Person:
Rodríguez Agarrabeitia, Antonia

Loading...
Profile Picture
First Name
Antonia
Last Name
Rodríguez Agarrabeitia
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Óptica y Optometría
Department
Química Orgánica
Area
Química Orgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Tailoring the Molecular Skeleton of Aza-BODIPYs to Design Photostable Red-Light-Emitting Laser Dyes
    (ChemPhotoChem, 2018) Prieto Castañeda, Alejandro; Avellanal Zaballa, Edurne; Gartzia Rivero, Leire; Cerdán Pedraza, Luis; Rodríguez Agarrabeitia, Antonia; García Moreno, Inmaculada; Bañuelos Prieto, Jorge; Ortíz García, María Josefa
    In this article the design and characterization of a set of novel red‐light‐emitting laser aza‐BODIPY dyes is reported. The applied synthetic method allows an exhaustive and versatile functionalization of both the dipyrrin core and the boron bridge. From the analysis of the photophysical and laser signatures, we determine the suitable modifications of the chromophoric backbone necessary to modulate the emission spectral region, efficiency and photostability under a strong irradiation regime. These dyes are endowed with efficient fluorescence and laser emission, and are particularly outstanding in terms of their high photostability, a key parameter to guarantee long‐lasting emission in any (bio)technological application. The herein‐reported results support, for the first time, the viability of aza‐BODIPYs as tunable red laser dyes. In fact, the laser performances of some of the tested aza‐BODIPYs surpass those of commercially available laser dyes in the same spectral region.
  • Item
    Rational molecular design enhancing the photonic performance of red-emitting perylene bisimide dyes
    (Physical Chemistry Chemical Physics, 2017) Avellanal Zaballa, Edurne; Durán Sampedro, Gonzalo; Prieto Castañeda, Alejandro; Rodríguez Agarrabeitia, Antonia; García Moreno, Inmaculada; López Arbeloa, Íñigo María; Bañuelos Prieto, Jorge; Ortiz García, María Josefa
    We report the synthesis of novel multichromophoric organic architectures, where perylene red is decorated with BODIPY and/or hydroxycoumarin dyes acting as light harvesters and energy donors. The computationally-aided photophysical study of these molecular assemblies reveals a broadband absorption which, regardless of the excitation wavelength, leads solely to a bright red-edge emission from perylene bisimide after efficient intramolecular energy transfer hops. The increase of the absorbance of these molecular antennas at key pumping wavelengths enhances the laser action of the commercial perylene red. The herein applied strategy based on energy transfer dye lasers should boost the use of perylene-based dyes as active media for red-emitting lasers.