Arrabal Durán, Raúl

Profile Picture
First Name
Last Name
Arrabal Durán
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Ingeniería Química y de Materiales
Ciencia de los Materiales e Ingeniería Metalúrgica
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 10 of 11
  • Publication
    Design and Multidimensional Screening of Flash-PEO Coatings for Mg in Comparison to Commercial Chromium(VI) Conversion Coating
    (MDPI, 2021-02-17) Wierzbicka, Ewa; Mohedano Sánchez, Marta; Matykina, Endzhe; Arrabal Durán, Raúl
    REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) regulations demand for an expedient discovery of a Cr(VI)-free alternative corrosion protection for light alloys even though the green alternatives might never be as cheap as current harmful technologies. In the present work, flash- plasma electrolytic oxidation coatings (FPEO) with the process duration < 90 s are developed on AZ31B alloy in varied mixtures of silicate-, phosphate-, aluminate-, and fluoride-based alkaline electrolytes implementing current density and voltage limits. The overall evaluation of the coatings’ anticorrosion performance (electrochemical impedance spectroscopy (EIS), neutral salt spray test (NSST), paintability) shows that from nine optimized FPEO recipes, two (based on phosphate, fluoride, and aluminate or silicate mixtures) are found to be an adequate substitute for commercially used Cr(VI)-based conversion coating (CCC). The FPEO coatings with the best corrosion resistance consume a very low amount of energy (~1 kW h m−2 µm−1). It is also found that the lower the energy consumption of the FPEO process, the better the corrosion resistance of the resultant coating. The superb corrosion protection and a solid environmentally friendly outlook of PEO-based corrosion protection technology may facilitate the economic justification for industrial end-users of the current-consuming process as a replacement of the electroless CCC process.
  • Publication
    Combination of Electron Beam Surface Structuring and Plasma Electrolytic Oxidation for Advanced Surface Modification of Ti6Al4V Alloy
    (MDPI, 2022) Mora-Sanchez, Hugo; Pixner, Florian; Buzolin, Ricardo; Mohedano Sánchez, Marta; Arrabal Durán, Raúl; Warchomicka, Fernando; Matykina, Endzhe
    The objective of this work is to study for the first time the combination of electron beam (EB) surface structuring and plasma electrolytic oxidation (PEO) with the aim of providing a multiscale topography and bioactive surface to the Ti6Al4V alloy for biomedical applications. Ca and P-containing coatings were produced via 45 s PEO treatments over multi-scale EB surface topographies. The coatings morphology and composition were characterized by a means of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The effect on the previous EB topography was evaluated by means of a 3D optical profilometry and electrochemical response via potentiodynamic polarization tests. In general, the PEO process, morphology, composition and growth rate of the coatings were almost identical, irrespective of the topography treated. Minimal local differences were found in terms of morphology, and the growth rate were related to specific topographical features. Nevertheless, all the PEO-coated substrates presented essentially the same corrosion resistance. Electrochemical tests revealed a localized crevice corrosion susceptibility of all the bare EB topographies, which was successfully prevented after the PEO treatment.
  • Publication
    Flash-PEO coatings loaded with corrosion inhibitors on AA2024
    (Elsevier, 2020-08-20) Olmo Martínez, Rubén del; Mohedano Sánchez, Marta; Visser, Peter; Matykina, Endzhe; Arrabal Durán, Raúl
    Flash plasma electrolytic oxidation (flash-PEO) with in situ incorporation of inhibitors is explored as a strategy for corrosion protection of 2024 aluminium (Al) alloys. Thin (~5 μm) and energy-efficient coatings were successfully developed on the Al substrate in 100 s treatment time using different electrolytes based on molybdate, stannate, tungstate, vanadate lanthanum or cerium salts additives with and without complexing agent (EDTA). Screening of the optimum combination in search of minimum thickness and best corrosion protective performance was performed using electrochemical impedance spectroscopy (EIS). Coatings based on EDTA-Ce and WO42 were selected and investigated further in comparison with the inhibitor-free phosphate coating in terms of morphology, composition, corrosion behaviour and paint adhesion. EDTA-Ce coating showed excellent paint adhesion and the highest impedance modulus at short immersion times in 3.5 wt% NaCl aqueous solution. Neutral salt spray testing of this coating as a full system comprising an epoxy primer showed no signs of corrosion after 1000 h of exposure.
  • Publication
    Layered Double Hydroxide Coatings Loaded with Corrosion Inhibitors for Corrosion Protection of AZ31 †
    (MDPI, 2021) Pillado Rios, Borja; Mohedano Sánchez, Marta; Olmo Martínez, Rubén del; Mingo, Beatriz; Matykina, Endzhe; Arrabal Durán, Raúl
    Layered double hydroxide (LDHs) coatings were developed for the corrosion protection of AZ31 Mg alloy. AZ31 is widely used in the transport industry due to its low mass density and good mechanical properties. LDH coatings were fabricated under co-precipitation conditions and applied under hydrothermal conditions. Two different systems Zn-Al LDH and Li-Al LDH were studied. Specimens were post-treated via immersion for 2 h at 45 °C in inhibitor aqueous baths. Na2WO4·H2O and LiNO3 inorganic inhibitors were used, respectively, to produce inhibitor-loaded systems: Zn-Al LDH(W) and Li-Al LDH(Li). The characterization of the coatings was carried out by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The corrosion process was studied by electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). The surface was also evaluated via the determination of water drop contact angle and the performance of a paint adhesion test using an epoxy primer. The characterization of the coating revealed two-layered coatings with a denser inner layer and a flaky outer layer. Both coatings improved the corrosion resistance of the AZ31 alloy. Loading with inhibitor further increased the corrosion resistance by one order of magnitude (bare substrate, Z10mHz~102 Ω cm2; LDH, Z10mHz~103–4 Ω cm2; LDH-inhibitor, Z10mHz~105 Ω cm2).
  • Publication
    Hybrid sol-gel coatings applied on anodized AA2024-T3 for active corrosion protection
    (Elsevier Science, 2021-08-15) Olmo Martínez, Rubén del; Tiringer, U.; Milosev, I; Visser, P.; Arrabal Durán, Raúl; Matykina, Endzhe
    The effect of the presence of an anodic film and hybrid sol-gel coating loaded with corrosion inhibitors was evaluated as a strategy for enhanced barrier and active corrosion protection of aluminium alloy 2024-T3. In this study, AA2024-T3 specimens were anodized in a modified sulphuric-citric acid bath (SCA) as the first layer of a corrosion protective multilayer system and subsequently protected by the application of silica-based hybrid sol-gel coatings. These coatings were doped with LiNO3 and Ce(NO3)3 as corrosion inhibitors and studied in comparison with the inhibitor-free sol-gel coating in terms of morphology, composition and corrosion protection of intact and scribed specimens. The anodized AA2024-T3 with an overlaying inhibitor-free sol-gel coating showed the highest impedance modulus during long-term immersion in 0.1 mol·L−1 NaCl aqueous solution. Active corrosion protection of scribed coated specimens was studied by exposure to a 0.5 mol·L−1 NaCl solution and evaluated by surface analytical techniques. The addition of Li- and Ce-based salts into the hybrid sol-gel formulation showed active corrosion protection compared to the inhibitor-free scribed hybrid sol-gel coating. The Ce-doped sol-gel coating showed less visual corrosion and higher active corrosion protection than the Li-containing one during the long-term immersion test in 0.5 mol·L−1 NaCl. Present findings reveal that the combination of the anodic/hybrid sol-gel layers on AA2024-T3 enhances the corrosion protective properties barrier properties of both stand-alone systems and the incorporation of Li- and Ce-based inhibitors provide active corrosion.
  • Publication
    PLA deposition on surface treated magnesium alloy: Adhesion, toughness and corrosion behaviour
    (Elsevier Science, 2020-04-25) Muñoz, Marta; Torres, Belén; Mohedano Sánchez, Marta; Matykina, Endzhe; Arrabal Durán, Raúl; López, A.J.; Rams, J.
    This study shows that the use of polylactic acid polymer (PLA) coatings deposited by dip-coating on AZ31 magnesium alloy can increase the integrity of the system and the fracture toughness of magnesium substrates treated by plasma electrolytic oxidation (PEO). This provides a novel and promising use of a multilayered system made of fully biocompatible materials. The maximum adhesion strength value for PLA coatings on AZ31 was >50% higher than the maximum one for AZ31/PEO/PLA, while the maximum bending strain tripled. The limitations observed in the AZ31/PEO system arise from the brittle nature of the oxides formed during PEO treatments; their negative impact is reduced when incorporating a PLA layer that is capable of filling the pores and sealing the cracks of the PEO layer. PLA coatings reduce corrosion of AZ31 and maintain the corrosion protection provided by the PEO treatments. The characteristics of the PLA coatings on AZ31 Mg alloy and on AZ31/PEO systems were evaluated by using a Taguchi design of experiment (DOE) method using the following processing parameters: (i) number of layers, (ii) withdrawal speed and (iii) polymer concentration. The effect of these three degrees of freedom and, the surface treatment has been evaluated with regards to different properties desired for the coatings, i.e., adhesion, thickness, roughness, and corrosion resistance.
  • Publication
    Biotribology and biocorrosion of MWCNTs-reinforced PEO coating on AZ31B Mg alloy
    (Elsevier Science, 2021-03-05) Daavari, Morteza; Atapour, Masoud; Mohedano Sánchez, Marta; Arrabal Durán, Raúl; Matykina, Endzhe; Taherizadeh, Aboozar
    Over the last two decades, various methods have been developed for surface modification of Mg alloys among which plasma electrolytic oxidation (PEO) is one of the most effective methods for tailoring surface properties. However, PEO coatings still need to be improved in various aspects, including mechanical and corrosion performances. In the current study, multi-walled carbon nanotubes (MWCNTs) were incorporated into a PEO coating structure via one-step process. Characterization techniques in this study included scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD). Corrosion behavior was evaluated by electrochemical tests taking into account quasi-in vivo conditions in order to get closer to implant degradation rates in human body. Dry-wear and tribocorrosion in SBF were also evaluated in reciprocal ball-on-plate mode. According to the findings, MWCNTs induced several microstructural modifications in PEO coating such as formation of ~ 1 μm homogeneous dense barrier layer and irregular-shape porosities. Reinforcement significantly improved pitting corrosion resistance of the PEO coating, yielded a low friction coefficient and decreased wear-related damage by 60%.
  • Publication
    Chromate-Free Corrosion Protection Strategies for Magnesium Alloys—A Review: Part III—Corrosion Inhibitors and Combining Them with Other Protection Strategies
    (MDPI AG, 2022) Vaghefinazari, Bahram; Wierzbicka, Ewa; Visser, Peter; Posner, Ralf; Arrabal Durán, Raúl; Matykina, Endzhe; Mohedano Sánchez, Marta; Blawert, Carsten; Zheludkevich, Mikhail L.; Lamaka, Sviatlana
    Owing to the unique active corrosion protection characteristic of hexavalent chromium-based systems, they have been projected to be highly effective solutions against the corrosion of many engineering metals. However, hexavalent chromium, rendered a highly toxic and carcinogenic substance, is being phased out of industrial applications. Thus, over the past few years, extensive and concerted efforts have been made to develop environmentally friendly alternative technologies with comparable or better corrosion protection performance to that of hexavalent chromium-based technologies. The introduction of corrosion inhibitors to a coating system on magnesium surface is a cost-effective approach not only for improving the overall corrosion protection performance, but also for imparting active inhibition during the service life of the magnesium part. Therefore, in an attempt to resemble the unique active corrosion protection characteristic of the hexavalent chromium-based systems, the incorporation of inhibitors to barrier coatings on magnesium alloys has been extensively investigated. In Part III of the Review, several types of corrosion inhibitors for magnesium and its alloys are reviewed. A discussion of the state-of-the-art inhibitor systems, such as iron-binding inhibitors and inhibitor mixtures, is presented, and perspective directions of research are outlined, including in silico or computational screening of corrosion inhibitors. Finally, the combination of corrosion inhibitors with other corrosion protection strategies is reviewed. Several reported highly protective coatings with active inhibition capabilities stemming from the on-demand activation of incorporated inhibitors can be considered a promising replacement for hexavalent chromium-based technologies, as long as their deployment is adequately addressed.
  • Publication
    Flash-PEO as an alternative to chromate conversion coatings for corrosion protection of Mg alloy
    (Elsevier Science, 2020-11-14) Wierzbicka, Ewa; Vaghefinazari, B.; Lamaka, S.V.; Zheludkevich, Mikhail; Mohedano Sánchez, Marta; Moreno Turiegano, Lara; Visser, P.; Rodríguez, Alicia; Velasco, Jorge; Arrabal Durán, Raúl; Matykina, Endzhe
    In the present work, a flash-PEO coating is developed on AZ31B alloy in a combination of silicate, phosphate, and fluoride based electrolyte in order to offer a green alternative to chromate conversion coatings. Multilevel active protection is achieved through synergetic combination of self-sealing effect of PEO coating itself and active inhibition provided by an organic inhibitor impregnated in PEO pores in a post-treatment step. The results indicate that flash-PEO coatings, loaded with organic corrosion inhibitors, can be recommended for exploitation on industrial level as an equally effective corrosion protection system alternative to CCC for paint-bearing and paint-free applications.
  • Publication
    Chromate-Free Corrosion Protection Strategies for Magnesium Alloys—A Review: PART I—Pre-Treatment and Conversion Coating
    (MDPI AG, 2022) Vaghefinazari, Bahram; Wierzbicka, Ewa; Visser, Peter; Posner, Ralf; Arrabal Durán, Raúl; Matykina, Endzhe; Mohedano Sánchez, Marta; Blawert, Carsten; Zheludkevich, Mikhail; Lamaka, Sviatlana
    Corrosion protection systems based on hexavalent chromium are traditionally perceived to be a panacea for many engineering metals including magnesium alloys. However, bans and strict application regulations attributed to environmental concerns and the carcinogenic nature of hexavalent chromium have driven a considerable amount of effort into developing safer and more environmentally friendly alternative techniques that provide the desired corrosion protection performance for magnesium and its alloys. Part I of this review series considers the various pre-treatment methods as the earliest step involved in the preparation of Mg surfaces for the purpose of further anti-corrosion treatments. The decisive effect of pre-treatment on the corrosion properties of both bare and coated magnesium is discussed. The second section of this review covers the fundamentals and performance of conventional and state-of-the-art conversion coating formulations including phosphate-based, rare-earth-based, vanadate, fluoride-based, and LDH. In addition, the advantages and challenges of each conversion coating formulation are discussed to accommodate the perspectives on their application and future development. Several auspicious corrosion protection performances have been reported as the outcome of extensive ongoing research dedicated to the development of conversion coatings, which can potentially replace hazardous chromium(VI)-based technologies in industries.