Person:
Olcoz Herrero, Katzalin

Loading...
Profile Picture
First Name
Katzalin
Last Name
Olcoz Herrero
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Arquitectura de Computadores y Automática
Area
Arquitectura y Tecnología de Computadores
Identifiers
UCM identifierORCIDScopus Author IDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Publication
    A machine learning-based framework for throughput estimation of time-varying applications in multi-core servers
    (IEEE, 2019) Iranfar, Arman; Souza, Wellington Silva de; Zapater, Marina; Olcoz Herrero, Katzalin; Souza, Samuel Xavier de; Atienza, David
    Accurate workload prediction and throughput estimation are keys in efficient proactive power and performance management of multi-core platforms. Although hardware performance counters available on modern platforms contain important information about the application behavior, employing them efficiently is not straightforward when dealing with time-varying applications even if they have iterative structures. In this work, we propose a machine learning-based framework for workload prediction and throughput estimation using hardware events. Our framework enables throughput estimation over various available system configurations, namely, number of parallel threads and operating frequency. In particular, we first employ workload clustering and classification techniques along with Markov chains to predict the next workload for each available system configuration. Then, the predicted workload is used to estimate the next expected throughput through a machine learning-based regression model. The comparison with state of the art demonstrates that our framework is able to improve Quality of Service (QoS) by 3.4x, while consuming 15% less power thanks to the more accurate throughput estimation.
  • Publication
    Containergy-a container-based energy and performance profiling tool for next generation workloads
    (MDPI, 2020-05) Souza, Wellington Silva de; Iranfar, Arman; Braulio, Anderson; Zapater, Marina; Souza, Samuel Xavier de; Olcoz Herrero, Katzalin; Atienza, David
    Run-time profiling of software applications is key to energy efficiency. Even the most optimized hardware combined to an optimally designed software may become inefficient if operated poorly. Moreover, the diversification of modern computing platforms and broadening of their run-time configuration space make the task of optimally operating software ever more complex. With the growing financial and environmental impact of data center operation and cloud-based applications, optimal software operation becomes increasingly more relevant to existing and next-generation workloads. In order to guide software operation towards energy savings, energy and performance data must be gathered to provide a meaningful assessment of the application behavior under different system configurations, which is not appropriately addressed in existing tools. In this work we present Containergy, a new performance evaluation and profiling tool that uses software containers to perform application run-time assessment, providing energy and performance profiling data with negligible overhead (below 2%). It is focused on energy efficiency for next generation workloads. Practical experiments with emerging workloads, such as video transcoding and machine-learning image classification, are presented. The profiling results are analyzed in terms of performance and energy savings under a Quality-of-Service (QoS) perspective. For video transcoding, we verified that wrong choices in the configuration space can lead to an increase above 300% in energy consumption for the same task and operational levels. Considering the image classification case study, the results show that the choice of the machine-learning algorithm and model affect significantly the energy efficiency. Profiling datasets of AlexNet and SqueezeNet, which present similar accuracy, indicate that the latter represents 55.8% in energy saving compared to the former.
  • Publication
    A QoS and container-based approach for energy saving and performance profiling in multi-core servers
    (IEEE, 2019) Souza, Wellington Silva de; Iranfar, Arman; Silva, Anderson; Zapater, Marina; Souza, Samuel Xavier de; Olcoz Herrero, Katzalin; Atienza, David
    In this work we present ContainEnergy, a new performance evaluation and profiling tool that uses software containers to perform application runtime assessment, providing energy and performance profiling data. It is focused on energy efficiency for next generation workloads and IT infrastructure.