Pajares Martínsanz, Gonzalo

Profile Picture
First Name
Last Name
Pajares Martínsanz
Universidad Complutense de Madrid
Faculty / Institute
Ingeniería del Software e Inteligencia Artificial
Lenguajes y Sistemas Informáticos
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 2 of 2
  • Publication
    Artificial Intelligence Techniques for Automatic Detection of Peri‑implant Marginal Bone Remodeling in Intraoral Radiographs
    (Springer, 2023-07-01) Vera González, Vicente; Besada Portas, Eva; Pajares Martínsanz, Gonzalo; Gómez Silva, María José; Aliaga Vera, Ignacio Joaquín; Pedrera Canal, María; Vera, María; López-González, Clara Isabel; Gascó, Esther
    Peri-implantitis can cause marginal bone remodeling around implants. The aim is to develop an automatic image processing approach based on two artificial intelligence (AI) techniques in intraoral (periapical and bitewing) radiographs to assist dentists in determining bone loss. The first is a deep learning (DL) object-detector (YOLOv3) to roughly identify (no exact localization is required) two objects: prosthesis (crown) and implant (screw). The second is an image understanding-based (IU) process to fine-tune lines on screw edges and to identify significant points (intensity bone changes, intersections between screw and crown). Distances between these points are used to compute bone loss. A total of 2920 radiographs were used for training (50%) and testing (50%) the DL process. The mAP@0.5 metric is used for performance evaluation of DL considering periapical/bitewing and screws/crowns in upper and lower jaws, with scores ranging from 0.537 to 0.898 (sufficient because DL only needs an approximation). The IU performance is assessed with 50% of the testing radiographs through the t test statistical method, obtaining p values of 0.0106 (line fitting) and 0.0213 (significant point detection). The IU performance is satisfactory, as these values are in accordance with the statistical average/standard deviation in pixels for line fitting (2.75/1.01) and for significant point detection (2.63/1.28) according to the expert criteria of dentists, who establish the ground-truth lines and significant points. In conclusion, AI methods have good prospects for automatic bone loss detection in intraoral radiographs to assist dental specialists in diagnosing peri-implantitis.
  • Publication
    Layer factor analysis in convolutional neural networks for explainability
    (Elsevier, 2024-01) López González, Clara Isabel; Gómez Silva, María José; Besada Portas, Eva; Pajares Martínsanz, Gonzalo
    Explanatory methods that focus on the analysis of the features encoded by Convolutional Neural Networks (CNNs) are of great interest, since they help to understand the underlying process hidden behind the black-box nature of these models. However, to explain the knowledge gathered in a given layer, they must decide which of the numerous filters to study, further assuming that each of them corresponds to a single feature. This, coupled with the redundancy of information, makes it difficult to ensure that the relevant characteristics are being analyzed. The above represents an important challenge and defines the aim and scope of our proposal. In this paper we present a novel method, named Explainable Layer Factor Analysis for CNNs (ELFA-CNNs), which models and describes with quality convolutional layers relying on factor analysis. Regarding contributions, ELFA obtains the essential underlying features, together with their correlation with the original filters, providing an accurate and well-founded summary. Through the factorial parameters we gain insights about the information learned, the connections between channels, and the redundancy of the layer, among others. To provide visual explanations in a similarly way to other methods, two additional proposals are made: a) Essential Feature Attribution Maps (EFAM) and b) intrinsic features inversion. The results prove the effectiveness of the developed general methods. They are evaluated in different CNNs (VGG-16, ResNet-50, and DeepLabv3+) on generic datasets (CIFAR-10, imagenette, and CamVid). We demonstrate that convolutional layers adequately fit a factorial model thanks to the new metrics presented for factor and fitting residuals (D1, D>, and Res, derive from covariance matrices). Moreover, knowledge about the deep image representations and the learning process is acquired, as well as reliable heat maps highlighting regions where essential features are located. This study effectively provides an explainable approach that can be applied to different CNNs and over different datasets.