Person:
Yáñez-Sedeño Orive, Paloma

Loading...
Profile Picture
First Name
Paloma
Last Name
Yáñez-Sedeño Orive
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Analítica
Area
Química Analítica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 64
  • Item
    Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing
    (Nanomaterials, 2019) Campuzano Ruiz, Susana; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    Graphene quantum dots (GQDs) and carbon dots (CDs) are among the latest research frontiers in carbon-based nanomaterials. They provide interesting attributes to current electrochemical biosensing due to their intrinsic low toxicity, high solubility in many solvents, excellent electronic properties, robust chemical inertness, large specific surface area, abundant edge sites for functionalization, great biocompatibility, low cost, and versatility, as well as their ability for modification with attractive surface chemistries and other modifiers/nanomaterials. In this review article, the use of GQDs and CDs as signal tags or electrode surface modifiers to develop electrochemical biosensing strategies is critically discussed through the consideration of representative approaches reported in the last five years. The advantages and disadvantages arising from the use of GQDs and CDs in this context are outlined together with the still required work to fulfil the characteristics needed to achieve suitable electrochemical enzymatic and affinity biosensors with applications in the real world.
  • Item
    Electrochemical immunosensor for rapid and sensitive determination of estradiol
    (Analytica Chimica Acta, 2012) Ojeda Fernández, Irene; Lopez-Montero, Judith; Moreno Guzmán, María; Janegitz, Bruno; González Cortés, Araceli; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    This work describes the preparation of an electrochemical immunosensor for estradiol based on the surface modification of a screen printed carbon electrode with grafted p-aminobenzoic acid followed by covalent binding of streptavidin (Strept) and immobilization of biotinylated anti-estradiol (antiestradiol-Biotin). The hormone determination was performed by applying a competitive immunoassay with peroxidase-labelled estradiol (HRP–estradiol) and measurement of the amperometric response at −200 mV using hydroquinone (HQ) as redox mediator. The calibration curve for estradiol exhibited a linear range between 1 and 250 pg mL−1 (r = 0.990) and a detection limit of 0.77 pg mL−1 was achieved. Cross-reactivity studies with other hormones related with estradiol at physiological concentration levels revealed the practical specificity of the developed method for estradiol. A good reproducibility, with RSD = 5.9% (n = 8) was also observed. The operating stability of a single bioelectrode modified with anti-estradiol-Biotin-Strept was nine days when it was stored at 8 ◦C under humid conditions between measurements. The developed immunosensor was applied to the analysis of certified serum and spiked urine samples with good results
  • Item
    Click chemistry-assisted antibodies immobilization for immunosensing of CXCL7 chemokine in serum
    (Journal of Electroanalytical Chemistry, 2019) Guerrero Irigoyen, Sara; Cadanno Mendía, Dona; Agüí Chicharro, María Lourdes; Barderas Manchado, Rodrigo; Campuzano Ruiz, Susana; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    The first electrochemical immunosensor for the determination of CXCL7 (chemokine (C-X-C motif) ligand 7) autoimmune biomarker is reported in this work. Click chemistry-assisted antibodies immobilization was per formed by reaction of azide functionalized-multi-walled carbon nanotubes (MWCNTs) and ethynyl-IgG onto screen-printed carbon electrodes. The capture antibodies were further immobilized onto IgG-MWCNTs con jugates. After a blocking step with casein, a sandwich immunoassay was implemented involving biotinylated detector antibodies and alkaline phosphatase (AP)-streptavidin conjugate. Differential pulse voltammetry upon addition of 1-naphthylphosphate was used as the analytical readout. A linear calibration plot between 0.5 and 600 pg mL−1 CXCL7 and a LOD value of 0.1 pg mL−1 were obtained. The usefulness of the immunosensor was demonstrated by the successful analysis of serum samples from patients with rheumatoid arthritis.
  • Item
    Multiplexed Ultrasensitive Determination of Adrenocorticotropin and Cortisol Hormones at a Dual Electrochemical Immunosensor
    (Electroanalysis, 2012) Moreno Guzmán, María; González Cortés, Araceli; Yáñez-Sedeño Orive, Paloma
    A novel dual electrochemical immunosensor for the multiplexed determination of adrenocorticotropin (ACTH) and cortisol is reported. Aminophenylboronic acid-modified dual screen-printed carbon electrodes were prepared on which the corresponding ACTH and cortisol antibodies were immobilized. Competitive immunoassays involved biotinylated ACTH and alkaline phosphatase labelled streptavidin, or alkaline phosphatase labelled cortisol. Differential pulse voltammetry upon 1-naphtyl phosphate addition was employed to monitor the affinity reactions. The ranges of linearity were 5.0×10−5−0.1 and 0.1−500 ng/mL for ACTH and cortisol. The usefulness of the dual immunosensor was demonstrated by analyzing certified human serum samples with good recoveries.
  • Item
    Diagnostics Strategies with Electrochemical Affinity Biosensors Using Carbon Nanomaterials as Electrode Modifiers
    (Diagnostics, 2016) Campuzano Ruiz, Susana; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    Early diagnosis is often the key to successful patient treatment and survival. The identification of various disease signaling biomarkers which reliably reflect normal and disease states in humans in biological fluids explain the burgeoning research field in developing new methodologies able to determine the target biomarkers in complex biological samples with the required sensitivity and selectivity and in a simple and rapid way. The unique advantages offered by electrochemical sensors together with the availability of high affinity and specific bioreceptors and their great capabilities in terms of sensitivity and stability imparted by nanostructuring the electrode surface with different carbon nanomaterials have led to the development of new electrochemical biosensing strategies that have flourished as interesting alternatives to conventional methodologies for clinical diagnostics. This paper briefly reviews the advantages of using carbon nanostructures and their hybrid nanocomposites as electrode modifiers to construct efficient electrochemical sensing platforms for diagnosis. The review provides an updated overview of some selected examples involving attractive amplification and biosensing approaches which have been applied to the determination of relevant genetic and protein diagnostics biomarkers.
  • Item
    Beyond Sensitive and Selective Electrochemical Biosensors: Towards Continuous, Real-Time, Antibiofouling and Calibration-Free Devices
    (Sensors, 2020) Campuzano Ruiz, Susana; Pedrero Muñoz, María; Gamella Carballo, Maria; Serafín González-Carrato, Verónica; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    Nowadays, electrochemical biosensors are reliable analytical tools to determine a broad range of molecular analytes because of their simplicity, affordable cost, and compatibility with multiplexed and point-of-care strategies. There is an increasing demand to improve their sensitivity and selectivity, but also to provide electrochemical biosensors with important attributes such as near real-time and continuous monitoring in complex or denaturing media, or in vivo with minimal intervention to make them even more attractive and suitable for getting into the real world. Modification of biosensors surfaces with antibiofouling reagents, smart coupling with nanomaterials, and the advances experienced by folded-based biosensors have endowed bioelectroanalytical platforms with one or more of such attributes. With this background in mind, this review aims to give an updated and general overview of these technologies as well as to discuss the remarkable achievements arising from the development of electrochemical biosensors free of reagents, washing, or calibration steps, and/or with antifouling properties and the ability to perform continuous, real-time, and even in vivo operation in nearly autonomous way. The challenges to be faced and the next features that these devices may offer to continue impacting in fields closely related with essential aspects of people’s safety and health are also commented upon.
  • Item
    Simultaneous amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 by using grafted screen-printed electrodes and a composite prepared from quantum dots and carbon nanotubes for signal amplification
    (Microchimica Acta, 2019) Serafín González-Carrato, Verónica; Valverde De La Fuente, Alejandro; Garranzo-Asensio, María; Barderas, Rodrigo; Campuzano Ruiz, Susana; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    This paper describes a dual electrochemical immunoassay for the simultaneous determination of IL-13Rα2 and CDH-17, two biomarkers of emerging relevance in metastatic processes. The sandwich assay uses a screen-printed dual carbon electrode that was electrochemically grafted with p-aminobenzoic acid to allow the covalent immobilization of capture antibodies. A hybrid composed of graphene quantum dots (GQDs) and multiwalled carbon nanotubes (MWCNTs) act as nanocarriers for the detection antibodies and horseradish peroxidase. The use of this hybrid material considerably improves the assay (in comparison to the use of MWCNTs) due to the peroxidase mimicking activity of the GQDs. The method works at a low working potential (0.20 V vs. Ag pseudo-reference electrode) and thus is not readily interfered by unknown electroactive species. The dual immunoassay allows for the selective determination of both biomarkers with LOD values of 1.4 (IL-13sRα2) and 0.03 ng mL-1 (CDH-17). The simultaneous determination of IL-13Rα2 and CDH-17 was accomplished in lysates from breast and colorectal cancer cells with different metastatic potential, and in paraffin-embedded tumor tissues extracts from patients diagnosed with colorectal cancer at different stages. The applicability to discriminate the metastatic potential even in intact cells through the detection of both extracellular receptors has been demonstrated also. The assay can be performed within 3 h, requires small sample amounts (0.5 μg), and has a simple protocol. Graphical abstract Dual amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 in human colorectal cancer cells and tissues by using grafted screen-printed electrodes and composites of quantum dots and carbon nanotubes as nanocarriers.
  • Item
    Biosensing and Delivery of Nucleic Acids Involving Selected Well-Known and Rising Star Functional Nanomaterials
    (Nanomaterials, 2019) Campuzano Ruiz, Susana; Gamella Carballo, Maria; Serafín González-Carrato, Verónica; Pedrero Muñoz, María; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    In the last fifteen years, the nucleic acid biosensors and delivery area has seen a breakthrough due to the interrelation between the recognition of nucleic acid’s high specificity, the great sensitivity of electrochemical and optical transduction and the unprecedented opportunities imparted by nanotechnology. Advances in this area have demonstrated that the assembly of nanoscaled materials allows the performance enhancement, particularly in terms of sensitivity and response time, of functional nucleic acids’ biosensing and delivery to a level suitable for the construction of point-of-care diagnostic tools. Consequently, this has propelled detection methods using nanomaterials to the vanguard of the biosensing and delivery research fields. This review overviews the striking advancement in functional nanomaterials’ assisted biosensing and delivery of nucleic acids. We highlight the advantages demonstrated by selected well-known and rising star functional nanomaterials (metallic, magnetic and Janus nanomaterials) focusing on the literature produced in the past five years.
  • Item
    Electrochemical biosensor for creatinine based on the immobilization of creatininase, creatinase and sarcosine oxidase onto a ferrocene/horseradish peroxidase/gold nanoparticles/multi-walled carbon nanotubes/Teflon composite electrode
    (Electrochimica Acta, 2013) Serafín González-Carrato, Verónica; Hernández, Paloma; Agüí Chicharro, María Lourdes; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    A composite electrode consisted of gold nanoparticles (AuNPs), multi-walled carbon nanotubes (MWCNTs) and Teflon, to which peroxidase (HRP) and ferrocene (Fc) were incorporated as auxiliary enzyme and redox mediator, respectively, was constructed. The enzymes creatininase, creatinase and sarcosine oxidase were then co-immobilized onto the surface of the resulting HRP/Fc/AuNPs/MWCNTs/Teflon electrode for the preparation of a creatinine biosensor. Amperometry in stirred solutions using a detection potential of 0.0 V vs Ag/AgCl allowed a linear calibration plot to be obtained in the 0.003–1.0 mM creatinine concentration range with a limit of detection of 0.1 M (S/N = 3). The apparent Michaelis-Menten constant for creatininase was KMap= 4.1 ± 0.4 mM. The developed biosensor was validated with good results by determining creatinine in human serum and correlating with the spectrophotometric Jaffe’s method.
  • Item
    Electrochemical magnetoimmunosensor for the ultrasensitive determination of interleukin-6 in saliva and urine using poly-HRP streptavidin conjugates as labels for signal amplification
    (Analytical and Bioanalytical Chemistry, 2014) Ojeda Fernández, Irene; Moreno Guzmán, María; González Cortés, Araceli; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    A novel magnetoimmunosensor design for interleukin-6 (IL-6) which involved the covalent immobilization of anti-IL-6 antibodies onto carboxyl-functionalized magnetic microparticles and a sandwich-type immunoassay with signal amplification using poly-HRP-streptavidin conjugates is reported. All the variables concerning the preparation and the electroanalytical performance of the immunosensor were optimized. The use of poly-HRP-strept conjugates as enzymatic labels instead of conventional HRP-strept allowed enhanced signal-to-blank current ratios to be obtained. A linear calibration plot between the measured steady-state current and the log of IL-6 concentration was achieved in the 1.75 to 500 pg/mL range, which was not feasible when using HRP-strep as label. A limit of detection of 0.39 pg/mL IL-6 was obtained. The antiIL-6-MB conjugates exhibited an excellent storage stability providing amperometric responses with no significant loss during at least 36 days. The magnetoimmunosensor showed also an excellent selectivity against potentially interfering substances. The immunosensor was used to determine IL-6 in urine samples spiked at three different concentration levels with clinical relevance. Moreover, IL-6 was measured in three different saliva samples corresponding to a periodontitis patient, a smoker volunteer, and a non-smoker volunteer. The obtained results were statistically in agreement with those provided by a commercial ELISA kit.