Person:
González Díaz, Germán

Loading...
Profile Picture
First Name
Germán
Last Name
González Díaz
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Estructura de la Materia, Física Térmica y Electrónica
Area
Electrónica
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 10 of 44
  • Item
    Electronic transport properties of Ti-supersaturated Si processed by rapid thermal annealing or pulsed-laser melting
    (Semiconductor Science and Technology, 2022) Olea Ariza, Javier; González Díaz, Germán; Pastor Pastor, David; García Hemme, Eric; Caudevilla Gutiérrez, Daniel; Algaidy, S; Pérez-Zenteno, F.; Duarte-Cano, S.; García Hernansanz, Rodrigo; Prado Millán, Álvaro Del; San Andrés Serrano, Enrique; Martil De La Plaza, Ignacio
    In the scope of supersaturated semiconductors for infrared detectors, we implanted Si samples with Ti at high doses and processed them by rapid thermal annealing (RTA) to recover the crystal quality. Also, for comparative purposes, some samples were processed by pulsed-laser melting. We measured the electronic transport properties at variable temperatures and analyzed the results. The results indicate that, for RTA samples, surface layers with a high Ti concentration have negligible conductivity due to defects. In contrast, the implantation tail region has measurable conductivity due to very high electron mobility. This region shows the activation of a very shallow donor and a deep donor level. While deep levels have been previously reported for Ti in Si, such a shallow level has never been measured, and we suggest that it originates from Ti-Si complexes. Finally, a decoupling effect between the implanted layer and the substrate seems to be present, and a bilayer model is applied to fit the measured properties. The fitted parameters follow the Meyer–Neldel rule. The role of the implantation tails in Si supersaturated with Ti is revealed in this work.
  • Item
    Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications
    (Applied physics letters, 2015) Pérez, E.; Castán, H.; García, H.; Dueñas, S.; Bailón, L.; Montero Álvarez, Daniel; García-Hernansanz, R.; García Hemme, Eric; Olea Ariza, Javier; González Díaz, Germán
    In the attempt to form an intermediate band in the bandgap of silicon substrates to give it the capability to absorb infrared radiation, we studied the deep levels in supersaturated silicon with titanium. The technique used to characterize the energy levels was the thermal admittance spectroscopy. Our experimental results showed that in samples with titanium concentration just under Mott limit there was a relationship among the activation energy value and the capture cross section value. This relationship obeys to the well known Meyer-Neldel rule, which typically appears in processes involving multiple excitations, like carrier capture/emission in deep levels, and it is generally observed in disordered systems. The obtained characteristic Meyer-Neldel parameters were Tmn = 176 K and kTmn = 15 meV. The energy value could be associated to the typical energy of the phonons in the substrate. The almost perfect adjust of all experimental data to the same straight line provides further evidence of the validity of the Meyer Neldel rule, and may contribute to obtain a deeper insight on the ultimate meaning of this phenomenon. (C) 2015 AIP Publishing LLC.
  • Item
    Ti supersaturated Si by microwave annealing processes
    (Semiconductor Science and Technology, 2023) Olea Ariza, Javier; González Díaz, Germán; Pastor Pastor, David; García Hemme, Eric; Caudevilla Gutiérrez, Daniel; Algaidy, S.; Perez Zenteno, F.; Duarte Cano, S.; García Hernansanz, Rodrigo; Prado Millán, Álvaro Del; San Andrés Serrano, Enrique; Martil De La Plaza, Ignacio; Lee, Yao-Jen; Hong, Tzu-Chieh; Chao, Tien-Sheng
    Microwave annealing (MWA) processes were used for the first time to obtain Ti supersaturated Si. High Ti doses were ion implanted on Si substrates and subsequently MWA processed to recrystallize the amorphous layer. The resulting layers were monocrystalline with a high density of defects. Ti depth profiles indicate that diffusion is avoided once recrystallization is produced. Finally, the electronic transport properties measurements point to a decoupling effect between the Si:Ti layer and the substrate. The implanted layer present also a shallow donor and very high Hall mobility.
  • Item
    A detailed analysis of the energy levels configuration existing in the band gap of supersaturated silicon with titanium for photovoltaic applications
    (Journal of applied physics, 2015) Pérez, E.; Dueñas, S.; Castán, H.; García, H.; Bailón, L.; Montero, Daniel; García Hernansanz, Rodrigo; García Hemme, Eric; Olea Ariza, Javier; González Díaz, Germán
    The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (1013 cm-2 and 1014 cm-2) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existence of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around Ec-425 and Ec-275 meV for implantation doses of 1013 cm2 and 1014 cm2, respectively. At low reverse bias voltage, quasi continuously distributed energy levels between the minimum of the conduction bands, Ec and Ec-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known, the Meyer Neldel rule typically appears in processes involving multiple excitations, like carrier capture and emission in deep levels, and it is generally observed in disordered systems. The obtained Meyer-Neldel energy value, 15.19 meV, is very close to the value obtained in multicrystalline silicon samples contaminated with iron (13.65 meV), meaning that this energy value could be associated to the phonons energy in this kind of substrates.
  • Item
    Electrical Properties of Intermediate Band (IB) Silicon Solar Cells Obtained by Titanium Ion Implantation
    (ION IMPLANTATION TECHNOLOGY 2012: Proceedings of the 19th International Conference on Ion Implantation Technology, 2012) Castán, Helena; Pérez, Eduardo; Dueñas, Salvador; Bailón, Luis; Olea Ariza, Javier; Pastor Pastor, David; García Hemme, Eric; Irigoyen Irigoyen, Maite; González Díaz, Germán; Pelaz, Lourdes; Santos, Iván; Duffy, Ray; Torregrosa, Frank; Bourdelle, Konstantin
    Intermediate band silicon solar cells have been fabricated by Titanium ion implantation and laser annealing. A two-layer heterogeneous system, formed by the implanted layer and by the unimplanted substrate is obtained. In this work we present electrical characterization results which evidence the formation of the intermediate band on silicon when ion implantation dose is beyond the Mott limit. Clear differences have been observed between samples implanted with doses under or over the Mott limit. Samples implanted under the Mott limit have capacitance values much lower than the non-implanted ones as corresponds to a highly doped semiconductor Schottky junction. However, when the Mott limit is surpassed the samples have much higher capacitance, revealing that the intermediate band is formed. The capacitance increase is due to the big amount of charge trapped at the intermediate band, even at low temperatures. Titanium deep levels have been measured by Admittance Spectroscopy. These deep levels are located at energies which vary from 0.20 to 0.28 eV bellow the conduction band for implantation doses in the range 10^13-10^14 at/cm^2. For doses over the Mott limit the implanted atoms become non recombinant. Admittance measurements are the first experimental demonstration the Intermediate Band is formation. Capacitance voltage transient technique measurements prove that the fabricated devices consist of two-layers, in which the implanted layer and the substrate behave as an n^+/n junction.
  • Item
    Experimental verification of intermediate band formation on titanium-implanted silicon
    (Journal of Applied Physics, 2013) González Díaz, Germán; García Hemme, Eric; Olea Ariza, Javier; Pastor Pastor, David; Bailón, L.; Castán, H.; Dueñas, S.; García, H.; Pérez, E.
    Intermediate band formation on silicon layers for solar cell applications was achieved by titanium implantation and laser annealing. A two-layer heterogeneous system, formed by the implanted layer and by the un-implanted substrate, was formed. In this work, we present for the first time electrical characterization results which show that recombination is suppressed when the Ti concentration is high enough to overcome the Mott limit, in agreement with the intermediate band theory. Clear differences have been observed between samples implanted with doses under or over the Mott limit. Samples implanted under the Mott limit have capacitance values much lower than the un-implanted ones as corresponds to a highly doped semiconductor Schottky junction. However, when the Mott limit is surpassed, the samples have much higher capacitance, revealing that the intermediate band is formed. The capacitance increasing is due to the big amount of charge trapped at the intermediate band, even at low temperatures. Ti deep levels have been measured by admittance spectroscopy. These deep levels are located at energies which vary from 0.20 to 0.28 eV below the conduction band for implantation doses in the range 10(13)-10(14) at./cm(2). For doses over the Mott limit, the implanted atoms become nonrecombinant. Capacitance voltage transient technique measurements prove that the fabricated devices consist of two-layers, in which the implanted layer and the substrate behave as an n(+)/n junction.
  • Item
    A robust method to determine the contact resistance using the van der Pauw set up
    (Measurement, 2017) González Díaz, Germán; Pastor, D.; García Hemme, Eric; Montero, Daniel; García Hernansanz, Rodrigo; Olea Ariza, Javier; Prado Millán, Álvaro Del; San Andrés Serrano, Enrique; Martil De La Plaza, Ignacio
    The van der Pauw method to calculate the sheet resistance and the mobility of a semiconductor is a pervasive technique both in the microelectronics industry and in the condensed matter science field. There are hundreds of papers dealing with the influence of the contact size, nonuniformities and other second order effects. In this paper we will develop a simple methodology to evaluate the error produced by finite size contacts, detect the presence of contact resistance, calculate it for each contact, and determine the linear or rectifying behavior of the contact. We will also calculate the errors produced by the use of voltmeters with finite input resistance in relation with the sample sheet resistance.
  • Item
    Project number: 244
    Aula Virtual de Electrónica
    (2021) Prado Millán, Álvaro Del; González Díaz, Germán; Martil De La Plaza, Ignacio; San Andrés Serrano, Enrique; Sánchez Balmaseda, Margarita María; Franco Peláez, Francisco Javier; Olea Ariza, Javier; García Hemme, Eric; Pastor Pastor, David; García Hernansanz, Rodrigo; Caudevilla Gutiérrez, Daniel
    El proyecto ha consistido en la creación de un espacio virtual en Moodle para publicar contenidos complementarios para las asignaturas relacionadas con el área de la Electrónica.
  • Item
    On the Optoelectronic Mechanisms Ruling Ti-hyperdoped Si Photodiodes
    (Advanced electronic materials, 2022) García Hemme, Eric; Caudevilla Gutiérrez, Daniel; Algaidy, Sari; Pérez Zenteno, Francisco José; García Hernansanz, Rodrigo; Olea Ariza, Javier; Pastor Pastor, David; Prado Millán, Álvaro Del; San Andrés Serrano, Enrique; Martil De La Plaza, Ignacio; González Díaz, Germán
    This work deepens the understanding of the optoelectronic mechanisms ruling hyperdoped-based photodevices and shows the potential of Ti hyperdoped-Si as a fully complementary metal-oxide semiconductor compatible material for room-temperature infrared photodetection technologies. By the combination of ion implantation and laser-based methods, approximate to 20 nm thin hyperdoped single-crystal Si layers with a Ti concentration as high as 10(20) cm(-3) are obtained. The Ti hyperdoped Si/p-Si photodiode shows a room temperature rectification factor at +/- 1 V of 509. Analysis of the temperature-dependent current-voltage characteristics shows that the transport is dominated by two mechanisms: a tunnel mechanism at low bias and a recombination process in the space charge region at high bias. A room-temperature sub-bandgap external quantum efficiency (EQE) extending to 2.5 mu m wavelength is obtained. Temperature-dependent spectral photoresponse behavior reveals an increase of the EQE as the temperature decreases, showing a low-energy photoresponse edge at 0.45 eV and a high-energy photoresponse edge at 0.67 eV. Temperature behavior of the open-circuit voltage correlates with the high-energy photoresponse edge. A model is proposed to relate the optoelectronic mechanisms to sub-bandgap optical transitions involving an impurity band. This model is supported by numerical semiconductor device simulations using the SCAPS software.
  • Item
    Deposition of Intrinsic a-Si:H by ECR-CVD to Passivate the Crystalline Silicon Heterointerface in HIT Solar Cells
    (IEEE journal of photovoltaics, 2016) García Hernansanz, Rodrigo; García Hemme, Eric; Montero Álvarez, Daniel; Prado Millán, Álvaro Del; Olea Ariza, Javier; San Andrés Serrano, Enrique; Martil De La Plaza, Ignacio; González Díaz, Germán
    We have deposited intrinsic amorphous silicon (a-Si:H) using the electron cyclotron resonance (ECR) chemical vapor deposition technique in order to analyze the a-Si:H/c-Si heterointerface and assess the possible application in heterojunction with intrinsic thin layer (HIT) solar cells. Physical characterization of the deposited films shows that the hydrogen content is in the 15-30% range, depending on deposition temperature. The optical bandgap value is always comprised within the range 1.9- 2.2 eV. Minority carrier lifetime measurements performed on the heterostructures reach high values up to 1.3 ms, indicating a well-passivated a-Si:H/c-Si heterointerface for deposition temperatures as low as 100°C. In addition, we prove that the metal-oxide- semiconductor conductance method to obtain interface trap distribution can be applied to the a-Si:H/c-Si heterointerface, since the intrinsic a-Si:H layer behaves as an insulator at low or negative bias. Values for the minimum of D_it as low as 8 × 10^10 cm^2 · eV^-1 were obtained for our samples, pointing to good surface passivation properties of ECR-deposited a-Si:H for HIT solar cell applications.