Person:
Pérez González, Pablo Guillermo

Loading...
Profile Picture
First Name
Pablo Guillermo
Last Name
Pérez González
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Area
Astronomía y Astrofísica
Identifiers
UCM identifierScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 10 of 33
  • Publication
    Characterization of active galactic nuclei and their hosts in the extended groth strip: a multiwavelength analysis
    (IOP Publishing ltd, 2009-01) Ramos Almeida, C.; Rodríguez Espinosa, J. M.; Barro, Guillermo; Gallego Maestro, Jesús; Pérez González, Pablo Guillermo
    We have employed a reliable technique of classification of active galactic nuclei (AGNs) based on the fit of well sampled spectral energy distributions (SEDs) with a complete set of AGN and starburst galaxy templates. We have compiled UV, optical, and IR data for a sample of 116 AGNs originally selected for their X-ray and mid-IR emissions (96 with single detections and 20 with double optical counterparts). This is the most complete compilation of multiwavelength data for such a large sample of AGN in the Extended Groth Strip. Through these SEDs, we are able to obtain highly reliable photometric redshifts and to distinguish between pure and host-dominated AGNs. For the objects with unique detection we find that they can be separated into five main groups, namely: Starburst-dominated AGNs (24% of the sample), Starburst-contaminated AGNs (7%), Type-1 AGNs (21%), Type-2 AGNs (24%), and Normal galaxy hosting AGN (24%). We find these groups concentrated at different redshifts: Type-2 AGNs and Normal galaxy hosting AGNs are concentrated at low redshifts, whereas Starburst-dominated AGNs and Type-1 AGNs show a larger span. Correlations between hard/soft X-ray and UV, optical and IR luminosities are reported for the first time for such a sample of AGNs spanning a wide range of redshifts. For the 20 objects with double detection, the percentage of Starburst-dominated AGNs increases up to 48%.
  • Publication
    On the metallicity dependence of the 24 μm luminosity as a star formation tracer
    (American Astronomical Society, 2007-10-01) Relaño, M.; Lisenfeld, U.; Pérez González, Pablo Guillermo; Vílchez, J. M.; Battaner, E., E.
    We investigate the use of the rest-frame 24 μm luminosity as an indicator of the star formation rate (SFR) in galaxies with different metallicities by comparing it to the (extinction-corrected) Hα luminosity. We carry out this analysis in two steps: First, we compare the emission from H (II) regions in different galaxies with metallicities between 12 + and 8.9. We find that the 24 μm and the extinction-corrected Hα luminosities from individual H (II) log (O/H) = 8.1 regions follow the same correlation for all galaxies, independent of their metallicity. Second, the role of metallicity is explored further for the integrated luminosity in a sample of galaxies with metallicities in the range of 12 +. For this sample we compare the 24 μm and Hα luminosities integrated over the entire galaxies log (O/ H) = 7.2-9.1 and find a lack of the 24 μm emission for a given Hα luminosity for low-metallicity objects, likely reflecting a low dust content. These results suggest that the 24 μm luminosity is a good metallicity-independent tracer for the SFR in individual H (II) regions. On the other hand, metallicity has to be taken into account when using the 24 μm luminosity as a tracer for the SFR of entire galaxies.
  • Publication
    The stellar mass assembly of galaxies from z=0 to z=4: Analysis of a sample selected in the rest-frame near-infrared with Spitzer
    (American Astronomical Society, 2008-03-01) Pérez González, Pablo Guillermo; Rieke, George H.;, George H.; Villar, Victor; Barro, Guillermo; Blaylock, Myra; Egami, Eiichi; Gallego Maestro, Jesús; Gil de Paz, Armando; Pascual, Sergio; Zamorano Calvo, Jaime; Donley, Jennifer L.
    Using a sample of ~28,000 sources selected at 3.6-4.5 μm with Spitzer observations of the Hubble Deep Field North, the Chandra Deep Field South, and the Lockman Hole (surveyed area ~664 arcmin^2), we study the evolution of the stellar mass content of the universe at 0 < z < 4. We calculate stellar masses and photometric redshifts, based on ~2000 templates built with stellar population and dust emission models fitting the ultraviolet to mid-infrared spectral energy distributions of galaxies with spectroscopic redshifts. We estimate stellar mass functions for different redshift intervals. We find that 50% of the local stellar mass density was assembled at 0 < z < 1 (average star formation rate [SFR] 0.048 M-☉ yr^−1 Mpc^−3), and at least another 40% at 1 < z < 4 (average SFR 0.074 M_☉ yr^−1 Mpc^−3). Our results confirm and quantify the "downsizing" scenario of galaxy formation. The most massive galaxies (M > 10^12.0 M_☉) assembled the bulk of their stellar content rapidly (in 1-2 Gyr) beyond z ~ 3 in very intense star formation events (producing high specific SFRs). Galaxies with 10^11.5 < M < 10^12.0 M_☉ assembled half of their stellar mass before z ~ 1.5, and more than 90% of their mass was already in place at z ~ 0.6. Galaxies with M < 1011.5 M☉ evolved more slowly (presenting smaller specific SFRs), assembling half of their stellar mass below z ~ 1. About 40% of the local stellar mass density of 10^9.0 < M < 10^11.0 M_☉ galaxies was assembled below z ~ 0.4, most probably through accretion of small satellites producing little star formation. The cosmic stellar mass density at z > 2.5 is dominated by optically faint (Rgsim 25) red galaxies (distant red galaxies or BzK sources), which account for ~30% of the global population of galaxies, but contribute at least 60% of the cosmic stellar mass density. Bluer galaxies (e.g., Lyman break galaxies) are more numerous but less massive, contributing less than 50% of the global stellar mass density at high redshift.
  • Publication
    Determining star formation rates for infrared galaxies
    (American Astronomical Society, 2009-02-10) Rieke, G. H.; Alonso Herrero, A.; Weiner, B. J.; Pérez González, Pablo Guillermo; Blaylock, M.; Donley, J. L.; Marcillac, D.
    We show that measures of star formation rates (SFRs) for infrared galaxies using either single-band 24 μm or extinction-corrected Paα luminosities are consistent in the total infrared luminosity = L(TIR) ~ 10^10 L_☉ range. MIPS 24 μm photometry can yield SFRs accurately from this luminosity upward: SFR(M_☉ yr^–1) = 7.8 × 10^–10 L(24 μm, L_☉) from L(TIR) = 5× 10^9 L_☉ to 10^11 L_☉ and SFR = 7.8 × 10^–10 L(24 μm, L_☉)(7.76 × 10^–11 L(24))^0.048 for higher L(TIR). For galaxies with L(TIR) ≥ 10^10 L_☉, these new expressions should provide SFRs to within 0.2 dex. For L(TIR) ≥ 10^11 L_☉, we find that the SFR of infrared galaxies is significantly underestimated using extinction-corrected Paα (and presumably using any other optical or near-infrared recombination lines). As a part of this work, we constructed spectral energy distribution templates for eleven luminous and ultraluminous purely star forming infrared galaxies and over the spectral range 0.4 μm to 30 cm. We use these templates and the SINGS data to construct average templates from 5 μm to 30 cm for infrared galaxies with L(TIR) = 5× 10^9 to 10^13 L_☉. All of these templates are made available online.
  • Publication
    The Hα-based star formation rate density of the universe at z=0.84
    (American Astronomical Society, 2008-04-10) Villar, Victor; Gallego Maestro, Jesús; Pérez González, Pablo Guillermo; Pascual, Sergio; Noeske, Kai; Koo, David C.; Barro, Guillermo; Zamorano Calvo, Jaime
    We present the results of an Hα near-infrared narrowband survey searching for star-forming galaxies at redshift z = 0.84. This work is an extension of our previous narrowband studies in the optical at lower redshifts. After removal of stars and redshift interlopers (using spectroscopic and photometric redshifts), we build a complete sample of 165 Hα emitters in the extended Groth strip and GOODS-N fields with L(Hα) > 10^41 ergs s^−1. We compute the Hα luminosity function at z = 0.84 after corrections for [N_π] flux contamination, extinction, systematic errors, and incompleteness. Our sources present an average dust extinction of A(H α) = 1.5 mag. Adopting Hα as a surrogate for the instantaneous SFR, we measure an extinction-corrected SFR density of 0.17^+0.03_−0.03 M_☉ yr^−1 Mpc^−3. Combining this result to our prior measurements at z = 0.02, 0.24, and 0.40, we derive an Hα-based evolution of the SFR density proportional to (1 + z)^β with β = 3.8 ± 0.5. This evolution is consistent with that derived by other authors using different SFR tracers.
  • Publication
    Luminosity and stellar mass functions of local star-forming galaxies
    (American Astronomical Society, 2003-04-10) Pérez González, Pablo Guillermo; Gallego Maestro, Jesús; Zamorano Calvo, Jaime; Alonso Herrero, A.; Gil de Paz, Armando; Aragón Salamanca, A.
    We present the optical and near-infrared luminosity and mass functions of the local star-forming galaxies in the Universidad Complutense de Madrid (UCM) Survey. A bivariate method that explicitly deals with the Hα selection of the survey is used when estimating these functions. Total stellar masses have been calculated on a galaxy-by-galaxy basis taking into account differences in star formation histories. The main difference between the luminosity distributions of the UCM sample and the luminosity functions of the local galaxy population is a lower normalization (φ *), indicating a lower global volume density of UCM galaxies. The typical near-infrared luminosity (L*) of local star-forming galaxies is fainter than that of normal galaxies. This is a direct consequence of the lower stellar masses of our objects. However, at optical wavelengths (B and r), the luminosity enhancement arising from the young stars leads to M* values that are similar to those of normal galaxies. The fraction of the total optical and near-infrared luminosity density in the local universe associated with star-forming galaxies is 10%-20%. Fitting the total stellar mass function using a Schechter parameterization, we obtain α = -1.15 ± 0.15, log M* = 10.82 ± 0.17 M_☉, and log φ * = -3.04 ± 0.20 Mpc^-3. This gives an integrated total stellar mass density of 10^7.83±0.07 M_☉ Mpc-3 in local star-forming galaxies (H_0 = 70 km s^-1 Mpc^-1, Ω_M = 0.3, and Λ = 0.7). The volume-averaged burst strength of the UCM galaxies is b = 0.04 ± 0.01, defined as the ratio of the mass density of stars formed in recent bursts (with an age of <10 Myr) to the total stellar mass density in UCM galaxies. Finally, we derive that in the local universe, 13% ± 3% of the total baryon mass density in the form of stars is associated with star-forming galaxies.
  • Publication
    MID-IR luminosities and UV/optical star formation rates at z < 1.4
    (American Astronomical Society, 2009-07-20) Pérez González, Pablo Guillermo; otros, ...
    Ultraviolet (UV) nonionizing continuum and mid-infrared (IR) emission constitute the basis of two widely used star formation (SF) indicators at intermediate and high redshifts. We study 2430 galaxies with z < 1.4 in the Extended Groth Strip with deep MIPS 24 μm observations from FIDEL, spectroscopy from DEEP2, and UV, optical, and near-IR photometry from the AEGIS. The data are coupled with dust-reddened stellar population models and Bayesian spectral energy distribution (SED) fitting to estimate dust-corrected star formation rates (SFRs). In order to probe the dust heating from stellar populations of various ages, the derived SFRs were averaged over various timescales—from 100 Myr for "current" SFR (corresponding to young stars) to 1-3 Gyr for long-timescale SFRs (corresponding to the light-weighted age of the dominant stellar populations). These SED-based UV/optical SFRs are compared to total IR luminosities extrapolated from 24 μm observations, corresponding to 10-18 μm rest frame. The total IR luminosities are in the range of normal star-forming galaxies and luminous IR galaxies (10^10-10^12 L_☉). We show that the IR luminosity can be estimated from the UV and optical photometry to within a factor of 2, implying that most z < 1.4 galaxies are not optically thick. We find that for the blue, actively star-forming galaxies the correlation between the IR luminosity and the UV/optical SFR shows a decrease in scatter when going from shorter to longer SFR-averaging timescales. We interpret this as the greater role of intermediate age stellar populations in heating the dust than what is typically assumed. Equivalently, we observe that the IR luminosity is better correlated with dust-corrected optical luminosity than with dust-corrected UV light. We find that this holds over the entire redshift range. Many so-called green valley galaxies are simply dust-obscured actively star-forming galaxies. However, there exist 24 μm detected galaxies, some with L_IR>10^11 L_☉, yet with little current SF. For them a reasonable amount of dust absorption of stellar light (but presumably higher than in nearby early-type galaxies) is sufficient to produce the observed levels of IR, which includes a large contribution from intermediate and old stellar populations. In our sample, which contains very few ultraluminous IR galaxies, optical and X-ray active galactic nuclei do not contribute on average more than ~50% to the mid-IR luminosity, and we see no evidence for a large population of "IR excess" galaxies.
  • Publication
    Radial distribution of stars, gas, and dust in sings galaxies. II. Derived dust properties
    (American Astronomical Society, 2009-08-20) Muñoz Mateos, J. C.; Gil de Paz, Armando; Boissier, S.; Zamorano Calvo, Jaime; Dale, D. A.; Pérez González, Pablo Guillermo; Gallego Maestro, Jesús; Madore, B. F.; Bendo, G.; Thornley, M. D.; Draine, B. T.; Boselli, A.; Buat, V.; Calzetti, D.; Moustakas, J.; Kennicutt, R. C. Jr.
    We present a detailed analysis of the radial distribution of dust properties in the SINGS sample, performed on a set of ultraviolet (UV), infrared (IR), and Hi surface brightness profiles, combined with published molecular gas profiles and metallicity gradients. The internal extinction, derived from the total-IR (TIR)-to-far-UV (FUV) luminosity ratio, decreases with radius, and is larger in Sb-Sbc galaxies. The TIR-to-FUV ratio correlates with the UV spectral slope β, following a sequence shifted to redder UV colors with respect to that of starbursts. The star formation history (SFH) is identified as the main driver of this departure. Both L_TIR)/L_FUV and β correlate well with metallicity, especially in moderately face-on galaxies. The relation shifts to redder colors with increased scatter in more edge-on objects. By applying physical dust models to our radial spectral energy distributions, we have derived radial profiles of the total dust mass surface density, the fraction of the total dust mass contributed by polycyclic aromatic hydrocarbons (PAHs), and the intensity of the radiation field heating the grains. The dust profiles are exponential, their radial scale length being constant from Sb to Sd galaxies (only ~ 10% larger than the stellar scale length). Many S0/a-Sab galaxies have central depressions in their dust radial distributions. The PAH abundance increases with metallicity for 12 + log(O/H) < 9, and at larger metallicities the trend flattens and even reverses, with the SFH being a plausible underlying driver for this behavior. The dust-to-gas ratio is also well correlated with metallicity and therefore decreases with galactocentric radius. Although most of the total emitted IR power (especially in the outer regions of disks) is contributed by dust grains heated by diffuse starlight with a similar intensity as the local Milky Way radiation field, a small amount of the dust mass (~ 1%) is required to be exposed to very intense starlight in order to reproduce the observed fluxes at 24 μ m, accounting for ~ 10% of the total integrated IR power.
  • Publication
    Role of galaxy mergers in cosmic star formation history
    (American Astronomical Society, 2009-06-01) Shi, Yong; Rieke, George; Lotz, Jennifer; Pérez González, Pablo Guillermo
    We present a morphology study of intermediate-redshift (0.2 < z < 1.2) luminous infrared galaxies (LIRGs) and general field galaxies in the GOODS fields using a revised asymmetry measurement method optimized for deep fields. By taking careful account of the importance of the underlying sky-background structures, our new method does not suffer from systematic bias and offers small uncertainties. By redshifting local LIRGs and low-redshift GOODS galaxies to different higher redshifts, we have found that the redshift dependence of the galaxy asymmetry due to surface-brightness dimming is a function of the asymmetry itself, with larger corrections for more asymmetric objects. By applying redshift-, infrared (IR)-luminosity- and optical-brightness-dependent asymmetry corrections, we have found that intermediate-redshift LIRGs generally show highly asymmetric morphologies, with implied merger fractions ~50% up to z = 1.2, although they are slightly more symmetric than local LIRGs. For general field galaxies, we find an almost constant relatively high merger fraction (20%-30%). The B-band luminosity functions (LFs) of galaxy mergers are derived at different redshifts up to z = 1.2 and confirm the weak evolution of the merger fraction after breaking the luminosity-density degeneracy. The IR LFs of galaxy mergers are also derived, indicating a larger merger fraction at higher IR luminosity. The integral of the merger IR LFs indicates a dramatic evolution of the merger-induced IR energy density [(1 + z)^~(5-6)], and that galaxy mergers start to dominate the cosmic IR energy density at z greater than or ~ 1.
  • Publication
    Star Formation Rate estimators: [O II]λ3727 vs. Hα for local star-forming galaxies
    (Astronomical Society of the Pacific, 2003) Aragón Salamanca, A.; Alonso Herrero, A.; Gallego Maestro, Jesús; García Dabó, C. E.; Pérez González, Pablo Guillermo; Zamorano Calvo, Jaime; Gil de Paz, Armando
    The [O ii]λ3727 emission line is frequently used as an indicator of the star formation rate (SFR) despite its complex dependence on metallicity and excitation conditions. We have analysed the properties of the [O II] and Hα emission lines for a complete sample of local Hα-selected galaxies, the Universidad Complutense de Madrid (UCM) survey. We find a large scatter in the [O II]/Hα line ratios, although the scatter in the extinction-corrected [O II]^0/Hα^0 ratio is considerably smaller. We also find that the [O II]/Hα ratios are reasonably well correlated with the absolute B- and K-band magnitudes and with EW([O II]). However, the extinction-corrected [O II]^0/Hα^0 ratio is largely independent of these quantities, indicating that extinction is the main driver of the correlations. These correlations allow us to statistically predict-with varying degrees of accuracy-the observed and extinction-corrected Hα fluxes from the observed [O II] flux using the information contained in EW([O II]) and/or the absolute magnitudes, but extreme caution is needed to make sure that the sample selection effects are correctly taken into account.