Callejo Arranz, María

Profile Picture
First Name
Last Name
Callejo Arranz
Universidad Complutense de Madrid
Faculty / Institute
Farmacología y Toxicología
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 3 of 3
  • Publication
    Impact of Vitamin D Deficit on the Rat Gut Microbiome
    (MDPI, 2019-10-24) Robles-Vera, Iñaki; Callejo Arranz, María; Ramos, Ricardo; Duarte, Juan; Pérez Vizcaíno, Francisco
    Inadequate immunologic, metabolic and cardiovascular homeostasis has been related to either an alteration of the gut microbiota or to vitamin D deficiency. We analyzed whether vitamin D deficiency alters rat gut microbiota. Male Wistar rats were fed a standard or a vitamin D-free diet for seven weeks. The microbiome composition was determined in fecal samples by 16S rRNA gene sequencing. The vitamin D-free diet produced mild changes on α- diversity but no effect on β-diversity in the global microbiome. Markers of gut dysbiosis like Firmicutes-to-Bacteroidetes ratio or the short chain fatty acid producing bacterial genera were not significantly affected by vitamin D deficiency. Notably, there was an increase in the relative abundance of the Enterobacteriaceae, with significant rises in its associated genera Escherichia, Candidatus blochmannia and Enterobacter in vitamin D deficient rats. Prevotella and Actinomyces were also increased and Odoribacteraceae and its genus Butyricimonas were decreased in rats with vitamin D-free diet. In conclusion, vitamin D deficit does not induce gut dysbiosis but produces some specific changes in bacterial taxa, which may play a pathophysiological role in the immunologic dysregulation associated with this hypovitaminosis.
  • Publication
    Activation of PPARβ/δ prevents hyperglycaemia-induced impairment of Kv7 channels and cAMP-mediated relaxation in rat coronary arteries
    (Portland Press, 2016-09-15) Morales Cano, Daniel; Moreno Gutiérrez, Laura; Barreira, Bianca; Pandolfi, Rachele; Moral Sanz, Javier; Callejo Arranz, María; Mondejar Parreño, Gema; Pérez Vizcaíno, Francisco; Cogolludo Torralba, Ángel Luis
    PPARβ/δ activation protects against endothelial dysfunction in diabetic models. Elevated glucose is known to impair cAMP-induced relaxation and Kv channel function in coronary arteries (CA). Herein, we aimed to analyse the possible protective effects of the PPARβ/δ agonist GW0742 on the hyperglycaemic-induced impairment of cAMP-induced relaxation and Kv channel function in rat CA. As compared with low glucose (LG), incubation under high glucose (HG) conditions attenuated the relaxation induced by the adenylate cyclase activator forskolin in CA and this was prevented by GW0742. The protective effect of GW0742 was supressed by a PPARβ/δ antagonist. In myocytes isolated from CA under LG, forskolin enhanced Kv currents and induced hyperpolarization. In contrast, when CA were incubated with HG, Kv currents were diminished and the electrophysiological effects of forskolin were abolished. These deleterious effects were prevented by GW0742. The protective effects of GW0742 on forskolin-induced relaxation and Kv channel function were confirmed in CA from type-1 diabetic rats. In addition, the differences in the relaxation induced by forskolin in CA incubated under LG, HG or HG + GW0742 were abolished by the Kv7 channel inhibitor XE991. Accordingly, GW0742 prevented the down-regulation of Kv7 channels induced by HG. Finally, the preventive effect of GW0742 on oxidative stress and cAMP-induced relaxation were overcome by the pyruvate dehydrogenase kinase 4 (PDK4) inhibitor dichloroacetate (DCA). Our results reveal that the PPARβ/δ agonist GW0742 prevents the impairment of the cAMP-mediated relaxation in CA under HG. This protective effect was associated with induction of PDK4, attenuation of oxidative stress and preservation of Kv7 channel function
  • Publication
    Elevated pulmonary arterial pressure in Zucker diabetic fatty rats
    (Public Library of Science, 2019-01-28) Morales Cano, Daniel; Callejo Arranz, María; Barreira, Bianca; Mondejar Parreño, Gema; Esquivel Ruiz, Sergio Antonio; Ramos, Sonia; Martín Arribas, María Ángeles; Cogolludo, Angel; Moreno Gutiérrez, Laura; Pérez Vizcaíno, Francisco; Bader, Michael
    Diabetes is a very strong predictor of chronic systemic vascular diseases and acute cardiovascular events. Recently, associations between metabolic disorders and pulmonary hypertension have also been reported in both humans and animal models. In order to get some further insight into the relationship of pulmonary hypertension with obesity, insulin resistance and hyperglycemia, herein we have used the Zucker diabetic fatty rats (ZDF/clr-lepr fa) at 20 weeks fed a standard diet and compared to their lean Zucker littermates (ZL). ZDF rats were obese, had elevated plasma glucose levels and insulin resistance, i.e. a clinically relevant model of type 2 diabetes. They presented elevated systolic, diastolic and mean pulmonary arterial pressures and a parallel increase in the Fulton index. Systemic arterial pressures were also increased but the left ventricle plus septum weight was similar in both groups and the heart rate was reduced. Wall media thickening was observed in the small pulmonary arteries from the ZDF rats. Isolated pulmonary arteries mounted in a wire myograph showed similar vasoconstrictor responses to phenylephrine and 5-HT and similar responses to the endothelium-dependent vasodilator acetylcholine. However, the iNOS inhibitor 1400W enhanced the vasoconstrictor responses in ZDF but not in ZL rats. The protein expression of eNOS and iNOS was not significantly different in the lungs of the two groups. The lung expression of Bmpr2 mRNA was downregulated. However, the mRNA expression of Kcna5, Kcnk3, Kcnq1, Kcnq4 or Kcnq5, which encode for the potassium channels Kv1.5, TASK-1, Kv7.1, Kv7.4 and Kv7.5, respectively, was similar in ZL and ZDF rats. In conclusion, ZDF rats show increased pulmonary arterial pressure, right ventricular hypertrophy, pulmonary arterial medial thickening and downregulated lung Bmpr2 despite leptin resistance. These changes were mild but are consistent with the view that diabetes is a risk factor for pulmonary hypertension.