Person:
Madrid Albarrán, María Yolanda

Loading...
Profile Picture
First Name
María Yolanda
Last Name
Madrid Albarrán
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Analítica
Area
Química Analítica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 4 of 4
  • Publication
    Simultaneous determination of the size and concentration of AgNPs in water samples by UV–vis spectrophotometry and chemometrics tools
    (Elsevier, 2018-10-01) Moreno Martín, Gustavo; León González, María Eugenia De; Madrid Albarrán, María Yolanda
    The combination of UV–vis spectrophotometry with a chemometric calibration tool based on partial least squares (PLS) has allowed us the development of a multivariate analytical method that simultaneously estimates the concentration and size of mixtures of silver nanoparticles (AgNPs) in environmental water samples. The method is based on changes in the surface plasmon resonance band (SPRB) of AgNPs when they form aggregated/assembled structures with L-cysteine (L-cys). Measurementts were performed by employed a fixed-time kinetics method that implies that the final spectra (response) are obtained by subtstracting the solutions spectra at fixed times. Optimization of experimental conditions affecting aggregation such as time, temperature, pH and concentration of aggregating substance was performed by experimental design and response surface methodologies (RSM). A multivariate calibration model using AgNPs of known diameter size ((20 ± 3), (41 ± 3), (59 ± 5) and (79 ± 7) nm) within a concentration range between 0.62 and 2.5 mg L−1 was constructed by using a mixture experimental design and PLS. The method was finally applied to estimate size and concentration of AgNPs in AgNPs-spiked river and tap water samples. Water samples were spiked with individual, binary and ternary mixtures of AgNPs of different sizes and by using two types of AgNPs: citrate-coated AgNPs (cit-AgNPs) and polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs). A good correspondence was obtained between predicted values and the total amount of AgNPs added with recovery values ranged within 80–160% for the individual mixtures, 68–108% for the binary mixtures and 60–64% for the ternary mixtures of AgNPs. Finally, transmission electron microscopy (TEM) measurements were performed for those cases where discrepancies between the expected and the obtained values were observed. TEM micrographs evidenced the presence of agglomerates or aggregates of AgNPs in some of the mixtures or water tested.
  • Publication
    In-vivo solid phase microextraction for quantitative analysis of volatile organoselenium compounds in plants
    (Elsevier, 2019-11-12) Moreno Martín, Gustavo; Sanz Landaluce, Jon; León González, María Eugenia De; Madrid Albarrán, María Yolanda
    A new calibration method based on the use of headspace solid-phase microextraction (HS-SPME) and in-fiber internal standardization, combined with gas chromatography coupled to mass spectrometry (GC/MS) was developed for quantifying Se volatile organic species released by plants exposed to chitosan-modified selenium nanoparticles (Cs-SeNPs). The effect of several parameters affecting extraction and separation of the selected organic species of selenium (dimethylselenium (DMSe), diethylselenium (DESe) and dimethyldiselenium (DMDSe)) and deuterated dimethyl sulphide (d6-DMS) employed as internal standard were studied and optimized using an experimental design. The developed methodology was applied for quantifying the volatile selenium compounds produced over time by the plant species Raphanus sativus and Brassica juncea grown in hydroponic solution containing 5 mg Se L−1 in the form Cs-SeNPs. The procedure employed consisted in two steps. Volatile selenium species released from the plants were first extracted in the SPME fiber located at the headspace of a box with a fixed volume. Subsequently, the internal standard placed in a vial subjected to the same conditions as plants was extracted on the same fiber than the one previously used for extracting selenium compounds. Finally the extracted compounds were separated and analyzed by GC/MS. Results evidenced Cs-SeNPs biotransformation into DMSe and DMDSe by both plants species during growing stage, in amounts of the order of ng. Additionally, the resulting data were submitted to multifactorial ANOVA to evaluate the influence of plant type and time of exposure to Cs-SeNPs on the production of volatile selenium compounds.
  • Publication
    Simultaneous determination of the size and concentration of AgNPs in water samples by UV–vis spectrophotometry and chemometrics tools
    (Elsevier, 2018-10-01) Moreno Martín, Gustavo; León González, María Eugenia De; Madrid Albarrán, María Yolanda
    The combination of UV–vis spectrophotometry with a chemometric calibration tool based on partial least squares (PLS) has allowed us the development of a multivariate analytical method that simultaneously estimates the concentration and size of mixtures of silver nanoparticles (AgNPs) in environmental water samples. The method is based on changes in the surface plasmon resonance band (SPRB) of AgNPs when they form aggregated/assembled structures with L-cysteine (L-cys). Measurementts were performed by employed a fixed-time kinetics method that implies that the final spectra (response) are obtained by subtstracting the solutions spectra at fixed times. Optimization of experimental conditions affecting aggregation such as time, temperature, pH and concentration of aggregating substance was performed by experimental design and response surface methodologies (RSM). A multivariate calibration model using AgNPs of known diameter size ((20 ± 3), (41 ± 3), (59 ± 5) and (79 ± 7) nm) within a concentration range between 0.62 and 2.5 mg L−1 was constructed by using a mixture experimental design and PLS. The method was finally applied to estimate size and concentration of AgNPs in AgNPs-spiked river and tap water samples. Water samples were spiked with individual, binary and ternary mixtures of AgNPs of different sizes and by using two types of AgNPs: citrate-coated AgNPs (cit-AgNPs) and polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs). A good correspondence was obtained between predicted values and the total amount of AgNPs added with recovery values ranged within 80–160% for the individual mixtures, 68–108% for the binary mixtures and 60–64% for the ternary mixtures of AgNPs. Finally, transmission electron microscopy (TEM) measurements were performed for those cases where discrepancies between the expected and the obtained values were observed. TEM micrographs evidenced the presence of agglomerates or aggregates of AgNPs in some of the mixtures or water tested.
  • Publication
    Determination of size and mass-and number-based concentration of biogenic SeNPs synthesized by lactic acid bacteria by using a multimethod approach
    (Elsevier, 2017-11-01) Moreno Martín, Gustavo; Pescuma, Micaela; Pérez Corona, María Teresa; Mozzi, Fernanda; Madrid Albarrán, María Yolanda
    Selenium nanoparticles (SeNPs) were synthesized by a green technology using lactic acid bacteria (LAB, Lactobacillus acidophilus, L. delbrueckii subsp. bulgaricus and L. reuteri). The exposure of aqueous sodium selenite to LAB led to the synthesis of SeNPs. Characterization of SeNPs by transmission electron microscopy with energy dispersive X-ray spectrum (EDXS) analysis revealed the presence of stable, predominantly monodispersed and spherical SeNPs of an average size of 146 ± 71 nm. Additionally, SeNPs hydrodynamic size was determined by dispersive light scattering (DLS) and nanoparticle tracking analysis (NTA). For this purpose, a methodology based on the use of surfactants in basic medium was developed for isolating SeNPs from the bacterial pellet. The hydrodynamic size values provided by DLS and NTA were 258 ± 4 and 187 ± 56 nm, respectively. NTA measurements of number-based concentration reported values of (4.67±0:30)x 109 SeNPs/mL with a relative standard deviation lower than 5% (n = 3). The quantitative results obtained by NTA were supported by theoretical calculations. Asymmetrical flow field flow fractionation (AF4) on line coupled to the inductively couple plasma mass spectrometry (ICP-MS) and off-line coupled to DLS was further employed to characterize biogenic SeNPs. The distribution of the particle size for the Se-containing peak provide an average size of (247 ± 14) nm. The data obtained by independent techniques were in good agreement and the developed methodology