Callejo Arranz, María

Profile Picture
First Name
Last Name
Callejo Arranz
Universidad Complutense de Madrid
Faculty / Institute
Farmacología y Toxicología
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 5 of 5
  • Publication
    Restoration of Vitamin D Levels Improves Endothelial Function and Increases TASK-Like K+ Currents in Pulmonary Arterial Hypertension Associated with Vitamin D Deficiency
    (MPDI, 2021-05-26) Callejo Arranz, María; Morales Cano, Daniel; Mondejar Parreño, Gema; Barreira, Bianca; Esquivel Ruiz, Sergio Antonio; Olivencia Plaza, Miguel Ángel; Moreno Gutiérrez, Laura; Cogolludo Torralba, Ángel Luis; Pérez Vizcaíno, Francisco
    Vitamin D (vitD) deficiency is highly prevalent in patients with pulmonary arterial hypertension (PAH). Moreover, PAH-patients with lower levels of vitD have worse prognosis. We hypothesize that recovering optimal levels of vitD in an animal model of PAH previously depleted of vitD improves the hemodynamics, the endothelial dysfunction and the ionic remodeling. Methods: Male Wistar rats were fed a vitD-free diet for five weeks and then received a single dose of Su5416 (20 mg/Kg) and were exposed to vitD-free diet and chronic hypoxia (10% O2) for three weeks to induce PAH. Following this, vitD deficient rats with PAH were housed in room air and randomly divided into two groups: (a) continued on vitD-free diet or (b) received an oral dose of 100,000 IU/Kg of vitD plus standard diet for three weeks. Hemodynamics, pulmonary vascular remodeling, pulmonary arterial contractility, and K+ currents were analyzed. Results: Recovering optimal levels of vitD improved endothelial function, measured by an increase in the endothelium-dependent vasodilator response to acetylcholine. It also increased the activity of TASK-1 potassium channels. However, vitD supplementation did not reduce pulmonary pressure and did not ameliorate pulmonary vascular remodeling and right ventricle hypertrophy. Conclusions: Altogether, these data suggest that in animals with PAH and severe deficit of vitD, restoring vitD levels to an optimal range partially improves some pathophysiological features of PAH.
  • Publication
    Impact of a TAK-1 inhibitor as a single or as an add-on therapy to riociguat on the metabolic reprograming and pulmonary hypertension in the SUGEN5416/hypoxia rat model
    (Frontiers, 2023-03-29) Morales-Cano, Daniel; Barreira, Bianca; Pandolfi, Rachele; Villa-Valverde, Palmira; Izquierdo García, José Luis; Esquivel Ruiz, Sergio Antonio; Callejo Arranz, María; Rodríguez Ramírez De Arellano, Ignacio; Cogolludo Torralba, Ángel Luis; Ruiz-Cabello Osuna, Jesús; Pérez Vizcaíno, Francisco; Moreno Gutiérrez, Laura
    Background: Despite increasing evidence suggesting that pulmonary arterial hypertension (PAH) is a complex disease involving vasoconstriction, thrombosis, inflammation, metabolic dysregulation and vascular proliferation, all the drugs approved for PAH mainly act as vasodilating agents. Since excessive TGF-β signaling is believed to be a critical factor in pulmonary vascular remodeling, we hypothesized that blocking TGFβ-activated kinase 1 (TAK-1), alone or in combination with a vasodilator therapy (i.e., riociguat) could achieve a greater therapeutic benefit. Methods: PAH was induced in male Wistar rats by a single injection of the VEGF receptor antagonist SU5416 (20 mg/kg) followed by exposure to hypoxia (10%O2) for 21 days. Two weeks after SU5416 administration, vehicle, riociguat (3 mg/kg/day), the TAK-1 inhibitor 5Z-7-oxozeaenol (OXO, 3 mg/kg/day), or both drugs combined were administered for 7 days. Metabolic profiling of right ventricle (RV), lung tissues and PA smooth muscle cells (PASMCs) extracts were performed by magnetic resonance spectroscopy, and the differences between groups analyzed by multivariate statistical methods. Results: In vitro, riociguat induced potent vasodilator effects in isolated pulmonary arteries (PA) with negligible antiproliferative effects and metabolic changes in PASMCs. In contrast, 5Z-7-oxozeaenol effectively inhibited the proliferation of PASMCs characterized by a broad metabolic reprogramming but had no acute vasodilator effects. In vivo, treatment with riociguat partially reduced the increase in pulmonary arterial pressure (PAP), RV hypertrophy (RVH), and pulmonary vascular remodeling, attenuated the dysregulation of inosine, glucose, creatine and phosphocholine (PC) in RV and fully abolished the increase in lung IL-1β expression. By contrast, 5Z-7-oxozeaenol significantly reduced pulmonary vascular remodeling and attenuated the metabolic shifts of glucose and PC in RV but had no effects on PAP or RVH. Importantly, combined therapy had an additive effect on pulmonary vascular remodeling and induced a significant metabolic effect over taurine, amino acids, glycolysis, and TCA cycle metabolism via glycine-serine-threonine metabolism. However, it did not improve the effects induced by riociguat alone on pulmonary pressure or RV remodeling. None of the treatments attenuated pulmonary endothelial dysfunction and hyperresponsiveness to serotonin in isolated PA. Conclusion: Our results suggest that inhibition of TAK-1 induces antiproliferative effects and its addition to short-term vasodilator therapy enhances the beneficial effects on pulmonary vascular remodeling and RV metabolic reprogramming in experimental PAH.
  • Publication
    Activation of PPARβ/δ prevents hyperglycaemia-induced impairment of Kv7 channels and cAMP-mediated relaxation in rat coronary arteries
    (Portland Press, 2016-09-15) Morales Cano, Daniel; Moreno Gutiérrez, Laura; Barreira, Bianca; Pandolfi, Rachele; Moral Sanz, Javier; Callejo Arranz, María; Mondejar Parreño, Gema; Pérez Vizcaíno, Francisco; Cogolludo Torralba, Ángel Luis
    PPARβ/δ activation protects against endothelial dysfunction in diabetic models. Elevated glucose is known to impair cAMP-induced relaxation and Kv channel function in coronary arteries (CA). Herein, we aimed to analyse the possible protective effects of the PPARβ/δ agonist GW0742 on the hyperglycaemic-induced impairment of cAMP-induced relaxation and Kv channel function in rat CA. As compared with low glucose (LG), incubation under high glucose (HG) conditions attenuated the relaxation induced by the adenylate cyclase activator forskolin in CA and this was prevented by GW0742. The protective effect of GW0742 was supressed by a PPARβ/δ antagonist. In myocytes isolated from CA under LG, forskolin enhanced Kv currents and induced hyperpolarization. In contrast, when CA were incubated with HG, Kv currents were diminished and the electrophysiological effects of forskolin were abolished. These deleterious effects were prevented by GW0742. The protective effects of GW0742 on forskolin-induced relaxation and Kv channel function were confirmed in CA from type-1 diabetic rats. In addition, the differences in the relaxation induced by forskolin in CA incubated under LG, HG or HG + GW0742 were abolished by the Kv7 channel inhibitor XE991. Accordingly, GW0742 prevented the down-regulation of Kv7 channels induced by HG. Finally, the preventive effect of GW0742 on oxidative stress and cAMP-induced relaxation were overcome by the pyruvate dehydrogenase kinase 4 (PDK4) inhibitor dichloroacetate (DCA). Our results reveal that the PPARβ/δ agonist GW0742 prevents the impairment of the cAMP-mediated relaxation in CA under HG. This protective effect was associated with induction of PDK4, attenuation of oxidative stress and preservation of Kv7 channel function
  • Publication
    Elevated pulmonary arterial pressure in Zucker diabetic fatty rats
    (Public Library of Science, 2019-01-28) Morales Cano, Daniel; Callejo Arranz, María; Barreira, Bianca; Mondejar Parreño, Gema; Esquivel Ruiz, Sergio Antonio; Ramos, Sonia; Martín Arribas, María Ángeles; Cogolludo, Angel; Moreno Gutiérrez, Laura; Pérez Vizcaíno, Francisco; Bader, Michael
    Diabetes is a very strong predictor of chronic systemic vascular diseases and acute cardiovascular events. Recently, associations between metabolic disorders and pulmonary hypertension have also been reported in both humans and animal models. In order to get some further insight into the relationship of pulmonary hypertension with obesity, insulin resistance and hyperglycemia, herein we have used the Zucker diabetic fatty rats (ZDF/clr-lepr fa) at 20 weeks fed a standard diet and compared to their lean Zucker littermates (ZL). ZDF rats were obese, had elevated plasma glucose levels and insulin resistance, i.e. a clinically relevant model of type 2 diabetes. They presented elevated systolic, diastolic and mean pulmonary arterial pressures and a parallel increase in the Fulton index. Systemic arterial pressures were also increased but the left ventricle plus septum weight was similar in both groups and the heart rate was reduced. Wall media thickening was observed in the small pulmonary arteries from the ZDF rats. Isolated pulmonary arteries mounted in a wire myograph showed similar vasoconstrictor responses to phenylephrine and 5-HT and similar responses to the endothelium-dependent vasodilator acetylcholine. However, the iNOS inhibitor 1400W enhanced the vasoconstrictor responses in ZDF but not in ZL rats. The protein expression of eNOS and iNOS was not significantly different in the lungs of the two groups. The lung expression of Bmpr2 mRNA was downregulated. However, the mRNA expression of Kcna5, Kcnk3, Kcnq1, Kcnq4 or Kcnq5, which encode for the potassium channels Kv1.5, TASK-1, Kv7.1, Kv7.4 and Kv7.5, respectively, was similar in ZL and ZDF rats. In conclusion, ZDF rats show increased pulmonary arterial pressure, right ventricular hypertrophy, pulmonary arterial medial thickening and downregulated lung Bmpr2 despite leptin resistance. These changes were mild but are consistent with the view that diabetes is a risk factor for pulmonary hypertension.
  • Publication
    Oxygen-Sensitivity and Pulmonary Selectivity of Vasodilators as Potential Drugs for Pulmonary Hypertension
    (MDPI, 2021-01-21) Morales Cano, Daniel; Barreira, Bianca; De Olaiz Navarro, Beatriz; Callejo Arranz, María; Mondejar Parreño, Gema; Esquivel Ruiz, Sergio Antonio; Lorente, José Ángel; Moreno Gutiérrez, Laura; Barberá, Joan Albert; Cogolludo Torralba, Ángel Luis; Pérez Vizcaíno, Francisco
    Current approved therapies for pulmonary hypertension (PH) aim to restore the balance between endothelial mediators in the pulmonary circulation. These drugs may exert vasodilator effects on poorly oxygenated vessels. This may lead to the derivation of blood perfusion towards low ventilated alveoli, i.e., producing ventilation-perfusion mismatch, with detrimental effects on gas exchange. The aim of this study is to analyze the oxygen-sensitivity in vitro of 25 drugs currently used or potentially useful for PH. Additionally, the study analyses the effectiveness of these vasodilators in the pulmonary vs the systemic vessels. Vasodilator responses were recorded in pulmonary arteries (PA) and mesenteric arteries (MA) from rats and in human PA in a wire myograph under different oxygen concentrations. None of the studied drugs showed oxygen selectivity, being equally or more effective as vasodilators under conditions of low oxygen as compared to high oxygen levels. The drugs studied showed low pulmonary selectivity, being equally or more effective as vasodilators in systemic than in PA. A similar behavior was observed for the members within each drug family. In conclusion, none of the drugs showed optimal vasodilator profile, which may limit their therapeutic efficacy in PH.