Person:
Martínez Ruiz, María Paloma

Loading...
Profile Picture
First Name
María Paloma
Last Name
Martínez Ruiz
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Orgánica
Area
Química Orgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 2 of 2
  • Item
    An enzyme-controlled mesoporous nanomachine for triple-responsive delivery
    (Journal of Materials Chemistry B, 2022) Mayol Hornero, Beatriz; Dato, Victor; Rodriguez, Manuel; Lucena, Elena; Villalonga, Anabel; Díez, Paula; Jiménez Falcao, Sandra; Sancenón, Félix; Sánchez, Alfredo; Vilela García, Diana; Martínez Ruiz, María Paloma; Martínez-Máñez, Ramón; Villalonga Santana, Reynaldo
    The construction of a novel enzyme-controlled nanomachine with multiple release mechanisms for oncommand delivery is described. This nanodevice was assembled by modifying mesoporous silica nanoparticles with 2-(benzo[d]thiazol-2-yl)phenyl 4-aminobenzoate moieties, and further capped with b-cyclodextrin-modified glucose oxidase neoglycoenzyme. The device released the encapsulated payload in the presence of H2O2 and acidic media. The use of glucose as an input chemical signal also triggered cargo release through the enzymatic production of gluconic acid and hydrogen peroxide, and the subsequent disruption of the gating mechanism at the mesoporous surface. The nanodevice was successfully employed for the enzyme-controlled release of doxorubicin in HeLa cancer cells.
  • Item
    A glutathione disulfide-sensitive Janus nanomachine controlled by an enzymatic and logic gate for smart delivery
    (Nanoscale, 2021) Mayol Hornero, Beatriz; Díez-Sánchez, Paula; Sánchez Sánchez, Alfredo; Torre, Cristina de la; Villalonga, Anabel; Lucena-Sánchez, Elena; Sancenón, Félix; Martínez Ruiz, María Paloma; Vilela García, Diana; Martínez-Máñez, Ramón; Villalonga Santana, Reynaldo
    This work describes the assembly of a novel enzyme-controlled nanomachine operated through an AND Boolean logic gate for on-command delivery. The nanodevice was constructed on Au-mesoporous silica Janus nanoparticles capped with a thiol-sensitive gate-like molecular ensemble on the mesoporous face and functionalized with glutathione reductase on the gold face. This autonomous nanomachine employed NADPH and glutathione disulfide as input chemical signals, leading to the enzymatic production of reduced glutathione that causes the disruption of the gating mechanism on the mesoporous face and the consequent payload release as an output signal. The nanodevice was successfully used for the autonomous release of doxorubicin in HeLa cancer cells and RAW 264.7 macrophage cells.