Sánchez Brea, Luis Miguel

Profile Picture
First Name
Luis Miguel
Last Name
Sánchez Brea
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 9 of 9
  • Publication
    Double grating systems with one steel tape grating
    (Elsevier Science BV, 2008-12-01) Torcal Milla, Francisco José; Sánchez Brea, Luis Miguel; Bernabeu Martínez, Eusebio
    Steel tape gratings are used in different metrology applications. As the period of these gratings was large (around 100μm,), its analytical study has been performed, up to date, using a geometrical approach. Nowadays, steel tape gratings can be manufactured with lower periods, around 20–40 μm, and diffractive effects must be taken into account. Also, due to the roughness of the surface, statistical techniques need to be considered to analyze their behavior. In this work, an analysis of the pseudo-imaging formation in a double grating system including one steel tape grating is performed. In particular Moiré and Lau configurations are analyzed. We have found that roughness significantly affects to Moiré configuration. However, its effect is negligible in Lau configuration. Generalized grating imaging configuration is also studied in depth. It is shown that roughness does not affect to the contrast of pseudoimages, but it modifies their depth of focus.
  • Publication
    Variogram-based method for contrast measurement
    (The Optical Society Of America, 2007-08-01) Sánchez Brea, Luis Miguel; Torcal Milla, Francisco José; Bernabeu Martínez, Eusebio
    We present a technique for determining the contrast of an intensity distribution in the presence of additive noise and other effects, such as undesired local amplitude or offset variations. The method is based on the variogram function. It just requires the measurement of the variogram at only four points and, as a consequence, it is very fast. The proposed technique is compared with other standard techniques, showing a reduction in the error of the contrast measurement.
  • Publication
    Talbot effect with aberrated beams
    (The International Society for Optical Engineering (SPIE), 2009) Torcal Milla, Francisco José; Sánchez Brea, Luis Miguel; Bernabeu Martínez, Eusebio; Bosse, Harald; Bodermann, Bernd; Silver, Richard M.
    Diffraction gratings are one of the most used elements in optics and even in other fields of science. They are used also like part of measurement devices in scientific and industrial applications. As it is well known, self-imaging effect appears when a diffraction grating is illuminated with a coherent beam, such as a plane wave. This effect has been analyzed in depth and its behavior is well known under ideal grating and illumination conditions. Usually, the illumination beam is not perfectly collimated but presents a certain degree of aberration. The motivation of this work is to try to explain the behavior of the self-images of an ideal amplitude grating when it is illuminated by a non-perfect beam, that is, an aberrated beam. The known of this effect can help to understand how much the aberration of the light beam affects to the diffraction pattern, and more in depth, to the self-imaging phenomenon. The results presented in this work can be very useful in metrology applications, since sometimes the contrast obtained experimentally does not correspond to the theoretical predictions, usually due to aberrations in the light beam. For this, we have used a formalism based in the Rayleigh-Sommerfeld approach. We have modeled the aberrations by using the Zernike polynomials. On the other hand, we have considered all kinds of aberrations, spherical, coma, tilt, astigmatism, etc. As it is expected the contrast of the self-images decrease when the order of them increases and also when the aberration degree increase. In some cases, contrast inversion is also produced for high aberrations.
  • Publication
    Talbot effect with rough reflection gratings
    (The Optical Society Of America, 2007-06-20) Torcal Milla, Francisco José; Sánchez Brea, Luis Miguel; Bernabeu Martínez, Eusebio
    The Talbot effect is analyzed when steel tape gratings are used. These gratings are made on a steel substrate, and, because of the manufacture process, both levels of the grating are rough with different roughness parameters. A theoretical analysis based on Fresnel regime, which considers the statistical properties of roughness, is developed. Analytical formulas that show a decreasing exponential dependence on the intensity in terms of the distance between the grating and the observation plane are obtained, and an experimental verification is also performed.
  • Publication
    Self-imaging of gratings with rough strips
    (Optical Society of America, 2008-10) Torcal Milla, Francisco José; Sánchez Brea, Luis Miguel
    We analyze the self-imaging process produced by a transmission grating whose strips present two different roughness levels. This kind of grating periodically modulates the transmitted light owing only to the different microtopographic properties of the strips. In spite of the fact that the grating is not purely periodic, it produces a kind of self-image at Talbot distances. These self-images gradually appear as light propagates, but they are not present just after the grating, as occurs in amplitude or phase gratings. There exists a distance from the grating, which depends on the stochastic properties of roughness, from which the contrast of the self-images becomes stable. Important cases are analyzed in detail, such as low- and high-roughness limits. We assume for the calculations that the grating can be used in a mobile system. Simulations using the Rayleigh–Sommerfeld regime have been performed, which confirm the validity of the theoretical approach proposed in this work
  • Publication
    Continuous self-imaging regime with a double-grating mask
    (The Optical Society Of America, 2009-10-20) Sánchez Brea, Luis Miguel; Torcal Milla, Francisco José; Bernabeu Martínez, Eusebio
    We analyze the Talbot effect produced by a mask composed of two diffraction gratings. Combinations with phase and amplitude gratings have been studied in the near-field regime. For a two-phase-gratings configuration, the Talbot effect is canceled, even when using monochromatic light; that is, the intensity distribution is nearly independent of the distance from the mask to the observation plane. Therefore, the mechanical tolerances of devices that use the Talbot effect may be improved. In addition, the spatial frequency of the fringes is quadrupled, which improves the accuracy of devices that employ this mask. An experimental verification for the best case two phase gratings, has also been performed, validating the theoretical results.
  • Publication
    Far field of gratings with rough strips
    (Optical Society of America, 2008-04) Sánchez Brea, Luis Miguel; Torcal Milla, Francisco José; Bernabeu Martínez, Eusebio
    In this work, we analyze the far-field pattern produced by a grating made of strips with two different random roughness levels. The efficiency and shape of the diffraction orders is obtained, which are shown to depend on the statistical properties of roughness. We assume for the calculations that the grating can be used in a mobile mechanical system. A preliminary experimental approach which partially corroborates the theoretical results is also performed.
  • Publication
    Talbot effect in metallic gratings under Gaussian illumination
    (Elsevier Science BV, 2007-10-01) Sánchez Brea, Luis Miguel; Torcal Milla, Francisco José; Bernabeu Martínez, Eusebio
    Metallic gratings can be found in applications such as optical metrology. Due to their fabrication process, the surface presents a certain roughness. In this work, the effect of roughness on Talbot effect has been analyzed when the grating is illuminated with a Gaussian beam. A model based on Fresnel regime is used in order to determine the intensity distribution in the near field. Contrast of the self-images is obtained and it is found that it decreases in terms of the distance between the grating and the observation plane. When the autocorrelation function of roughness presents a Gaussian behaviour, the diffracted beams are still Gaussian although some of their properties change. For example, the width of the diffracted beams increases with respect to the case of the standard chrome on glass gratings. On the other hand, the power of each diffracted beam is independent on the roughness properties of the surface.
  • Publication
    Diffraction of gratings with rough edges
    (The Optical Society Of America, 2008-11-24) Torcal Milla, Francisco José; Sánchez Brea, Luis Miguel; Bernabeu Martínez, Eusebio
    We analyze the far field and near field diffraction pattern produced by an amplitude grating whose strips present rough edges. Due to the stochastic nature of the edges a statistical approach is performed. The grating with rough edges is not purely periodic, although it still divides the incident beam in diffracted orders. The intensity of each diffraction order is modified by the statistical properties of the irregular edges and it strongly decreases when roughness increases except for the zero-th diffraction order. This decreasing firstly affects to the higher orders. Then, it is possible to obtain an amplitude binary grating with only diffraction orders -1, 0 and +1. On the other hand, numerical simulations based on Rayleigh-Sommerfeld approach have been used for the case of near field. They show that the edges of the self-images are smoother than the edges of the grating. Finally, we fabricate gratings with rough edges and an experimental verification of the results is performed.