Person: Martín Gómez, Verónica
Loading...
First Name
Verónica
Last Name
Martín Gómez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Department
Area
Identifiers
2 results
Search Results
Now showing 1 - 2 of 2
Publication Southern hemisphere sensitivity to ENSO patterns and intensities: impacts over subtropical South America(MDPI AG, 2020-01-09) Martín Gómez, Verónica; Barreiro, Marcelo; Mohino Harris, ElsaEl Niño flavors influence Subtropical South American (SSA) rainfall through the generation of one or two quasi-stationary Rossby waves. However, it is not yet clear whether the induced wave trains depend on the El Niño pattern and/or its intensity. To investigate this, we performed different sensitivity experiments using an Atmospheric General Circulation Model (AGCM) which was forced considering separately the Canonical and the El Niño Modoki patterns with sea surface temperature (SST) maximum anomalies of 1 and 3 ◦C. Experiments with 3 ◦C show that the Canonical El Niño induces two Rossby wave trains, a large one emanating from the western subtropical Pacific and a shorter one initiated over the central-eastern subtropical South Pacific. Only the shorter wave plays a role in generating negative outgoing longwave radiation (OLR) anomalies over SSA. On the other hand, 3 ◦C El Niño Modoki experiments show the generation of a large Rossby wave train that emanates from the subtropical western south Pacific and reaches South America (SA), promoting the development of negative OLR anomalies over SSA. Experiments with 1 ◦C show no impacts on OLR anomalies over SSA associated with El Niño Modoki. However, for the Canonical El Niño case there is a statistically significant reduction of the OLR anomalies over SSA related to the intensification of the upper level jet stream over the region. Finally, our model results suggest that SSA is more sensitive to the Canonical El Niño, although this result may be model dependent.Publication Southern hemisphere circulation anomalies and impacts over subtropical South America due to different El Niño flavours(John WiIley & Sons LTD, 2020-04-04) Martín Gómez, Verónica; Barreiro, Marcelo; Losada Doval, Teresa; Rodríguez Fonseca, María BelénENSO exhibits different flavors with worldwide impacts. However, the associated teleconnections with subtropical South America (SSA) are still controversial and modelling studies are needed. Here, we analyze the Southern Hemisphere (SH) circulation anomalies and the impacts over SSA during the austral summer due to different El Niño patterns (Canonical and El Niño Modoki). The analysis is performed considering reanalysis data and two different Atmospheric General Circulation Models (SPEEDY and UCLA - AGCM). Results from reanalysis show that positive precipitation anomalies develop over SSA during Canonical El Niño events. These anomalies are induced through an increase of upper level cyclonic vorticity advection and a stronger low-level southward moisture transport. However, in El Niño Modoki events, rainfall anomalies are observed over SSA only for the strongest events. Both models are able to reproduce the precipitation signal over SSA in the Canonical El Niño case, although the underlying physical mechanism depends on the model. In SPEEDY, the increased rainfall is due to an increase of the moisture transport toward SSA, while in UCLA - AGCM it is related to both, an increase of the low-level moisture transport toward SSA and the increase of upper level cyclonic vorticity advection. The precipitation signal associated with El Niño Modoki is more controversial. While UCLA - AGCM suggests a rainfall increase over SSA, SPEEDY, in agreement with observations, does not show any statistically significant signal. However, the upper level circulation anomalies reproduced by UCLA – AGCM are more consistent with reanalysis than those from SPEEDY, which makes UCLA – AGCM to be more reliable. This result suggests increased rainfall over SSA during El Niño Modoki.