Person:
Gómez Muñoz, María Teresa

Loading...
Profile Picture
First Name
María Teresa
Last Name
Gómez Muñoz
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Veterinaria
Department
Sanidad Animal
Area
Sanidad Animal
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 3 of 3
  • Publication
    Anti-Trypanosomatidae Activity of Essential Oils and Their Main Components from Selected Medicinal Plants
    (MPDI, 2023-02-02) Bailén, María; Illescas, Cristina; Quijada, Mónica; Martínez Díaz, Rafael Alberto; Ochoa, Eneko; Gómez Muñoz, María Teresa; Navarro Rocha, Juliana; González Coloma, Azucena
    Kinetoplastida is a group of flagellated protozoa characterized by the presence of a kinetoplast, a structure which is part of a large mitochondria and contains DNA. Parasites of this group include genera such as Leishmania, that cause disease in humans and animals, and Phytomonas, that are capable of infecting plants. Due to the lack of treatments, the low efficacy, or the high toxicity of the employed therapeutic agents there is a need to seek potential alternative treatments. In the present work, the antiparasitic activity on Leishmania infantum and Phytomonas davidi of 23 essential oils (EOs) from plants of the Lamiaceae and Asteraceae families, extracted by hydrodistillation (HD) at laboratory scale and steam distillation (SD) in a pilot plant, were evaluated. The chemical compositions of the EOs were determined by gas chromatography-mass spectrometry. Additionally, the cytotoxic activity on mammalian cells of the major components from the most active EOs was evaluated, and their anti-Phytomonas and anti-Leishmania effects analyzed. L. infantum was more sensitive to the EOs than P. davidi. The EOs with the best anti-kinetoplastid activity were S. montana, T. vulgaris, M. suaveolens, and L. luisieri. Steam distillation increased the linalyl acetate, β-caryophyllene, and trans-α-necrodyl acetate contents of the EOs, and decreased the amount of borneol and 1,8 cineol. The major active components of the EOs were tested, with thymol being the strongest anti-Phytomonas compound followed by carvacrol. Our study identified potential treatments against kinetoplastids.
  • Publication
    Anti-Trichomonas gallinae activity of essential oils and main compounds from Lamiaceae and Asteraceae plants
    (Frontiers Media, 2022-09-09) Bailén, María; Díaz Castellanos, Irene; Azami Conesa, Iris; Alonso Fernández, Sara; Martínez Díaz, Rafael A.; Navarro Rocha, Juliana; Gómez Muñoz, María Teresa; González Coloma, Azucena
    Trichomonas gallinae is a flagellated protozoan that parasitizes the upper digestive tract of various bird species and causes avian trichomonosis. The emergence of resistant strains to the standard treatment, based on nitroimidazoles, increases the need to find alternative therapies. In this study, 36 essential oils (EOs) from Lamiaceae and Asteraceae plant families were tested against T. gallinae trophozoites using the 3-(4,5-dimethylthiazol-2-yl-)-2,5-dipheniltetrazolium bromide (MTT) reduction assay. Among them, EOs from distinct species of Lamiaceae, including the genera Lavandula, Salvia, Thymus, Origanum, and Satureja were the ones reporting better anti-trichomonal activity, and were selected for further analysis, including chemical composition and in vitro assays. The chemical composition of the selected EOs was determined by gas chromatography followed by mass spectrometry and 19 pure compounds were tested against the protozoa, according to their higher abundance in the active EOs. Pure compounds which displayed the highest activity against T. gallinae trophozoites, ordered by highest to lowest activity, were α and β-thujones, camphene, β-pinene, linalyl acetate, thymol, 4-terpineol, γ-terpinene, α-pinene, p-cymene, D-fenchone and β-caryophyllene. A dose dependent effect was observed in most of the EOs and pure compounds tested. The toxicity test conducted in eukaryotic cell cultures with the anti-trichomonal active pure compounds showed that β-caryophyllene, camphene, α-pinene, and β-pinene were slightly toxic for Vero cells, and the selectivity index was calculated. Based on the anti-trichomonal activity and the absence of cytotoxicity results, natural products from Lamiaceae plants could be useful as alternative therapy against avian trichomonosis, mainly those containing linalyl acetate, thymol, 4-terpinenol, γ-terpinene, p-cymene and D-fenchone.
  • Publication
    Avian Oropharyngeal Trichomonosis: Treatment, Failures and Alternatives, a Systematic Review
    (MPDI, 2022-11-19) Gómez Muñoz, María Teresa; Gómez Molinero, Miguel Ángel; González, Fernando; Azami Conesa, Iris; Bailén, María; García Piqueras, Marina; Sansano Maestre, José
    Oropharyngeal avian trichomonosis is a potentially lethal parasitic disease that affects several avian orders. This review is focused on the disease treatments since prophylactic treatment is prohibited in most countries and resistant strains are circulating. A systematic review following the PRISMA procedure was conducted and included 60 articles. Successful and non-toxic treatments of avian oropharyngeal trichomonosis started with enheptin, a drug replaced by dimetridazole, metronidazole, ornidazole, carnidazole and ronidazole. Administration in drinking water was the most employed and recommended method, although hierarchy of the avian flocks and palatability of the medicated water can interfere with the treatments. Besides pigeons, treatments with nitroimidazoles were reported in budgerigars, canaries, finches, bald eagles, a cinereous vulture and several falcon species, but resistant strains were reported mainly in domestic pigeons and budgerigars. Novel treatments include new delivery systems proved with traditional drugs and some plant extracts and its main components. Ethanolic extracts from ginger, curry leaf tree and Dennettia tripetala, alkaloid extracts of Peganum harmala and essential oils of Pelargonium roseum and some Lamiaceae were highly active. Pure active compounds from the above extracts displayed good anti-trichomonal activity, although most studies lack a cytotoxicity or in vivo test.