Person:
Vivanco Martínez, Fernando

Loading...
Profile Picture
First Name
Fernando
Last Name
Vivanco Martínez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierDialnet ID

Search Results

Now showing 1 - 2 of 2
  • Item
    The C(H)1 domain of IgG is not essential for C3 covalent binding: importance of the other constant domains as targets for C3.
    (International Immunology, 1998) Munoz, Esther; Vidarte, Luis; Casado, Maria Teresa; Pastor Vargas, Carlos; Vivanco Martínez, Fernando
    The covalent binding of C3 to antigen-antibody complexes [immune complexes (IC)] plays a pivotal role in the elimination of antigens. C3 prevents the formation of large IC lattices promoting their solubilization. Subsequently, bound C3 fragments determine the efficacy of antigen presentation, and the generation of antibody responses and immunological memory. C3 binding to IgG-IC generates IgG-C3b-C3b complexes which are detected by SDS-PAGE as two major bands: C3alpha65-heavy chain and C3alpha65-C3alpha43 covalent complexes. Using human heat-aggregated IgG1 as a model of IC, a C3b binding site was localized only in the Cgamma1 domain. However, with true IC of ovalbumin and rabbit IgG anti-ovalbumin, C3b binds to both the Fab and Fc regions of IgG. To study the binding of C3b to the different domains of IgG and particularly to evaluate the involvement of the Cgamma1 domain, we have constructed recombinant single-chain antibodies without Cgamma1, which have the structure: V(H)-linker-V(L)-hinge-Cgamma2-Cgamma3 (scAb). The variable domains were from a mouse mAb anti-HSA and the constant region (hinge-C(H)2-C(H)3) from human IgG1 or rabbit IgG. C3 binds very efficiently to IC formed with human (h-scAb) or rabbit (r-scAb) recombinant antibodies (scAb-HSA) and generates also two bands on SDS-PAGE (C3alpha65-scAb and C3alpha65-C3alpha43), which are the counterparts of those of the complete antibody. In addition, IC formed with scAb activate the alternative pathway to a similar extent as IC of the entire IgG. These data indicate that the Cgamma1 domain is a dispensable region for C3b binding and that the remaining constant domains are as efficient as Cgamma1 in C3b binding. Overall these results support the view that C3 does not specifically recognize a unique site in the Cgamma1 domain. Rather it seems to be able to attach along the antibody molecule. Probably this implies an advantage for effective processing of C3b-IC and elimination of antigens in vivo.
  • Item
    A small domain (6.5 kDa) of bacterial protein G inhibits C3 covalent binding to the Fc region of IgG immune complexes.
    (European Journal of Immunology, 1998) Muñoz, Esther; Vidarte, Luis; Pastor Vargas, Carlos; Casado, Maria Teresa; Vivanco Martínez, Fernando
    Attachment of the complement component C3 to antigen-antibody (Ag-Ab) complexes (immune complexes, IC) is the key molecular event responsible for the elimination of many Ag in the form of Ag-Ab-C3b. The CH1 domain and the Fc region of the Ab, which have previously been involved in the binding of C3b, are also the targets of several bacterial IgG-binding proteins, particularly proteins G and A. Here we describe the ability of a small recombinant protein G domain (B2; 6.5 kDa) to inhibit the covalent binding of C3b to the Fc portion of IgG without affecting the binding to the Fab part. Protein G (B2 domain) produced a remarkable inhibition of covalent binding of C3b to IC formed with rabbit IgG, but none with the F(ab')2 fragment, indicating that B2 interferes with the C3b binding to the Fc region. A weak inhibition was observed with IC formed with mouse IgG2b which preferentially binds B2 domain on the CH1 domain of the Fab. To confirm these data, recombinant single-chain Ab devoid of CH1 domains (scAb), and including the rabbit or human Fc portion (hinge-CH2-CH3), were produced and used to form IC. Protein G-B2 domain inhibited C3b binding to IC formed with scAb of either human or rabbit constant regions, supporting the view of a specific blockade of C3b binding to the Fc region. A similar inhibition of C3b binding was observed using protein A instead of protein G B2 domain and the same set of IC. On the CH1 domain, C3b and B2 bind on opposite faces, and therefore do not interfere with each other in their binding. However, B2 domain bound to the inter-CH2-CH3 region impedes the C3b binding to the Fc. This inhibition clarifies the specificity of C3b for the different regions of IgG and explains how bacterial IgG-binding proteins provide the bacteria with a mechanism of evasion from the opsonizing action of complement and contribute to the virulence. This could be a general mechanism of escape because protein G binds the majority of mammalian Ig.