Person:
Fernández Barrenechea, José María

Loading...
Profile Picture
First Name
José María
Last Name
Fernández Barrenechea
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Geológicas
Department
Mineralogía y Petrología
Area
Cristalografía y Mineralogía
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 58
  • Publication
    Clay minerals as provenance indicators in continental lacustrine sequences: the Leza Formation, early Cretaceous, Cameros Basin, northern Spain
    (Blackwell Scientific publications, 2005) Alonso Azcárate, Jacinto; Rodas, Magdalena; Fernández Barrenechea, José María; Mas Mayoral, José Ramón
    Variations in clay mineral assemblages, changes in KuÈbler index (KI), and the chemical composition of chlorites are used to identify source areas in the lacustrine materials in the Lower Cretaceous Leza Limestone Formation of the Cameros Basin, northern Spain. This formation has fairly homogeneous lithological characteristics and facies associations which do not allow for identification and characterization of local source areas. The Arnedillo lithosome of the Leza Limestone Formation contains a clay mineral association (Mg-chlorite, illite and smectite) indicative of its provenance. Chlorite composition and illite KI values indicate that these minerals were formed at temperatures higher than those reached by the Leza Formation which indicates its detrital origin. The similarity in the Mg-chlorite composition between the Arnedillo lithosome and the Keuper sediments of the area indicates that these materials acted as a local source area. This implies that Triassic sediments were exposed, at least locally, at the time of deposition of the Leza Formation. The presence of smectite in the Leza Formation is related to a retrograde diagenesis event that altered the Mg-chlorites in some samples.
  • Publication
    Influence of grinding on graphite crystallinity from experimental and natural data: implications for graphite thermometry and sample preparation
    (Mineralogical Society (Great Britain), 2006) Crespo Feo, Elena; Luque del Villar, Francisco Javier; Fernández Barrenechea, José María; Rodas, Magdalena
    This paper examines the effects of shear stress on the structuralparameters that define the ‘crystallinity’ of graphite. The results show that highly crystalline graphite samples ground for up to 120 min do not undergo detectable changes in the three-dimensional arrangement of carbon layers but crystallite sizes (Lc and La) decrease consistently with increasing grinding time. Grinding also involves particle-size diminution that results in lower temperatures for the beginning of combustion and exothermic maxima in the differentialthermalanal ysis curves. These changes in the structuraland thermalcharacteristics of graphite upon grinding must be taken into account when such data are used for geothermometric estimations. Tectonic shear stress also induces reduction of the particle size and the Lc and La values of highly crystalline graphite. Thus, the temperature of formation of graphite according to structural as well as thermaldata is underestimated by up to 100ºC in samples that underwent the most intense shear stress. Therefore, application of graphite geothermometry to fluid-deposited veins where graphite is the only mineralfound should take into consideration the effect of tectonic shearing, or the estimated temperatures must be considered as minimum temperatures of formation only.
  • Publication
    Análisis de la evolución en la adquisición de competencias específicas y transversales en los Grados de Geología e Ingeniería Geológica
    (2019-06-28) García Lorenzo, Mari Luz; Abati Gómez, Jacobo; Orejana García, David; Castiñeiras García, Pedro; Crespo Feo, María Elena; Piña García, Rubén; García Romero, Emilia; Granja Bruña, José Luis; López García, José Ángel; Fernández Barrenechea, José María; Arribas Mocoroa, María Eugenia; Ortega Menor, Lorena; Pérez Moreno, Elisa María; Benito Moreno, María Isabel
  • Publication
    Sources of Sr and S in Aluminum-Phosphate–Sulfate Minerals in Early–Middle Triassic Sandstones (Iberian Ranges, Spain) and Paleoenvironmental Implications for the West Tethys
    (SEPM (Society for Sedimentary Geology), 2013) Galán Abellán, Ana Belén; Alonso Azcárate, Jacinto; Newton, Robert J.; Bottrell, Simon H.; Fernández Barrenechea, José María; Benito Moreno, María Isabel; Horra del Barco, Raúl de la; López Gómez, José; Luque del Villar, Francisco Javier
    Aluminum-phosphate–sulfate (APS) minerals, formed during early diagenesis in relation to acid meteoric waters, are the main host of Sr and S in the Early–Middle Triassic continental sandstones of the Iberian Ranges (east of the Iberian Peninsula). The sources of these elements and the effects of paleoenvironmetal changes on these sources and on the formation of APS minerals during Early–Middle Triassic times, were established on the basis of Sr and S isotopic analyses. The S and Sr data (d34S V-CDT = +11 to +14% and 87Sr/86Sr = 0.7099–0.7247, respectively) can be interpreted as resulting from mixing of different sources. Strontium was sourced from the dissolution of pre-existing minerals like K-feldspar and clay minerals inherited from the source areas, causing high radiogenic values. However, the isotopic signal must also be influenced by other sources, such as marine or volcanic aerosol that decreased the total 87Sr/86Sr ratios. Marine and volcanic aerosols were also sources of sulfur, but the d34S was lowered by dissolution of pre-existing sulfides, mainly pyrite. Pyrite dissolution and volcanic aerosols would also trigger the acid conditions required for the precipitation of APS minerals. APS minerals in the study area are found mainly in the Cañizar Formation (Olenekian?–Aegian), which has the lowest 87Sr/86Sr ratios. The lower abundance of APS minerals in the Eslida Formation (Aegian–Pelsonian) may indicate change in the acidity of pore water towards more alkaline conditions, while the increased 87Sr/86Sr ratios imply decreased Sr input from volcanic activity and/or marine aerosol inputs during Anisian times. Therefore, the decrease in abundance of APS minerals from the Early to Middle Triassic and the variations in the sources of Sr and S are indicative of changes in paleoenvironmental conditions during the beginning of the Triassic Period. These changes from acid to more alkaline conditions are also coincident with the first appearance of carbonate paleosols, trace fossils, and plant fossils in the upper part of the Cañizar Formation (and more in the overlying Eslida Formation) and mark the beginning of biotic recovery in this area. The presence of APS minerals in other European basins of the Western Tethys (such as the German Basin, the Paris Basin and the southeastern France and Sardinia basins) could thus also indicate that unfavorable environmental conditions caused delay in biotic recovery in those areas. In general, the presence of APS minerals may be used as an indicator of arid, acidic conditions unfavorable to biotic colonization.
  • Publication
    Sedimentary evolution of the continental Early–Middle Triassic Cañizar Formation (Central Spain): Implications for life recovery after the Permian–Triassic crisis
    (Elsevier, 2012) López Gómez, José; Galán Abellán, Ana Belén; Horra del Barco, Raúl de la; Fernández Barrenechea, José María; Arche, Alfredo; Bourquin, Sylvie; Marzo Carpio, Mariano; Durand, Marc
    The Permian–Triassic transition (P–T) was marked by important geochemical perturbations and the largest known life crisis. Consequences of this event, as oxygen-depleted conditions and the unusual behavior of the carbon cycle, were prolonged during the Early Triassic interval delaying the recovery of life in both terrestrial and marine ecosystems. Studies on Lower Triassic sediments of continental origin, as in the case of Western Europe, are especially problematic due to the scarcity of fossils and absence of precise dating. The Cañizar Fm. is an Early–Middle Triassic unit of continental origin of the SE Iberian Ranges, E Spain. A detailed sedimentary study of this unit allows a shedding of light on some unresolved problems of the continental deposits of this age. The top of this unit is dated as early Anisian by means of a pollen association, while the age of its base is here estimated as late Smithian or Smithian–Spathian transition. Different facies associations and architectural elements have been defined in this unit. In the western and central parts of the basin, this unit shows sedimentary characteristics of fluvial deposits with locally intercalated aeolian sediments, while in the eastern part there is an alternation of both aeolian and fluvial deposits. Sedimentary structures also indicate changes in the climate conditions, mainly from arid to semiarid. Two marked arid periods when well-preserved aeolian sediments developed during early–middle Spathian and Spathian–Anisian transition. They alternated with two semiarid but more humid periods during the late Spathian and early Anisian. These conditions basically correspond with the general arid and very arid conditions described for central–western European plate during the same period of time. The Ateca–Montalbán High, in the northern border of the study basin, must have represented an important topographic barrier in the western Tethys separating aeolian dominated areas to the N and NE from fluvial dominated areas to the south. The Cañizar Fm. has been subdivided into six members (A–F) separated by seven (1–7) major bounding surfaces (MBS). These surfaces are well recognized laterally over hundred of km and they represent 104–105 My. MBS-5 is considered to be of late Spathian age and it is a clear indication of tectonic activity, represented by a mild unconformity. This event represents a change in the sedimentary characteristics (reactivation) of the unit and from here to the top of the unit are found the first signals of biotic recovery, represented by tetrapod footprints, plants, roots and bioturbation. All of these characteristics and the estimated age represented by the MBS-5 event permit this surface to be related to the coeval Hardegsen unconformity of Central–Western Europe. These first signals of biotic recovery can thus be related to an increased oxygen supply due to the new created paleogeographical corridors in the context of this tectonic activity. These biotic signals occurred 5 My after the Permian–Triassic limit crisis; a similar delay as occurred in other coeval and neighboring basins.
  • Publication
    Gossans, Slates, and the Red and Black Hamlets of Segovia (Spain): Interrelated Geological and Architectural Features
    (Springer, 2018-03) Oyarzun, Roberto; Martín Duque, José Francisco; Fernández Barrenechea, José María; López García, José Ángel
    The Sierra of Ayllón in Central Spain has a rich heritage from both the architectonic and geological perspectives. On one hand, the low lands flanking the northern side of the sierra in the Segovia Province host the so-called red hamlets and black hamlets (pueblos rojos-pueblos negros). The red and black terms derive from the traditional local building materials: Miocene red gossan breccias and Ordovician-Silurian black slates, respectively. Although these hamlets have a series of undeniable esthetic and historical values, it is the geology of this realm which accounts for most of the remarkable features in the studied zone. In this regard, near the hamlet of Madriguera, there are outstanding, unique outcrops of Miocene gossan deposits and deeply hydrothermally altered Silurian slates, forming what we have here defined as the “Madriguera Gossan Corridor” geosite. This, together with the intrinsic historical and esthetic values of the red and black hamlets, confers to the area (both at the regional and local scales) an immense scientific, educational, and touristic potential. The formal assessment of this site following the official methodology of the Geological Survey of Spain (IGME) confirms its highly valuable interest as a geosite.
  • Publication
    Mid-Albian to earliest Cenomanian climate cycles indicated by humid paleosols developed within the arid braidplain facies of the Utrillas Group of east-central Spain
    (Elsevier, 2023-09-15) Bueno Cebollada, Carlos A.; Horra Del Barco, Raúl De La; Fernández Barrenechea, José María; Meléndez Hevia, María Nieves; Barrón López, Eduardo; Fregenal Martínez, María Antonia
    The development of arid climate conditions in eastern Iberia during the mid-Cretaceous (mid-Albian to earliest Cenomanian) has been postulated by several authors over the last two decades based on sedimentological and palaeobotanical datasets. In this paper, we present a combined sedimentological and paleosol study of the mid-Albian to earliest Cenomanian Utrillas Group in the Cuenca Basin of east-central Spain, to improve knowledge of palaeoclimate. Four facies associations are identified as follows: Proximal alluvial braidplain (FA I), Distal alluvial braidplain (FA II), Aeolian dunes (FA III), and Inner estuarine settings (FA IV). The succession records the development of a braidplain system under dominantly arid conditions followed by a marine transgressive phase. In contrast to the overall arid palaeoclimate interpretation, multi-proxy palaeoedaphological analyses conducted for three paleosol profiles (Spodosols) indicate the occurrence of periods of increased humidity in the basin. These findings allow us to infer the occurrence of shorter-term climatic oscillations characterised by a tropical savanna climate when the palaeosols developed, suggesting significantly more humid conditions than those inferred based on the sedimentological and previous palaeobotanical datasets. We propose a palaeoclimatic model that explains the alternation between the dominantly arid and these more humid periods based on the cyclical latitudinal shifting of the mid-Cretaceous climatic belts, shedding new light on the mid-Albian to earliest Cenomanian climate of Iberia.
  • Publication
    Mechanical graphite transport in fault zones and the formation of graphite veins
    (Mineralogical Society (Great Britain), 2005) Crespo Feo, Elena; Luque del Villar, Francisco Javier; Fernández Barrenechea, José María; Rodas, Magdalena
    This paper describes a vein-shaped graphite occurrence in which, for the first time, the geological, mineralogical and isotopic evidence support its formation by physical remobilization of previously formed syngenetic graphite. The deposit studied is located in the Spanish Central System and it occurs along the contact between a hydrothermal Ag-bearing quartz vein and a graphite-bearing quartzite layer. The characteristics of this occurrence differ from those of fluid-deposited vein-type graphite mineralization in that: (1) graphite flakes are oriented parallel to the vein walls; (2) graphite crystallinity is slightly lower than in the syngenetic precursor (graphite disseminated in the quartzite); and (3) the isotopic signatures of both types of graphite are identical and correspond to biogenic carbon. In addition, the P-T conditions of the hydrothermal Ag-bearing quartz veins in the study area (P <1 kbar, and T up to 360ëC) contrast with the high degree of structural order of graphite in the vein. Therefore, physical remobilization of graphite can be regarded as a suitable alternative mechanism to account for some cases of vein-shaped graphite deposits. Such a mechanism would require a previous concentration of disseminated syngenetic graphite promoted, in this case, by the retrograde solubility of quartz. This process would generate monomineralic graphite aggregates enhancing its lubricant properties and permitting graphite to move in the solid state along distances in the range of up to several metres.
  • Publication
    Transition between Variscan and Alpine cycles in the Pyrenean-Cantabrian Mountains (N Spain): Geodynamic evolution of near-equator European Permian basins
    (Elsevier, 2021-12) Lloret, Joan; López Gómez, José; Heredia, N.; Martín González, Fidel; Horra del Barco, Raúl de la; Borruel Abadía, Violeta; Ronchi, Ausonio; Fernández Barrenechea, José María; García-Sansegundo, Joaquín; Galé, Carlos; Ubide, Teresa; Gretter, Nicola; Diez, José B.; Juncal Rosales, Manuel Antonio; Lago, Marceliano
    In the northern Iberian Peninsula, the Pyrenean-Cantabrian orogenic belt extends E-W for ca. 1000 km between the Atlantic Ocean and Mediterranean Sea. This orogen developed from the collision between Iberia and Eurasia, mainly in Cenozoic times. Lower-middle Permian sediments crop out in small, elongated basins traditionally considered independent from each other due to misinterpretations on incomplete lithostratigraphic data and scarce radiometric ages. Here, we integrate detailed stratigraphic, sedimentary, tectonic, paleosol and magmatic data from well-dated lithostratigraphic units. Our data reveal a similar geodynamic evolution across the Pyrenean-Cantabrian Ranges at the end of the Variscan cycle. Lower-middle Permian basins started their development under an extensional regime related to the end of the Variscan Belt collapse, which stars in late Carboniferous times in the Variscan hinterland. This orogenic collapse transitioned to Pangea breakup at the middle Permian times in the study region. Sedimentation occurred as three main tectono-sedimentary extensional phases. A first phase (Asselian-Sakmarian), which may have even started at the end of the Carboniferous (Gzhelian) in some sections, is mainly represented by alluvial sedimentation associated with calc-alkaline magmatism. A second stage (late Artinskian–early Kungurian), represented by alluvial, lacustrine and palustrine sediments with intercalations of calc-alkaline volcanic beds, shows a clear upward aridification trend probably related to the late Paleozoic icehouse-greenhouse transition. The third and final stage (Wordian-Capitanian) comprised of alluvial deposits with intercalations of alkaline and mafic beds, rarely deposited in the Cantabrian Mountains, and underwent significant pre- and Early Mesozoic erosion in some segments of the Pyrenees. This third stage can be related to a transition towards the Pangea Supercontinent breakup, not generalized until the Early/Middle Triassic at this latitude because the extensional process stopped about 10 Myr (Pyrenees) to 30 Myr (Cantabrian Mountains). When compared to other well-dated basins near the paleoequator, the tectono-sedimentary and climate evolution of lower-middle Permian basins in Western and Central Europe shows common features. Specifically, we identify coeval periods with magmatic activity, extensional tectonics, high subsidence rates and thick sedimentary record, as well as prolonged periods without sedimentation. This comparison also identifies some evolutionary differences between Permian basins that could be related to distinct locations in the hinterland or foreland of the Variscan orogen. Our data provide a better understanding of the major crustal re-equilibration and reorganization that took place near the equator in Western-Central Europe during the post-Variscan period.
  • Publication
    Caracterización de la materia carbonosa grafitizada de las pizarras silúricas de San Ciprián- Hermisende (Zamora)
    (Sociedad Española de Mineralogía, 2009-09) Crespo Feo, Elena; Rodas, Magdalena; Arche, Alfredo; Fernández Barrenechea, José María; Wada, Hideki; Luque del Villar, Francisco Javier