Montes Gutiérrez, David

Profile Picture
First Name
Last Name
Montes Gutiérrez
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Física de la Tierra y Astrofísica
Astronomía y Astrofísica
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 53
  • Publication
    CARMENES detection of the Ca II infrared triplet and possible evidence of He I in the atmosphere of WASP-76b
    (EDP Sciencies, 2021-10-27) Montes Gutiérrez, David; otros, ...
    Ultra-hot Jupiters are highly irradiated gas giants with equilibrium temperatures typically higher than 2000 K. Atmospheric studies of these planets have shown that their transmission spectra are rich in metal lines, with some of these metals being ionised due to the extreme temperatures. Here, we use two transit observations of WASP-76b obtained with the CARMENES spectrograph to study the atmosphere of this planet using high-resolution transmission spectroscopy. Taking advantage of the two channels and the coverage of the red and near-infrared wavelength ranges by CARMENES, we focus our analysis on the study of the Ca II infrared triplet (IRT) at 8500 A and the He I triplet at 10 830 A. We present the discovery of the Ca II IRT at 7 sigma in the atmosphere of WASP-76b using the cross-correlation technique, which is consistent with previous detections of the Ca II H&K lines in the same planet, and with the atmospheric studies of other ultra-hot Jupiters reported to date. The low mass density of the planet, and our calculations of the XUV (X-ray and EUV) irradiation received by the exoplanet, show that this planet is a potential candidate to have a He I evaporating envelope and, therefore, we performed further investigations focussed on this aspect. The transmission spectrum around the He I triplet shows a broad and red-shifted absorption signal in both transit observations. However, due to the strong telluric contamination around the He I lines and the relatively low signal-to-noise ratio of the observations, we are not able to unambiguously conclude if the absorption is due to the presence of helium in the atmosphere of WASP-76b, and we consider the result to be only an upper limit. Finally, we revisit the transmission spectrum around other lines such as Na I, Li I, H alpha, and K I. The upper limits reported here for these lines are consistent with previous studies.
  • Publication
    The CARMENES search for exoplanets around M dwarfs Diagnostic capabilities of strong K I lines for photosphere and chromosphere
    (EDP Sciencies, 2022-01-21) Montes Gutiérrez, David; López Gallifa, Álvaro; otros, ...
    There are several strong K I lines found in the spectra of M dwarfs, among them the doublet near 7700 angstrom and another doublet near 12 500 angstrom. We study these optical and near-infrared doublets in a sample of 324 M dwarfs, observed with CARMENES, the high-resolution optical and near-infrared spectrograph at Calar Alto, and investigate how well the lines can be used as photospheric and chromospheric diagnostics. Both doublets have a dominant photospheric component in inactive stars and can be used as tracers of effective temperature and gravity. For variability studies using the optical doublet, we concentrate on the red line component because this is less prone to artefacts from telluric correction in individual spectra. The optical doublet lines are sensitive to activity, especially for M dwarfs later than M5.0 V where the lines develop an emission core. For earlier type M dwarfs, the red component of the optical doublet lines is also correlated with Ha activity. We usually find positive correlation for stars with Ha in emission, while early-type M stars with Ha in absorption show anti-correlation. During flares, the optical doublet lines can exhibit strong fill-in or emission cores for our latest spectral types. On the other hand, the near-infrared doublet lines very rarely show correlation or anti-correlation to Ha and do not change line shape significantly even during the strongest observed flares. Nevertheless, the near-infrared doublet lines show notable resolved Zeeman splitting for about 20 active stars which allows to estimate the magnetic fields B.
  • Publication
    The CARMENES search for exoplanets around M dwarfs: two Saturn-mass planets orbiting active stars
    (EDP Sciencies, 2022-07-14) Montes Gutiérrez, David; Caballero, J. A.; otros, ...
    The CARMENES radial-velocity survey is currently searching for planets in a sample of 387 M dwarfs. Here we report on two Saturn-mass planets orbiting TYC 2187-512-1 (M_*) = 0.50 Mꙩ) and TZ Ari ((M_*) = 0.15 Mꙩ), respectively. We obtained supplementary photometric time series, which we use along with spectroscopic information to determine the rotation periods of the two stars. In both cases, the radial velocities also show strong modulations at the respective rotation period. We thus modeled the radial velocities as a Keplerian orbit plus a Gaussian process representing the stellar variability. TYC 2187-512-1 is found to harbor a planet with a minimum mass of 0.33 M_(Jup) in a near-circular 692-day orbit. The companion of TZ Ari has a minimum mass of 0.21 M_(Jup), orbital period of 771 d, and orbital eccentricity of 0.46. We provide an overview of all known giant planets in the CARMENES sample, from which we infer an occurrence rate of giant planets orbiting M dwarfs with periods up to 2 yr in the range between 2 and 6%. TZ Ari b is only the second giant planet discovered orbiting a host with mass less than 0.3 Mꙩ. These objects occupy an extreme location in the planet mass versus host mass plane. It is difficult to explain their formation in core-accretion scenarios, so they may possibly have been formed through a disk fragmentation process.
  • Publication
    Herschel discovery of a new class of cold, faint debris discs
    (EDP Sciencies, 2011-12) Montes Gutiérrez, David; otros, ...
    We present Herschel PACS 100 and 160 μm observations of the solar-type stars α Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel open time key programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 μm for all three stars. HD 210277 also shows a small excess at 100 μm, while the 100 μm fluxes of α Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. Both α Men and HD 88230 are spatially resolved in the PACS 160 μm images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from ~115 to ≤ 250 AU. The estimated black body temperatures from the 100 and 160 μm fluxes are ≲22 K, and the fractional luminosity of the cold dust is L_dust/L_⋆ ~ 10^-6, close to the luminosity of the solar-system’s Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars, so they cannot be explained easily invoking “classical” debris disc models.
  • Publication
    DUst around NEarby Stars. The survey observational results
    (EDP Sciencies, 2013-07) Montes Gutiérrez, David; otros, ...
    Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 μm were obtained, complemented in some cases with observations at 70 μm, and at 250, 350 and 500 μm using SPIRE. The observing strategy was to integrate as deep as possible at 100 μm to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of ~12.1% ± 5% before Herschel to ~20.2% ± 2%. A significant fraction (~52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70–160 μm range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.
  • Publication
    Cold DUst around NEarby Stars (DUNES). First results. A resolved exo-Kuiper belt around the solar-like star ζ2 Ret
    (EDP Sciencies, 2010-07) Montes Gutiérrez, David; otros, ...
    We present the first far-IR observations of the solar-type stars δ Pav, HR 8501, 51 Peg and ζ^2 Ret, taken within the context of the DUNES Herschel open time key programme (OTKP). This project uses the PACS and SPIRE instruments with the objective of studying infrared excesses due to exo-Kuiper belts around nearby solar-type stars. The observed 100 μm fluxes from δ Pav, HR 8501, and 51 Peg agree with the predicted photospheric fluxes, excluding debris disks brighter than L_dust/L_* ~ 5 x 10^-7 (1σ level) around those stars. A flattened, disk-like structure with a semi-major axis of ~100 AU in size is detected around ζ2 Ret. The resolved structure suggests the presence of an eccentric dust ring, which we interpret as an exo-Kuiper belt with L_dust/L_* ≈ 10^-5.
  • Publication
    Atmospheric characterization of the ultra-hot Jupiter WASP-33b Detection of Ti and V emission lines and retrieval of a broadened line profile
    (EDP Sciencies, 2022-12-02) Caballero, J. A.; Montes Gutiérrez, David; otros, ...
    Ultra-hot Jupiters are highly irradiated gas giant exoplanets on close-in orbits around their host stars. The dayside atmospheres of these objects strongly emit thermal radiation due to their elevated temperatures, making them prime targets for characterization by emission spectroscopy. We analyzed high-resolution spectra from CARMENES, HARPS-N, and ESPaDOnS taken over eight observation nights to study the emission spectrum of WASP-33b and draw conclusions about its atmosphere. By applying the cross-correlation technique, we detected the spectral signatures of Ti I, V I, and a tentative signal of Ti II for the first time via emission spectroscopy. These detections are an important finding because of the fundamental role of Ti- and V-bearing species in the planetary energy balance. Moreover, we assessed and confirm the presence of OH, Fe I, and Si I from previous studies. The spectral lines are all detected in emission, which unambiguously proves the presence of an inverted temperature profile in the planetary atmosphere. By performing retrievals on the emission lines of all the detected species, we determined a relatively weak atmospheric thermal inversion extending from approximately 3400 to 4000 K. We infer a supersolar metallicity close to 1.5 dex in the planetary atmosphere, and find that its emission signature undergoes significant line broadening with a Gaussian full width at half maximum of about 4.5 km s^(−1) . Also, we find that the atmospheric temperature profile retrieved at orbital phases far from the secondary eclipse is about 300 to 700 K cooler than that measured close to the secondary eclipse, which is consistent with different day- and nightside temperatures. Moreover, retrievals performed on the emission lines of the individual chemical species lead to consistent results, which gives additional confidence to our retrieval method. Increasing the number of species included in the retrieval and expanding the set of retrieved atmospheric parameters will further advance our understanding of exoplanet atmospheres.
  • Publication
    Gaia FGK benchmark stars: abundances of α and iron-peak elements
    (EDP Sciencies, 2015-10) González Hernández, J. I.; Montes Gutiérrez, David; Tabernero, H. M.; otros, ...
    Context. In the current era of large spectroscopic surveys of the Milky Way, reference stars for calibrating astrophysical parameters and chemical abundances are of paramount importance. Aims. We determine elemental abundances of Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni for our predefined set of Gaia FGK benchmark stars. Methods. By analysing high-resolution spectra with a high signal-to-noise ratio taken from several archive datasets, we combined results of eight different methods to determine abundances on a line-by-line basis. We performed a detailed homogeneous analysis of the systematic uncertainties, such as differential versus absolute abundance analysis. We also assessed errors that are due to non-local thermal equilibrium and the stellar parameters in our final abundances. Results. Our results are provided by listing final abundances and the different sources of uncertainties, as well as line-by-line and method-by-method abundances. Conclusions. The atmospheric parameters of the Gaia FGK benchmark stars are already being widely used for calibration of several pipelines that are applied to different surveys. With the added reference abundances of ten elements, this set is very suitable for calibrating the chemical abundances obtained by these pipelines.
  • Publication
    The CARMENES search for exoplanets around M dwarfs Photospheric parameters of target stars from high-resolution spectroscopy
    (EDP Sciences S A, 2018-07-03) Cortés Contreras, Miriam; Montes Gutiérrez, David; otros, ...
    Context. The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Aims. Characterising our target sample is important for constraining the physical properties of any planetary systems that are detected. The aim of this paper is to determine the fundamental stellar parameters of the CARMENES M-dwarf target sample from high-resolution spectra observed with CARMENES. We also include several M-dwarf spectra observed with other high-resolution spectrographs, that is CAFE, FEROS, and HRS, for completeness. Methods. We used a chi(2) method to derive the stellar parameters effective temperature T-eff, surface gravity log g, and metallicity [Fe/H] of the target stars by fitting the most recent version of the PHOENIX-ACES models to high-resolution spectroscopic data. These stellar atmosphere models incorporate a new equation of state to describe spectral features of low-temperature stellar atmospheres. Since Teff, log g, and [Fe/H] show degeneracies, the surface gravity is determined independently using stellar evolutionary models. Results. We derive the stellar parameters for a total of 300 stars. The fits achieve very good agreement between the PHOENIX models and observed spectra. We estimate that our method provides parameters with uncertainties of sigma(Teff) = 51 K, sigma(logg) = 0 : 07, and sigma[(Fe/H)] = 0.16, and show that atmosphere models for low-mass stars have significantly improved in the last years. Our work also provides an independent test of the new PHOENIX-ACES models, and a comparison for other methods using low-resolution spectra. In particular, our effective temperatures agree well with literature values, while metallicities determined with our method exhibit a larger spread when compared to literature results.
  • Publication
    Silicon in the dayside atmospheres of two ultra-hot Jupiters
    (EDP Sciencies, 2022-01-07) Montes Gutiérrez, David; otros, ...
    Atmospheres of highly irradiated gas giant planets host a large variety of atomic and ionic species. Here we observe the thermal emission spectra of the two ultra-hot Jupiters WASP-33b and KELT-20b /MASCARA-2b in the near-infrared wavelength range with CARMENES. Via high-resolution Doppler spectroscopy, we searched for neutral silicon (Si) in their dayside atmospheres. We detect the Si spectral signature of both planets via cross-correlation with model spectra. Detection levels of 4.8 sigma and 5.4 sigma, respectively, are observed when assuming a solar atmospheric composition. This is the first detection of Si in exoplanet atmospheres. The presence of Si is an important finding due to its fundamental role in cloud formation and, hence, for the planetary energy balance. Since the spectral lines are detected in emission, our results also confirm the presence of an inverted temperature profile in the dayside atmospheres of both planets.