to all soils of Madrid, and 
can be used as an efficient predictive tool to calculate Vs 
variations in the metropolitan area. All the correlation equa-

Figure 6 Analysis of the predictive capability of the correlation between Vs, 
Nspt and depth for all soils of Madrid.
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