Person:
Relaño Pérez, Armando

Loading...
Profile Picture
First Name
Armando
Last Name
Relaño Pérez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Estructura de la Materia, Física Térmica y Electrónica
Area
Física Aplicada
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 60
  • Item
    Thouless energy challenges thermalization on the ergodic side of the many-body localization transition
    (Physical review B, 2020) Corps, Angel L.; Molina, Rafael A.; Relaño Pérez, Armando
    We study the ergodic side of the many-body localization transition in its standard model, the disordered Heisenberg quantum spin chain. We show that the Thouless energy, extracted from long-range spectral statistics and the power-spectrum of the full momentum distribution fluctuations, is not large enough to guarantee thermalization. We find that both estimates coincide and behave nonmonotonically, exhibiting a strong peak at an intermediate value of the disorder. Furthermore, we show that nonthermalizing initial conditions occur well within the ergodic phase with larger probability than expected. Finally, we propose a mechanism, driven by the Thouless energy and the presence of anomalous events, for the transition to the localized phase.
  • Item
    Spectral-fluctuations test of the quark-model baryon spectrum
    (Physical review letters, 2007) Fernández Ramírez, César; Relaño Pérez, Armando
    We study the low-lying baryon spectrum (up to 2.2 GeV) provided by experiments and different quark models using statistical tools which allow us to postulate the existence of missing levels in spectra. We confirm that the experimental spectrum is compatible with random matrix theory, the paradigmatic model of quantum chaos, and we find that the quark models are more similar to a Poisson distribution, which is not compatible with what should be expected in a correlated spectrum. From our analysis it stems that the spectral fluctuation properties of quark-model spectra are incompatible with experimental data. This result can be used to enlighten the problem of missing resonances.
  • Item
    Power-spectrum characterization of the continuous Gaussian ensemble
    (Physical Review E, 2008) Relaño Pérez, Armando; Muñoz, L.; Retamosa Granado, Joaquín; Faleiro, E.; Molina, R. A.
    The continuous Gaussian ensemble, also known as the nu-Gaussian or nu-Hermite ensemble, is a natural extension of the classical Gaussian ensembles of real (nu= 1), complex (nu= 2), or quaternion (nu=4) matrices, where nu is allowed to take any positive value. From a physical point of view, this ensemble may be useful to describe transitions between different symmetries or to describe the terrace-width distributions of vicinal surfaces. Moreover, its simple form allows one to speed up and increase the efficiency of numerical simulations dealing with large matrix dimensions. We analyze the long-range spectral correlations of this ensemble by means of the delta(n) statistic. We derive an analytical expression for the average power spectrum of this statistic, <(P(k)(delta))over bar>, based on approximated forms for the two-point cluster function and the spectral form factor. We find that the power spectrum of delta(n) evolves from <(P(k)(delta))over bar> proportional to 1/ k at nu= 1 to <(P(k)(delta))over bar> proportional to 1/ k(2) at nu= 0. Relevantly, the transition is not homogeneous with a 1/ f alpha noise at all scales, but heterogeneous with coexisting 1/ f and 1/ f(2) noises. There exists a critical frequency k(c)proportional to nu that separates both behaviors: below k(c), <(P(k)(delta))over bar> follows a 1/f power law, while beyond kc, it transits abruptly to a 1/ f(2) power law. For nu>1 the 1/ f noise dominates through the whole frequency range, unveiling that the 1/ f correlation structure remains constant as we increase the level repulsion and reduce to zero the amplitude of the spectral fluctuations. All these results are confirmed by stringent numerical calculations involving matrices with dimensions up to 10(5).
  • Item
    Spectral statistics of Hamiltonian matrices in tridiagonal form
    (Physical Review C, 2005) Relaño Pérez, Armando; Molina, R. A.; Zuker, A. P.; Retamosa Granado, Joaquín
    When a matrix is reduced to Lanczos tridiagonal form, its matrix elements can be divided into an analytic smooth mean value and a fluctuating part. The next-neighbor spacing distribution P(s) and the spectral rigidity Delta _(3) are shown to be universal functions of the average value of the fluctuating part. It is explained why the behavior of these quantities suggested by random matrix theory is valid in far more general cases.
  • Item
    Dynamical and excited-state quantum phase transitions in collective systems
    (Physical review B, 2022) Corps, Angel L.; Relaño Pérez, Armando
    We study dynamical phase transitions (DPTs) in quantum many-body systems with infinite-range interaction, and present a theory connecting the two kinds of known DPTs (sometimes referred to as DPTs-I and DPTs-II) with the concept of excited-state quantum phase transition (ESQPT), traditionally found in collective models. We show that DPTs-I appear as a manifestation of symmetry restoration after a quench from the broken-symmetry phase, the limits between these two phases being demarcated precisely by an ESQPT. We describe the order parameters of DPTs-I with a generalization of the standard microcanonical ensemble incorporating the infor-mation of two additional conserved charges identifying the corresponding phase. We also show that DPTs-I are linked to a mechanism of information erasure brought about by the ESQPT, and quantify this information loss with the statistical ensemble that we propose. Finally, we show analytically the main mechanism for DPTs-II is forbidden in these systems for quenches leading a broken-symmetry initial state to the same broken-symmetry phase, on one side of the ESQPT, and we provide a formulation of DPTs-II depending on the side of the ESQPT where the quench ends. We analyze the connections between various indicators of DPTs-II. Our results are numerically illustrated in the infinite-range transverse-field Ising model and are applicable to a large class of collective quantum systems satisfying a set of conditions.
  • Item
    Shell-Model studies of chaos and statistical properties in nuclei
    (Journal of Physics: Conference Series, 11TH International spring seminar on nuclear physics: shell model and nuclear structure, 2015) Gómez Gómez, José María; Faleiro, E.; Muñoz, L.; Molina, R. A.; Relaño Pérez, Armando
    Shell-model calculations with realistic empirical interactions constitute an excellent tool to study statistical properties of nuclei. Using large-scale shell-model calculations in pf-shell nuclei, we study how the onset of chaos depends on different properties of the nuclear interaction and on excitation energy. We make use of classical random matrix theory and other theoretical developments based on information theory and time series analysis. We show that besides energy-level statistics, other statistical properties like the complexity of wave functions are fundamental for a proper determination of the dynamical regime of nuclei. Important deviations from GOE are observed in level fluctuations and in the complexity of wave functions.
  • Item
    Irreversible processes without energy dissipation in an isolated Lipkin-Meshkov-Glick model
    (Physical Review E, 2015) Puebla, Ricardo; Relaño Pérez, Armando
    For a certain class of isolated quantum systems, we report the existence of irreversible processes in which the energy is not dissipated. After a closed cycle in which the initial energy distribution is fully recovered, the expectation value of a symmetry-breaking observable changes from a value differing from zero in the initial state to zero in the final state. This entails the unavoidable loss of a certain amount of information and constitutes a source of irreversibility. We show that the von Neumann entropy of time-averaged equilibrium states increases in the same magnitude as a consequence of the process. We support this result by means of numerical calculations in an experimentally feasible system, the Lipkin-Meshkov-Glick model.
  • Item
    Recent results in quantum chaos and its applications to atomic nuclei
    (Journal of Physics: Conference Series, 2011) Relaño Pérez, Armando; Gömez Gómez, José María; Faleiro, E.; Muñoz, L.; Molina, R. A.; Retamosa Granado, J.
    A survey of chaotic dynamics in atomic nuclei is presented, using on the one hand standard statistics of quantum chaos studies, and on the other a new approach based on time series analysis methods. The study of shell-model spectra in the pf shell shows that nuclear chaos is strongly isopin dependent and increases with excitation energy. On the other hand, it is found that chaotic quantum systems exhibit 1/f noise and regular systems exhibit 1/f(2) behaviour. It is shown that the time series approach can be used to calculate quite accurately the fraction of missing levels and the existence of mixed symmetries in experimental level spectra.
  • Item
    Fluctuations in the level density of a fermi gas
    (Physical Review Letters, 2005) Relaño Pérez, Armando; Leboeuf, P.; Monastra, A. G.
    We present a theory that accurately describes the counting of excited states of a noninteracting fermionic gas. At high excitation energies the results reproduce Bethe's theory. At low energies oscillatory corrections to the many-body density of states, related to shell effects, are obtained. The fluctuations depend nontrivially on energy and particle number. Universality and connections with Poisson statistics and random matrix theory are established for regular and chaotic single-particle motion.
  • Item
    Theoretical derivation of 1/ƒ noise in quantum chaos
    (Physical review letters, 2004) Relaño Pérez, Armando; Faleiro, E.; Gómez Gómez, José María; Molina, R. A.; Muñoz, L.; Retamosa Granado, Joaquín
    It was recently conjectured that 1/ƒ noise is a fundamental characteristic of spectral fluctuations in chaotic quantum systems. This conjecture is based on the power spectrum behavior of the excitation energy fluctuations, which is different for chaotic and integrable systems. Using random matrix theory, we derive theoretical expressions that explain without free parameters the universal behavior of the excitation energy fluctuations power spectrum. The theory gives excellent agreement with numerical calculations and reproduces to a good approximation the 1/ƒ (1/ƒ^(2)) power law characteristic of chaotic (integrable) systems. Moreover, the theoretical results are valid for semiclassical systems as well.