Person:
Pérez González, Pablo Guillermo

Loading...
Profile Picture
First Name
Pablo Guillermo
Last Name
Pérez González
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Area
Astronomía y Astrofísica
Identifiers
UCM identifierScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 6 of 6
  • Publication
    Characterization of active galactic nuclei and their hosts in the extended groth strip: a multiwavelength analysis
    (IOP Publishing ltd, 2009-01) Ramos Almeida, C.; Rodríguez Espinosa, J. M.; Barro, Guillermo; Gallego Maestro, Jesús; Pérez González, Pablo Guillermo
    We have employed a reliable technique of classification of active galactic nuclei (AGNs) based on the fit of well sampled spectral energy distributions (SEDs) with a complete set of AGN and starburst galaxy templates. We have compiled UV, optical, and IR data for a sample of 116 AGNs originally selected for their X-ray and mid-IR emissions (96 with single detections and 20 with double optical counterparts). This is the most complete compilation of multiwavelength data for such a large sample of AGN in the Extended Groth Strip. Through these SEDs, we are able to obtain highly reliable photometric redshifts and to distinguish between pure and host-dominated AGNs. For the objects with unique detection we find that they can be separated into five main groups, namely: Starburst-dominated AGNs (24% of the sample), Starburst-contaminated AGNs (7%), Type-1 AGNs (21%), Type-2 AGNs (24%), and Normal galaxy hosting AGN (24%). We find these groups concentrated at different redshifts: Type-2 AGNs and Normal galaxy hosting AGNs are concentrated at low redshifts, whereas Starburst-dominated AGNs and Type-1 AGNs show a larger span. Correlations between hard/soft X-ray and UV, optical and IR luminosities are reported for the first time for such a sample of AGNs spanning a wide range of redshifts. For the 20 objects with double detection, the percentage of Starburst-dominated AGNs increases up to 48%.
  • Publication
    The stellar mass assembly of galaxies from z=0 to z=4: Analysis of a sample selected in the rest-frame near-infrared with Spitzer
    (American Astronomical Society, 2008-03-01) Pérez González, Pablo Guillermo; Rieke, George H.;, George H.; Villar, Victor; Barro, Guillermo; Blaylock, Myra; Egami, Eiichi; Gallego Maestro, Jesús; Gil de Paz, Armando; Pascual, Sergio; Zamorano Calvo, Jaime; Donley, Jennifer L.
    Using a sample of ~28,000 sources selected at 3.6-4.5 μm with Spitzer observations of the Hubble Deep Field North, the Chandra Deep Field South, and the Lockman Hole (surveyed area ~664 arcmin^2), we study the evolution of the stellar mass content of the universe at 0 < z < 4. We calculate stellar masses and photometric redshifts, based on ~2000 templates built with stellar population and dust emission models fitting the ultraviolet to mid-infrared spectral energy distributions of galaxies with spectroscopic redshifts. We estimate stellar mass functions for different redshift intervals. We find that 50% of the local stellar mass density was assembled at 0 < z < 1 (average star formation rate [SFR] 0.048 M-☉ yr^−1 Mpc^−3), and at least another 40% at 1 < z < 4 (average SFR 0.074 M_☉ yr^−1 Mpc^−3). Our results confirm and quantify the "downsizing" scenario of galaxy formation. The most massive galaxies (M > 10^12.0 M_☉) assembled the bulk of their stellar content rapidly (in 1-2 Gyr) beyond z ~ 3 in very intense star formation events (producing high specific SFRs). Galaxies with 10^11.5 < M < 10^12.0 M_☉ assembled half of their stellar mass before z ~ 1.5, and more than 90% of their mass was already in place at z ~ 0.6. Galaxies with M < 1011.5 M☉ evolved more slowly (presenting smaller specific SFRs), assembling half of their stellar mass below z ~ 1. About 40% of the local stellar mass density of 10^9.0 < M < 10^11.0 M_☉ galaxies was assembled below z ~ 0.4, most probably through accretion of small satellites producing little star formation. The cosmic stellar mass density at z > 2.5 is dominated by optically faint (Rgsim 25) red galaxies (distant red galaxies or BzK sources), which account for ~30% of the global population of galaxies, but contribute at least 60% of the cosmic stellar mass density. Bluer galaxies (e.g., Lyman break galaxies) are more numerous but less massive, contributing less than 50% of the global stellar mass density at high redshift.
  • Publication
    The Hα-based star formation rate density of the universe at z=0.84
    (American Astronomical Society, 2008-04-10) Villar, Victor; Gallego Maestro, Jesús; Pérez González, Pablo Guillermo; Pascual, Sergio; Noeske, Kai; Koo, David C.; Barro, Guillermo; Zamorano Calvo, Jaime
    We present the results of an Hα near-infrared narrowband survey searching for star-forming galaxies at redshift z = 0.84. This work is an extension of our previous narrowband studies in the optical at lower redshifts. After removal of stars and redshift interlopers (using spectroscopic and photometric redshifts), we build a complete sample of 165 Hα emitters in the extended Groth strip and GOODS-N fields with L(Hα) > 10^41 ergs s^−1. We compute the Hα luminosity function at z = 0.84 after corrections for [N_π] flux contamination, extinction, systematic errors, and incompleteness. Our sources present an average dust extinction of A(H α) = 1.5 mag. Adopting Hα as a surrogate for the instantaneous SFR, we measure an extinction-corrected SFR density of 0.17^+0.03_−0.03 M_☉ yr^−1 Mpc^−3. Combining this result to our prior measurements at z = 0.02, 0.24, and 0.40, we derive an Hα-based evolution of the SFR density proportional to (1 + z)^β with β = 3.8 ± 0.5. This evolution is consistent with that derived by other authors using different SFR tracers.
  • Publication
    Exploring the evolutionary paths of the most massive galaxies since z ~ 2
    (American Astronomical Society, 2008-11-01) Pérez González, Pablo Guillermo; Trujillo, Ignacio; Barro, Guillermo; Gallego Maestro, Jesús; Zamorano Calvo, Jaime; Conselice, Christopher J.
    We use Spitzer MIPS data from the FIDEL Legacy Project in the extended Groth strip to analyze the stellar mass assembly of massive (M > 1011 M_☉) galaxies at z < 2 as a function of structural parameters. We find 24 μm emission for more than 85% of the massive galaxies morphologically classified as disks, and for more than 57% of the massive systems morphologically classified as spheroids at any redshift, with about 8% of sources harboring a bright X-ray- and/or infrared-emitting AGN. More noticeably, ~60% of all compact massive galaxies at z = 1–2 are detected at 24 μm, even when rest-frame optical colors reveal that they are dead and evolving passively. For spheroid-like galaxies at a given stellar mass, the sizes of MIPS nondetections are smaller by a factor of ~1.2 in comparison with IR-bright sources. We find that disklike massive galaxies present specific SFRs ranging from 0.04 to 0.2 Gyr^−1 at z < 1 (SFRs ranging from 1 to 10 M_☉ yr^−1), typically a factor of 3-6 higher than massive spheroid-like objects in the same redshift range. At z > 1, and more pronouncedly at z > 1.3, the median specific SFRs of the disks and spheroids detected by MIPS are very similar, ranging from 0.1 to 1 Gyr^−1 (SFR = 10–200 M_☉ yr^−1). We estimate that massive spheroid-like galaxies may have doubled (at the most) their stellar mass from star-forming events at z < 2: less than 20% mass increase at 1.7 < z < 2.0, up to 40% more at 1.1 < z < 1.7, and less than 20% additional increase at z < 1. Disklike galaxies may have tripled (at the most) their stellar mass at z < 2 from star formation alone: up to ~40% mass increase at 1.7 < z < 2.0, and less than 180% additional increase below z = 1.7 occurred at a steady rate.
  • Publication
    Spitzer's contribution to the AGN population
    (American Astronomical Society, 2008-11-01) Donley, J. L.; Rieke, G. H.; Pérez González, Pablo Guillermo; Barro, Guillermo
    Infrared selection is a potentially powerful way to identify heavily obscured AGNs missed in even the deepest X-ray surveys. Using a 24 μm-selected sample in GOODS-S, we test the reliability and completeness of three infrared AGN selection methods: (1) IRAC color-color selection, (2) IRAC power-law selection, and (3) IR-excess selection; we also evaluate a number of IR-excess approaches. We find that the vast majority of non-power-law IRAC color-selected AGN candidates in GOODS-S have colors consistent with those of star-forming galaxies. Contamination by star-forming galaxies is most prevalent at low 24 μm flux densities (~100 μJy) and high redshifts (z ~ 2), but the fraction of potential contaminants is still high (~50%) at 500 μJy, the highest flux density probed reliably by our survey. AGN candidates selected via a simple, physically motivated power-law criterion ("power-law galaxies," or PLGs), however, appear to be reliable. We confirm that the IR-excess methods successfully identify a number of AGNs, but we also find that such samples may be significantly contaminated by star-forming galaxies. Adding only the secure Spitzer-selected PLG, color-selected, IR-excess, and radio/IR-selected AGN candidates to the deepest X-ray-selected AGN samples directly increases the number of known X-ray AGNs (84) by 54%-77%, and implies an increase to the number of 24 μm-detected AGNs of 71%-94%. Finally, we show that the fraction of MIR sources dominated by an AGN decreases with decreasing MIR flux density, but only down to f_24 μ m = 300 μJy. Below this limit, the AGN fraction levels out, indicating that a nonnegligible fraction (~10%) of faint 24 μm sources (the majority of which are missed in the X-ray) are powered not by star formation, but by the central engine. The fraction of all AGNs (regardless of their MIR properties) exceeds 15% at all 24 μm flux densities.
  • Publication
    The galaxy major merger fraction to z ~ 1
    (EDP Sciencies, 2009-07) López Sanjuan, C.; Balcells, M.; Pérez González, Pablo Guillermo; Barro, Guillermo; García Dabó, C. E.; Gallego Maestro, Jesús; Zamorano Calvo, Jaime
    Aims. The importance of disc-disc major mergers in galaxy evolution remains uncertain. We study the major merger fraction in a SPITZER/IRAC-selected catalogue in the GOODS-S field up to z ~ 1 for luminosity- and mass-limited samples. Methods. We select disc-disc merger remnants on the basis of morphological asymmetries/distortions, and address three main sources of systematic errors: (i) we explicitly apply morphological K-corrections; (ii) we measure asymmetries in galaxies artificially redshifted to z_d = 1.0 to deal with loss of morphological information with redshift; and (iii) we take into account the observational errors in z and A, which tend to overestimate the merger fraction, though use of maximum likelihood techniques. Results. We obtain morphological merger fractions (f_m^mph) below 0.06 up to z ~ 1. Parameterizing the merger fraction evolution with redshift as f_m^mph (z) = f_m^mph (0)(1 + z)^m, we find that m = 1.8 ± 0.5 for M(B)≤ -20 galaxies, while m = 5.4 ± 0.4 for M_* ≥ 10^10 M_⨀ galaxies. When we translate our merger fractions to merger rates (R_m^mph), their evolution, parameterized as R_m^mph (z) = R_m^mph (0)(1+ z)^n, is quite similar in both cases: n = 3.3 ± 0.8 for M(B) ≤ -20 galaxies, and n = 3.5 ± 0.4 for M_* ≥10^10 M_⨀ galaxies. Conclusions. Our results imply that only similar to 8% of today's M(star) ≥ 10^10 M_⨀ galaxies have undergone a disc-disc major merger since z ~ 1. In addition, ~ 21% of M_* ≥ 10(10) M_⨀ galaxies at z ~ 1 have undergone one of these mergers since z similar to 1.5. This suggests that disc-disc major mergers are not the dominant process in the evolution of M_* ≥ 10(10) M_⨀ galaxies since z 1, with only 0.2 disc-disc major mergers per galaxy, but may be an important process at z > 1, with ~ 1 merger per galaxy at 1 < z < 3.