Person:
Ortiz García, María Josefa

Loading...
Profile Picture
First Name
María Josefa
Last Name
Ortiz García
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Orgánica
Area
Química Orgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 21
  • Item
    Rational molecular design enhancing the photonic performance of red-emitting perylene bisimide dyes
    (Physical Chemistry Chemical Physics, 2017) Avellanal Zaballa, Edurne; Durán Sampedro, Gonzalo; Prieto Castañeda, Alejandro; Rodríguez Agarrabeitia, Antonia; García Moreno, Inmaculada; López Arbeloa, Íñigo María; Bañuelos Prieto, Jorge; Ortiz García, María Josefa
    We report the synthesis of novel multichromophoric organic architectures, where perylene red is decorated with BODIPY and/or hydroxycoumarin dyes acting as light harvesters and energy donors. The computationally-aided photophysical study of these molecular assemblies reveals a broadband absorption which, regardless of the excitation wavelength, leads solely to a bright red-edge emission from perylene bisimide after efficient intramolecular energy transfer hops. The increase of the absorbance of these molecular antennas at key pumping wavelengths enhances the laser action of the commercial perylene red. The herein applied strategy based on energy transfer dye lasers should boost the use of perylene-based dyes as active media for red-emitting lasers.
  • Item
    Project number: 77
    Adaptación de las prácticas de laboratorio de Materiales en Óptica Oftálmica y Lentes de contacto a metodologías de aprendizaje activo basado en la experimentación
    (2023) Orden Hernández, María Ulagares De La; Escobar Peña, Ana Andrea; Jiménez García, Inmaculada; Lasagabaster Latorre, Aurora; Macicior Michelena, Jon; Martín-Fontecha Corrales, María Del Mar; Molina Santos, Marina Mercedes; Marinov, Lyuboslav Nikolaev; Ortiz García, María Josefa; Rodríguez Agarrabeitia, Antonia
    Este proyecto pretende rediseñar las prácticas de Materiales Ópticos y adaptarlas a los principios del Aprendizaje Activo Basado en la Experimentación (ABE) implementando herramientas de Aula Invertida y Aprendizaje Cooperativo
  • Item
    Spiranic BODIPYs: a ground-breaking design to improve the energy transfer in molecular cassettes
    (Chemical Communications, 2014) Márquez Sánchez-Carnerero, Esther María; Gartzia-Rivero, Leire; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa; Bañuelos Prieto, Jorge; López Arbeloa, Íñigo María; Moya Cerero, Santiago De La
    Boosted excitation energy transfer in spiranic O BODIPY/polyarenecassettes, when compared with the parent non-spiranic (flexible) system, is highlighted as a proof for the ability of a new structural design to improve the energy transfer in molecular cassettes
  • Item
    Red haloBODIPYs as theragnostic agents: The role of the substitution at meso position
    (Dyes and Pigments, 2021) Prieto Montero, Ruth; Prieto Castañeda, Alejandro; Katsumiti, Alberto; Sola Llano, Rebeca; Rodríguez Agarrabeitia, Antonia; Cajaraville, Miren P.; Ortiz García, María Josefa; Martínez Martínez, Virginia
    Three different molecular designs based on BODIPY dye have been proposed as photosensitizers (PSs) for photodynamic therapy (PDT) by the inclusion of halogen atoms (Iodine) at 2,6-positions and with extended conjugation at 3, 5-positions and varying the substitution at meso position. The synthesis is described and their main photophysical features including singlet oxygen production and triplet states were characterized by absorption and fluorescence spectroscopy (steady-state and time-correlated) and nanosecond transient absorption spectroscopy. The results were compared with the commercial Chlorin e6. The three new red-halogen-BODIPYs showed a great balance between singlet oxygen generation (ΦΔ≥0.40) and fluorescence (Φfl≥0.22) for potential application on PDT, and particularly in theragnosis. In vitro experiments in HeLa cells were done to study their performance and to elucidate the best potential candidate for PDT.
  • Item
    Preparation of dipyrrins from F-BODIPYs by treatment with methanesulfonic acids
    (RSC Advances, 2015) Urieta Mora, Javier; Lora Maroto, Beatriz; Moreno Jiménez, Florencio; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa; Moya Cerero, Santiago De La
    An alternative metal-free soft procedure for the preparation of dipyrrins from F-BODIPYs is reported. The new method makes possible to obtain certain dipyrrin derivatives that were unaccessible from F-BODIPYs to date. To demonstrate the ability of the new procedure, dipyrrins having highly reactive groups, such as chloro, cyano or acetoxyl, have been easily obtained from the corresponding F-BODIPY, which shows the synthetic utility of the reported methodology.
  • Item
    Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence
    (Chemistry: a european journal, 2016) Ray Leiva, César; Márquez Sánchez-Carnerero, Esther María; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa; López Arbeloa, Íñigo María; Bañuelos Prieto, Jorge; Cohovi, Komlan D.; Lunkley, jamie L.; Muller, Gilles; Moya Cerero, Santiago De La
    Simple organic molecules (SOM) based on bis(haloBODIPY) are shown to enable circularly polarized luminescence (CPL), giving rise to a new structural design for technologically valuable CPL-SOMs. The established design comprises together synthetic accessibility, labile helicity, possibility of reversing the handedness of the circularly polarized emission, and reactive functional groups, making it unique and attractive as advantageous platform for the development of smart CPL-SOMs.
  • Item
    Controlling Vilsmeier-Haack processes in meso-methylBODIPYs: A new way to modulate finely photophysical properties in boron dipyrromethenes
    (Dyes and Pigments, 2017) Palao Utiel, Eduardo; Montalvillo Jiménez, Laura; Esnal Martínez, Ixone; Prieto Montero, Ruth; Rodríguez Agarrabeitia, Antonia; García Moreno, Inmaculada; Bañuelos Prieto, Jorge; López Arbeloa, Íñigo María; Moya Cerero, Santiago De La; Ortiz García, María Josefa
    In the herein work we report the fine and selective control of competitive processes when submitting meso-methylBODIPYs to Vilsmeier-Haack reaction conditions. These competitive processes generate BODIPYs with opposed photophysical properties, from highly fluorescent dyes enabling laser emission, to non-fluorescent singlet-oxygen photosensitizers. The synthetic control is exerted on the basis of the structure of the starting BODIPY, as well as the electrophilic character (hard or soft) of the formylating reagent.
  • Item
    Circularly Polarized Luminescence from Simple Organic Molecules
    (Chemistry: a european journal, 2015) Márquez Sánchez-Carnerero, Esther María; Rodríguez Agarrabeitia, Antonia; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Muller, Gilles; Ortiz García, María Josefa; Moya Cerero, Santiago De La
    This article aims to show the identity of “circularly polarized luminescent active simple organic molecules” as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non-aggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented.
  • Item
    Development of Geometry-Controlled All-Orthogonal BODIPY Trimers for Photodynamic Therapy and Phototheragnosis
    (Organic Letters, 2022) Prieto Castañeda, Alejandro; García Garrido, Fernando; Díaz Norambuena, Carolina; Escriche Navarro, Blanca; García Fernández, Alba; Bañuelos, Jorge; Rebollar, Esther; García Moreno, Inmaculada; Martínez Máñez, Ramón; Moya Cerero, Santiago De La; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa
    We have established an easy synthetic protocol for selectively developing all-orthogonal BODIPY trimers with unprecedented geometries on the basis of selecting methyl oxidation versus electrophilic formylation of key dimeric precursors. Photophysical characterization together with biological assays unraveled the most suitable BODIPY−BODIPY geometrical arrangements within the trimer, forcing them to serve as molecular platforms for the development of new, advanced heavy-atom-free photosensitizers for photodynamic therapy and phototheragnosis.
  • Item
    Functionalization of photosensitized silica nanoparticles for advanced photodynamic therapy of cancer
    (International Journal of Molecular Sciences, 2021) Prieto Montero, Ruth; Prieto Castañeda, Alejandro; Katsumiti, Alberto; Cajaraville, Miren P.; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa; Martínez Martínez, Virginia
    BODIPY dyes have recently attracted attention as potential photosensitizers. In this work, commercial and novel photosensitizers (PSs) based on BODIPY chromophores (haloBODIPYs and orthogonal dimers strategically designed with intense bands in the blue, green or red region of the visible spectra and high singlet oxygen production) were covalently linked to mesoporous silica nanoparticles (MSNs) further functionalized with PEG and folic acid (FA). MSNs approximately 50 nm in size with different functional groups were synthesized to allow multiple alternatives of PS-PEG-FA decoration of their external surface. Different combinations varying the type of PS (commercial Rose Bengal, Thionine and Chlorine e6 or custom-made BODIPY-based), the linkage design, and the length of PEG are detailed. All the nanosystems were physicochemically characterized (morphology, diameter, size distribution and PS loaded amount) and photophysically studied (absorption capacity, fluorescence efficiency, and singlet oxygen production) in suspension. For the most promising PS-PEG-FA silica nanoplatforms, the biocompatibility in dark conditions and the phototoxicity under suitable irradiation wavelengths (blue, green, or red) at regulated light doses (10–15 J/cm2) were compared with PSs free in solution in HeLa cells in vitro.