Person:
Ortiz García, María Josefa

Loading...
Profile Picture
First Name
María Josefa
Last Name
Ortiz García
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Orgánica
Area
Química Orgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 12
  • Item
    Spiranic BODIPYs: a ground-breaking design to improve the energy transfer in molecular cassettes
    (Chemical Communications, 2014) Márquez Sánchez-Carnerero, Esther María; Gartzia-Rivero, Leire; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa; Bañuelos Prieto, Jorge; López Arbeloa, Íñigo María; Moya Cerero, Santiago De La
    Boosted excitation energy transfer in spiranic O BODIPY/polyarenecassettes, when compared with the parent non-spiranic (flexible) system, is highlighted as a proof for the ability of a new structural design to improve the energy transfer in molecular cassettes
  • Item
    Development of Geometry-Controlled All-Orthogonal BODIPY Trimers for Photodynamic Therapy and Phototheragnosis
    (Organic Letters, 2022) Prieto Castañeda, Alejandro; García Garrido, Fernando; Díaz Norambuena, Carolina; Escriche Navarro, Blanca; García Fernández, Alba; Bañuelos, Jorge; Rebollar, Esther; García Moreno, Inmaculada; Martínez Máñez, Ramón; Moya Cerero, Santiago De La; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa
    We have established an easy synthetic protocol for selectively developing all-orthogonal BODIPY trimers with unprecedented geometries on the basis of selecting methyl oxidation versus electrophilic formylation of key dimeric precursors. Photophysical characterization together with biological assays unraveled the most suitable BODIPY−BODIPY geometrical arrangements within the trimer, forcing them to serve as molecular platforms for the development of new, advanced heavy-atom-free photosensitizers for photodynamic therapy and phototheragnosis.
  • Item
    Functionalization of photosensitized silica nanoparticles for advanced photodynamic therapy of cancer
    (International Journal of Molecular Sciences, 2021) Prieto Montero, Ruth; Prieto Castañeda, Alejandro; Katsumiti, Alberto; Cajaraville, Miren P.; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa; Martínez Martínez, Virginia
    BODIPY dyes have recently attracted attention as potential photosensitizers. In this work, commercial and novel photosensitizers (PSs) based on BODIPY chromophores (haloBODIPYs and orthogonal dimers strategically designed with intense bands in the blue, green or red region of the visible spectra and high singlet oxygen production) were covalently linked to mesoporous silica nanoparticles (MSNs) further functionalized with PEG and folic acid (FA). MSNs approximately 50 nm in size with different functional groups were synthesized to allow multiple alternatives of PS-PEG-FA decoration of their external surface. Different combinations varying the type of PS (commercial Rose Bengal, Thionine and Chlorine e6 or custom-made BODIPY-based), the linkage design, and the length of PEG are detailed. All the nanosystems were physicochemically characterized (morphology, diameter, size distribution and PS loaded amount) and photophysically studied (absorption capacity, fluorescence efficiency, and singlet oxygen production) in suspension. For the most promising PS-PEG-FA silica nanoplatforms, the biocompatibility in dark conditions and the phototoxicity under suitable irradiation wavelengths (blue, green, or red) at regulated light doses (10–15 J/cm2) were compared with PSs free in solution in HeLa cells in vitro.
  • Item
    Phosphorogenic dipyrrinato-iridium(III) complexes as photosensitizers for photodynamic therapy
    (Phosphorogenic dipyrrinato-iridium(III) complexes as photosensitizers for photodynamic therapy, 2021) Prieto Castañeda, Alejandro; Lérida Viso, A.; Avellanal Zaballa, Edurne; Sola Llano, rebeca; Bañuelos, Jorge; Rodríguez Agarrabeitia, Antonia; Martínez Mañez, Ramon; Ortiz García, María Josefa
    We have designed and synthesized a family of Ir(III) metal complexes coordinated with two cyclometalated bisfluorophenylpyridine ligands and an ancillary dipyrromethene which is functionalized with a mesityl group (Ir(dipy)-1), an α-chloroacetyl ester (Ir(dipy)-2) or a chain containing an ammonium cation (Ir(dipy)-3). The Ir (III) complexes feature a high triplet state population enabling red phosphorescence and efficient singlet oxygen generation. Ir(dipy)-2 and Ir(dipy)-3 are demonstrated to stain cells in both one-photon and two-photon confocal imaging. Moreover, Ir(dipy)-2 and Ir(dipy)-3 produce ROS in cells upon irradiation, inducing cell death by apoptosis. Colocalization studies in SK-Mel-103 cells show that Ir(dipy)-3 is partially accumulated in mitochondria and induces upon irradiation a disruption in their morphology. Overall our studies demonstrate that the prepared Ir(III) act as photosensitizers able to kill cells under irradiation, being suitable candidates for photodynamic therapy applications.
  • Item
    BODIPY doping of covalent organic frameworks-based nanomaterials: A novel strategy towards biomedical applications
    (Dyes and Pigments, 2023) Suárez Blas, Fátima; Martínez Fernández, Marcos; Prieto Castañeda, Alejandro; García Fernández, Alba; Martínez Ruíz, José I.; Ramos Gallego, María Mar; Ortiz García, María Josefa; Martínez Máñez, Ramón; Segura Castedo, José Luis
    Covalent organic Frameworks (COFs) are a class of crystalline macromolecular materials build-up by monomers with specific symmetries or functionalities. There are important limitations in the synthesis of highly ordered COFs, such as the shape and packing of the building blocks. Thus, the presence of fluorine atoms that lie perpendicular to the bisecting plane of BODIPY derivatives together with the presence of four bulky methyl groups could hinder the crystallization process in COF synthesis. For that reason, BODIPY-based COFs are rarely incorporated to COF networks. In this work, following the mixed linker strategy, a pre-synthetic method to dope COF structures with BODIPY units was developed. The materials have been processed into fluorescent Covalent Organic Nanosheets (CONs) with defined particle-size distributions around 100 nm, suitable for cellular biomedical applications. The viability of the CONs was evaluated using Sk-Mel-103 cells, demonstrating the internalization showing 100% cell viability. We envisage that this work could accelerate the discovery of new COF-based materials for biomedical sciences
  • Item
    An asymmetric BODIPY triad with panchromatic absorption for high-performance red-edge laser emission
    (Chemmical Communications, 2015) Durán Sampedro, Gonzalo; Rodríguez Agarrabeitia, Antonia; Garcia-Moreno, Inmaculada ; Gartzia-Rivero, Leire; Bañuelos, Jorge; López-Arbeloa, Ínigo; Ortiz García, María Josefa; Moya Cerero, Santiago De La
    A rational design of an unprecedented asym. cassette triad based entirely on BODIPY chromophores allows efficient light harvesting over the UV-vis spectral region, leading to a bright and stable red-edge laser emission via efficient energy-transfer processes.
  • Item
    Chlorinated BODIPYs: Surprisingly Efficient and Highly Photostable Laser Dyes
    (European Journal of Organic Chemistry, 2012) Durán Sampedro, Gonzalo; Rodríguez Agarrabeitia, Antonia; García Moreno, Inmaculada; Costela, Angel; Bañuelos, Jorge; Arbeloa, Teresa; López Arbeloa, Iñigo; Chiara, Jose Luis; Ortiz García, María Josefa
    A series of mono‐ to hexachlorinated BODIPY dyes have been prepared in good to excellent yields through the use of chlorosuccinimide as an inexpensive halogenating reagent. This library of chlorinated dyes allowed analysis in detail, from the experimental and theoretical points of view, of the dependency of the photophysical and optical properties of the dyes on the number and positions of the chlorine substituents on their BODIPY cores. Quantum mechanical calculations predict the regioselectivity of the halogenation reaction and explain why some positions are less prone to chlorination. The new chlorinated BODIPYs exhibit enhanced laser action with respect to their non‐halogenated analogues, both in liquid solution and in the solid phase. In addition, chlorination is a facile and essentially costless protocol for overcoming important shortcomings exhibited by commercially available BODIPYs, which should favor their practical applications in optical and sensing fields.
  • Item
    Carboxylates versus Fluorines: Boosting the Emission Properties of Commercial BODIPYs in Liquid and Solid Media
    (Advanced Functional Materials, 2013) Durán Sampedro, Gonzalo; Rodríguez Agarrabeitia, Antonia; Cerdán, Luis; Pérez Ojeda, María Eugenia; Costela, Angel; García‐Moreno, Inmaculada; Esnal, Ixone; Bañuelos, Jorge; López Arbeloa, Iñigo; Ortiz García, María Josefa
    A new and facile strategy for the development of photonic materials is presented that fufi lls the conditions of being effi cient, stable, and tunable laser emitters over the visible region of spectrum, with the possibility of being easily processable and cost-effective. This approach uses poly(methyl methacrylate) (PMMA) as a host for new dyes with improved effi ciency and photostability synthesized. Using a simple protocol, fl uorine atoms in the commercial (4,4-difl uoro-4-bora-3a,4a-diaza-s-indacene) ( F -BODIPY) by carboxylate groups. The new O -BODIPYs exhibit enhanced optical properties and laser behavior both in the liquid and solid phases compared to their commercial analogues. Lasing effi ciencies up to 2.6 times higher than those recorded for the commercial dyes are registered with high photostabilities since the laser output remain at 80% of the initial value after 100 000 pump pulses in the same position of the sample at a repetition rate of 30 Hz; the corresponding commercial dye entirely loses its laser action after only 12 000 pump pulses. Distributed feedback laser emission is demonstrated with organic fi lms incorporating new O -BODIPYs deposited onto quartz substrates engraved with appropriated periodical structures. These dyes exhibit laser thresholds up to two times lower than those of the corresponding parent dyes with lasing intensities up to one order of magnitude higher.
  • Item
    Negishi reaction in BODIPY dyes. Unprecedented alkylation by palladium-catalyzed C–C coupling in boron dipyrromethene derivatives
    (RSC Advances, 2014) Durán Sampedro, Gonzalo; Palao, Eduardo; Rodríguez Agarrabeitia, Antonia; Moya Cerero, Santiago De La; Boens, Noël; Ortiz García, María Josefa
    Negishi reactions of 3-halogen and 3,5-dihalogen substituted BODIPYs with different organozinc reagents are reported as the first examples of this valuable palladium-catalyzed C–C coupling reaction into the family of the BODIPY dyes. It is demonstrated that the Negishi coupling is especially useful for obtaining interesting alkylated BODIPYs, including synthetically-valuable asymmetrically-3,5-disubstituted BODIPYs.
  • Item
    Synthesis and functionalization of new polyhalogenated BODIPY dyes. Study of their photophysical properties and singlet oxygen generation
    (Tetrahedron, 2012) Ortiz García, María Josefa; Rodríguez Agarrabeitia, Antonia; Durán Sampedro, Gonzalo; Bañuelos Prieto, Jorge; Arbeloa Lopez, Teresa; Massad, Walter ; Montejano, Hernán ; García, Norman ; Lopez Arbeloa, Iñigo
    A theoretical and experimental study on the iodination of BODIPY dyes with different degrees of substitution has been developed. Polyhalogenated BODIPYs synthesized in this work are the first examples of this type of dyes with more than two halogen atoms in the BODIPY core and they can be selectively functionalized. Surprisingly, the position in which halogen is attached has a marked effect in the photophysical properties and modulates the fluorescence capacity of the resulting BODIPY. These iodinated BODIPYs are efficient singlet oxygen generators.