Person:
Fernández Escobar, Mercedes

Loading...
Profile Picture
First Name
Mercedes
Last Name
Fernández Escobar
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Veterinaria
Department
Sanidad Animal
Area
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 4 of 4
  • Publication
    Toxoplasma gondii Genetic Diversity in Mediterranean Dolphins
    (MPDI, 2022-08-12) Fernández Escobar, Mercedes; Giorda, Federica; Mattioda, Virgina; Audino, Tania; Di Nocera, Fabio; Lucifora, Giuseppe; Varello, Katia; Grattarola, Carla; Ortega Mora, Luis Miguel; Casalone, Cristina; Calero Bernal, Rafael
    Toxoplasma gondii constitutes a major zoonotic agent but also has been frequently identified as an important cause of clinical disease (e.g., abortion, pneumonia, encephalitis) in wildlife; specifically, T. gondii has been associated with neurological disease in cetaceans. This study investigated the genetic diversity of T. gondii strains involved in infections in dolphins found stranded in the Mediterranean coastlines of Italy. Tissue samples from 16 dolphins (Stenella coeruleoalba and Tursiops truncatus species) positive for T. gondii-DNA presence by PCR were examined by histology and subjected to further genetic characterization of strains detected by PCR-RFLP and multilocus PCR-sequencing assays. According to fully genotyped samples, the genotypes ToxoDB#3 (67%) and #2 (22%) were detected, the latter being reported for the first time in cetaceans, along with a mixed infection (11%). Subtyping by PCR-seq procedures provided evidence of common point mutations in strains from southwestern Europe. Despite evidence of T. gondii as a cause of neurological disease in dolphins, sources of infections are difficult to identify since they are long-living animals and some species have vast migration areas with multiple chances of infection. Finally, the genetic diversity of T. gondii found in the dolphins studied in the Mediterranean coastlines of Italy reflects the main genotypes circulating inland in the European continent.
  • Publication
    Evidence for Unknown Sarcocystis-Like Infection in Stranded Striped Dolphins (Stenella coeruleoalba) from the Ligurian Sea, Italy
    (MPDI, 2021-04-22) Giorda, Federica; Romani Cremaschi, Umberto; Marsh, Antoinette E.; Grattarola, Carla; Iulini, Barbara; Pautasso, Alessandra; Varello, Katia; Berio, Enrica; Gazzuola, Paola; Marsili, Letizia; Di Francesco, Cristina E.; Goria, Maria; Verna, Federica; Audino, Tania; Peletto, Simone; Caramelli, Maria; Fernández Escobar, Mercedes; Sierra, Eva; Fernández, Antonio; Calero Bernal, Rafael; Casalone, Cristina
    Two striped dolphins (SD1, SD2), stranded along the Ligurian coast of Italy, were diagnosed with a nonsuppurative meningoencephalitis associated with previously undescribed protozoan tissue cysts. As tissue cysts were morphologically different from those of Toxoplasma gondii, additional histopathological, immunohistochemical, ultrastructural, and biomolecular investigations were performed, aiming to fully characterize the organism. Histopathology revealed the presence of large Sarcocystis-like tissue cysts, associated with limited inflammatory lesions in all CNS areas studied. IHC was inconclusive, as positive staining with polyclonal antisera did not preclude cross-reaction with other Sarcocystidae coccidia. Applied to each animal, 11 different PCR protocols precluded a neural infection by Sarcocystis neurona, Sarcocystis falcatula, Hammondia hammondi, and Neospora caninum. T. gondii coinfection was confirmed only in dolphin SD2. Sarcocystis sp. sequences, showing the highest homology to species infecting the Bovidae family, were amplified from SD1 myocardium and SD2 skeletal muscle. The present study represents the first report of Sarcocystis-like tissue cysts in the brain of stranded cetaceans along with the first description of Sarcocystis sp. infection in muscle tissue of dolphins from the Mediterranean basin.
  • Publication
    Isolation and genetic characterization of Toxoplasma gondii in Spanish sheep flocks
    (2020-08-05) Julio Benavides; Fernández Escobar, Mercedes; Calero Bernal, Rafael; Javier Regidor-Cerrillo; María Cristina Guerrero-Molina; Daniel Gutiérrez-Expósito; Collantes Fernández, Esther; Ortega Mora, Luis Miguel
    Background: Toxoplasma gondii is a major cause of abortion in small ruminants and presents a zoonotic risk when undercooked meat containing cysts is consumed. The aim of the present study was to investigate the genetic diversity among the T. gondii strains circulating in ovine livestock in Spain. Methods: Selected samples collected from abortion outbreaks due to toxoplasmosis (n = 31) and from chronically infected adult sheep at slaughterhouses (n = 50) in different Spanish regions were bioassayed in mice, aiming at parasite isolation. In addition, all original clinical samples and the resulting isolates were genotyped by multi-nested PCR-RFLP analysis of 11 molecular markers and by PCR-DNA sequencing of portions of the SAG3, GRA6 and GRA7 genes. Results: As a result, 30 isolates were obtained from 9 Spanish regions: 10 isolates from abortion-derived samples and 20 isolates from adult myocardial tissues. Overall, 3 genotypes were found: ToxoDB#3 (type II PRU variant) in 90% (27/30) of isolates, ToxoDB#2 (clonal type III) in 6.7% (2/30), and ToxoDB#1 (clonal type II) in 3.3% (1/30). When T. gondii-positive tissue samples (n = 151) were directly subjected to RFLP genotyping, complete restriction profiles were obtained for 33% of samples, and up to 98% of the specimens belonged to the type II PRU variant. A foetal brain showed a clonal type II pattern, and four specimens showed unexpected type I alleles at the SAG3 marker, including two foetal brains that showed I + II alleles as co-infection events. Amplicons of SAG3, GRA6 and GRA7 obtained from isolates and clinical samples were subjected to sequencing, allowing us to confirm RFLP results and to detect different single-nucleotide polymorphisms. Conclusions: The present study informed the existence of a predominant type II PRU variant genotype (ToxoDB#3) infecting domestic sheep in Spain, in both abortion cases and chronic infections in adults, coexisting with other clonal (ToxoDB#1 and ToxoDB#2), much less frequent genotypes, as well as polymorphic strains as revealed by clinical sample genotyping. The use of multilocus sequence typing aided in accurately estimating T. gondii intragenotype diversity.
  • Publication
    In vivo and in vitro models show unexpected degrees of virulence among Toxoplasma gondii type II and III isolates from sheep
    (BMC, 2021-06-10) Fernández Escobar, Mercedes; Ortega Mora, Luis Miguel; Collantes Fernández, Esther; Calero Bernal, Rafael; Regidor-Cerrillo, Javier; Vallejo, Raquel; Benavides, Julio
    Toxoplasma gondii is an important zoonotic agent with high genetic diversity, complex epidemiology, and variable clinical outcomes in animals and humans. In veterinary medicine, this apicomplexan parasite is considered one of the main infectious agents responsible for reproductive failure in small ruminants worldwide. The aim of this study was to phenotypically characterize 10 Spanish T. gondii isolates recently obtained from sheep in a normalized mouse model and in an ovine trophoblast cell line (AH-1) as infection target cells. The panel of isolates met selection criteria regarding such parameters as genetic diversity [types II (ToxoDB #1 and #3) and III (#2)], geographical location, and sample of origin (aborted foetal brain tissues or adult sheep myocardium). Evaluations of in vivo mortality, morbidity, parasite burden and histopathology were performed. Important variations between isolates were observed, although all isolates were classified as “nonvirulent” (< 30% cumulative mortality). The isolates TgShSp16 (#3) and TgShSp24 (#2) presented higher degrees of virulence. Significant differences were found in terms of in vitro invasion rates and tachyzoite yield at 72 h post-inoculation (hpi) between TgShSp1 and TgShSp24 isolates, which exhibited the lowest and highest rates, respectively. The study of the CS3, ROP18 and ROP5 loci allelic profiles revealed only type III alleles in ToxoDB #2 isolates and type II alleles in the #1 and #3 isolates included. We concluded that there are relevant intra- and inter-genotype virulence differences in Spanish T. gondii isolates, which could not be inferred by genetic characterization using currently described molecular markers.