Person:
Domenech Lucas, Miriam

Loading...
Profile Picture
First Name
Miriam
Last Name
Domenech Lucas
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Genética, Fisiología y Microbiología
Area
Microbiología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 12
  • Item
    Vancomycin tolerance in clinical and laboratory Streptococcus pneumoniae isolates depends on reduced enzyme activity of the major LytA autolysin or cooperation between CiaH histidine kinase and capsular polysaccharide
    (2010) Moscoso, Miriam; Domenech Lucas, Miriam; García, Ernesto
    Vancomycin is frequently added to standard therapy for pneumococcal meningitis. Although vancomycin-resistant Streptococcus pneumoniae strains have not been isolated, reports on the emergence of vancomycin-tolerant pneumococci are a cause of concern. To date, the molecular basis of vancomycin tolerance in S. pneumoniae is essentially unknown. We examined two vancomycin-tolerant clinical isolates, i.e. a purported autolysin negative (LytA-), serotype 23F isolate (strain S3) and the serotype 14 strain ‘Tupelo’, which is considered a paradigm of vancomycin tolerance. S3 was characterized here as carrying a frameshift mutation in the lytA gene encoding the main pneumococcal autolysin. The vancomycin tolerance of strain S3 was abolished by transformation to the autolysin-proficient phenotype. The original Tupelo strain was discovered to be a mixture: a strain showing a vancomycin-tolerant phenotype (Tupelo_VT) and a vancomycin-nontolerant strain (Tupelo_VNT). The two strains differed only in terms of a single mutation in the ciaH gene present in the VT strain. Most interestingly, although the vancomycin tolerance of Tupelo_VT could be overcome by increasing the LytA dosage upon transformation by a multicopy plasmid or by externally adding the autolysin, we show that vancomycin tolerance in S. pneumoniae requires the simultaneous presence of a mutated CiaH histidine kinase and capsular polysaccharide.
  • Item
    Vancomycin tolerance in Gram-positive cocci
    (Environmental Microbiology Reports, 2011) Moscoso, Miriam; Domenech Lucas, Miriam; García, Ernesto
    Vancomycin, a glycopeptide antimicrobial agent, represents the last line of defence against a wide range of multi-resistant Gram-positive pathogens such as enterococci, staphylococci and streptococci. However, vancomycin-resistant enterococci and staphylococci, along with vancomycin-tolerant clinical isolates, are compromising the therapeutic efficacy of vancomycin. It is conceivable that tolerance may emerge during prolonged vancomycin use. It has not been until recently, however, that the molecular basis of this tolerance began to be understood. Superoxide anions might be involved in the bactericidal activity of vancomycin in enterococci, and recent evidence suggests that the stringent response is partly responsible for vancomycin tolerance in Enterococcus faecalis. The mechanism of vancomycin tolerance in Staphylococcus aureus and Streptococcus pneumoniae is sometimes associated with a reduction of autolysin activity. Vancomycin tolerance in S. aureus and S. pneumoniae also appears to be somehow related with the two-component regulatory systems linked to cell envelope stress, although the precise molecular regulatory pathways remain poorly defined.
  • Item
    Biofilm formation in Streptococcus pneumoniae
    (Microbial Biotechnology, 2011) Domenech Lucas, Miriam; García, Ernesto; Moscoso, Miriam
    Biofilm-grown bacteria are refractory to antimicrobial agents and show an increased capacity to evade the host immune system. In recent years, studies have begun on biofilm formation by Streptococcus pneumoniae, an important human pathogen, using a variety of in vitro model systems. The bacterial cells in these biofilms are held together by an extracellular matrix composed of DNA, proteins and, possibly, polysaccharide(s). Although neither the precise nature of these proteins nor the composition of the putative polysaccharide(s) is clear, it is known that choline-binding proteins are required for successful biofilm formation. Further, many genes appear to be involved, although the role of each appears to vary when biofilms are produced in batch or continuous culture. Prophylactic and therapeutic measures need to be developed to fight S. pneumoniae biofilm formation. However, much care needs to be taken when choosing strains for such studies because different S. pneumoniae isolates can show remarkable genomic differences. Multispecies and in vivo biofilm models must also be developed to provide a more complete understanding of biofilm formation and maintenance.
  • Item
    In Vitro Destruction of Streptococcus pneumoniae Biofilms with Bacterial and Phage Peptidoglycan Hydrolases
    (Antimicrobial Agents and Chemotherapy, 2011) Domenech Lucas, Miriam; García, Ernesto; Moscoso, Miriam
    Host- and phage-coded cell wall hydrolases have been used to fight Streptococcus pneumoniae growing as planktonic cells in vitro as well as in animal models. Until now, however, the usefulness of these enzymes in biofilm-grown pneumococci has gone untested. The antipneumococcal activity of different cell wall hydrolases produced by S. pneumoniae and a number of its phages was examined in an in vitro biofilm model. The major pneumococcal autolysin LytA, an N-acetylmuramoyl-l-alanine amidase, showed the greatest efficiency in disintegrating S. pneumoniae biofilms. The phage-encoded lysozymes Cpl-1 and Cpl-7 were also very efficient. Biofilms formed by the close pneumococcal relatives Streptococcus pseudopneumoniae and Streptococcus oralis were also destroyed by the phage endolysins but not by the S. pneumoniae autolysin LytA. A cooperative effect of LytA and Cpl-1 in the disintegration of S. pneumoniae biofilms was recorded.
  • Item
    Biofilm Formation Avoids Complement Immunity and Phagocytosis of Streptococcus pneumoniae
    (Infection and Immunity, 2013) Domenech Lucas, Miriam; Ramos-Sevillano, Elisa; García, Ernesto; Moscoso, Miriam; Yuste, Jose
    Streptococcus pneumoniae is a frequent member of the microbiota of the human nasopharynx. Colonization of the nasopharyngeal tract is a first and necessary step in the infectious process and often involves the formation of sessile microbial communities by this human pathogen. The ability to grow and persist as biofilms is an advantage for many microorganisms, because biofilm-grown bacteria show reduced susceptibility to antimicrobial agents and hinder recognition by the immune system. The extent of host protection against biofilm-related pneumococcal disease has not been determined yet. Using pneumococcal strains growing as planktonic cultures or as biofilms, we have investigated the recognition of S. pneumoniae by the complement system and its interactions with human neutrophils. Deposition of C3b, the key complement component, was impaired on S. pneumoniae biofilms. In addition, binding of C-reactive protein and the complement component C1q to the pneumococcal surface was reduced in biofilm bacteria, demonstrating that pneumococcal biofilms avoid the activation of the classical complement pathway. In addition, recruitment of factor H, the downregulator of the alternative pathway, was enhanced by S. pneumoniae growing as biofilms. Our results also show that biofilm formation diverts the alternative complement pathway activation by a PspC-mediated mechanism. Furthermore, phagocytosis of pneumococcal biofilms was also impaired. The present study confirms that biofilm formation in S. pneumoniae is an efficient means of evading both the classical and the PspC-dependent alternative complement pathways the host immune system.
  • Item
    Ecophysiological characterization of Penicillium expansum population in lleida (Spain)
    (2008) Morales, Hector; Marín, Sonia; Obea, Laura; Domenech Lucas, Miriam; Patiño Álvarez, Aurora Belén; Ramos, Antonio J.; Sanchis, Vicente
    Penicillium expansum, a patulin producer fungus, is the most important fungus causing decay in cold stored both apples and pears. This can lead to patulin contaminated by-products. The aim of this assay was to evaluate the phenotypical and physiological variability in the population of P. expansum that cause fruit spoilage in post-harvest stages in Lleida (Spain). In total, 101 isolates of P. expansum from the 2004 and the 2005 seasons were obtained from decayed fruits. Significant differences were found in the observations from both seasons. Variability of the isolates in each season seemed to be partially explained by differences in growth in media, patulin accumulation and resistance to fungicides. Patulin production was detected in almost 100% of the isolates. Variability existing in P. expansum population could not be totally explained, but the above mentioned variables explained up to 74% of the diversity in some cases. The results obtained point to the existence of different populations of P. expansum in each season and may explain the differences in fungicide resistance observed between both seasons. The capacity to colonize apple flesh and some variables involved in fruit colonization were not a source of variation neither in each season nor when both seasons were compared. As storage rooms are cleaned and disinfected each season, this suggests that each season, the populations in storage rooms develop only from strains capable to colonize apple flesh. This may lead to rapid sporulation and spreading of spores.
  • Item
    Versatility of the capsular genes during biofilm formation by Streptococcus pneumoniae
    (Environmental Microbiology, 2009) Domenech Lucas, Miriam; Ernesto García; Miriam Moscoso
    Streptococcus pneumoniae forms part of the natural microbiota of the nasopharynx. For the pneumococcus to cause infection, colonization needs to occur and this process is mediated by adherence of bacteria to the respiratory epithelium. Although the capsular polysaccharide (CPS) of S. pneumoniae is known to be important for infection to occur, its role in colonization is controversial. Biofilm models are starting to emerge as a promising tool to investigate the role of CPS during nasopharyngeal carriage, which is the first step in the dissemination and initiation of a pneumococcal infection. Using a well-defined model system to analyse in vitro biofilm formation in pneumococcus, here we explore the molecular changes underlying the appearance of capsular mutants using type 3 S. pneumoniae cells. Spontaneous colony phase variants show promoter mutations, as well as duplications, deletions and point mutations in the cap3A gene, which codes for a UDP-glucose dehydrogenase (UDP-GlcDH). Increased biofilm-forming capacity could usually be correlated with a reduction both in colony size and in the relative amount of CPS present on the cell surface of each colony variant. However, a mutation in Cap3A Thr83Ile (a strictly conserved residue in bacterial UDP-GlcDHs) that resulted in very low CPS production also led to impaired biofilm formation. We propose that non-encapsulated mutants of pneumococcal type 3 strains are essentially involved in the initial stages (the attachment stage) of biofilm formation during colonization/pathogenesis.
  • Item
    Polymerase chain reaction (PCR) identification of Penicillium brevicompactum, a grape contaminant and mycophenolic acid producer
    (Food Additives & Contaminants, 2007) Patiño Álvarez, Aurora Belén; Medina, Á.; Domenech Lucas, Miriam; González Jaén, María Teresa; Jiménez, M.; Vázquez, C.
    Penicillium brevicompactum is a ubiquitous fungal species that contaminates diverse substrates and commodities and produces an array of metabolites toxic to human and animals. The present work has obtained evidence, by liquid chromatography (LC)-ion-trap mass spectrometry, of the ability of P. brevicompactum strains isolated from grapes to produce mycophenolic acid, a potent immunosuppressor. In order to facilitate early diagnosis of this species on commodities for human and animal consumption, a rapid, sensitive and specific polymerase chain reaction (PCR) assay for P. brevicompactum was developed. The specific primers were designed based on the ITS1-5.8S-ITS2ITS (Internal Transcribed Spacers of rRNA genes) multicopy region. This method provides a useful aid to detect the presence of this fungal species in grapes and other commodities in order to prevent the toxins produced entering the food chain.
  • Item
    Insight into the composition of the intercellular matrix of Streptococcus pneumoniae biofilms
    (Environmental Microbiology, 2012) Domenech Lucas, Miriam; García, Ernesto; Prieto, Alicia; Moscoso, Miriam
    Biofilm matrices consist of a mixture of extracellular polymeric substances synthesized in large part by the biofilm-producing microorganisms themselves. These matrices are responsible for the cohesion and three-dimensional architecture of biofilms. The present study demonstrates the existence of a matrix composed of extracellular DNA, proteins and polysaccharides in the biofilm formed by the human pathogen Streptococcus pneumoniae. Extracellular DNA, visualized by fluorescent labelling, was an important component of this matrix. The existence of DNA–protein complexes associated with bacterial aggregates and other polymers was hypothesized based on the unexpected DNA binding activity of lysozyme LytC, a novel moonlighting protein. Actually, a 25-amino-acid-long peptide derived from LytC (positions 408 and 432 of the mature LytC) was also capable of efficiently binding to DNA. Moreover, the presence of intercellular DNA–LytC protein complexes in pneumococcal biofilms was demonstrated by confocal laser scanning microscopy. Evidence of extracellular polysaccharide different from the capsule was obtained by staining with Calcofluor dye and four types of lectin conjugated to Alexa fluorophores, and by incubation with glycoside hydrolases. The presence of residues of Glcp(1→4) and GlcNAc(1→4) (in its deacetylated form) in the pneumococcal biofilm was confirmed by GC-MS techniques.
  • Item
    Emerging, Non-PCV13 Serotypes 11A and 35B of Streptococcus pneumoniae Show High Potential for Biofilm Formation In Vitro
    (PLoS One, 2015) Domenech Lucas, Miriam; Damián, Diana; Ardanuy, Carmen; Liñares, Josefina; Fenoll, Asunción; García, Ernesto
    Since the use of pneumococcal conjugate vaccines PCV7 and PCV13 in children became widespread, invasive pneumococcal disease (IPD) has dramatically decreased. Nevertheless, there has been a rise in incidence of Streptococcus pneumoniae non-vaccine serotypes (NVT) colonising the human nasopharynx. Nasopharyngeal colonisation, an essential step in the development of S. pneumoniae-induced IPD, is associated with biofilm formation. Although the capsule is the main pneumococcal virulence factor, the formation of pneumococcal biofilms might, in fact, be limited by the presence of capsular polysaccharide (CPS). Methodology/Principal Findings We used clinical isolates of 16 emerging, non-PCV13 serotypes as well as isogenic transformants of the same serotypes. The biofilm formation capacity of isogenic transformants expressing CPSs from NVT was evaluated in vitro to ascertain whether this trait can be used to predict the emergence of NVT. Fourteen out of 16 NVT analysed were not good biofilm formers, presumably because of the presence of CPS. In contrast, serotypes 11A and 35B formed ≥45% of the biofilm produced by the non-encapsulated M11 strain. Conclusions/Significance This study suggest that emerging, NVT serotypes 11A and 35B deserve a close surveillance. Since the use of pneumococcal conjugate vaccines PCV7 and PCV13 in children became widespread, invasive pneumococcal disease (IPD) has dramatically decreased. Nevertheless, there has been a rise in incidence of Streptococcus pneumoniae non-vaccine serotypes (NVT) colonising the human nasopharynx. Nasopharyngeal colonisation, an essential step in the development of S. pneumoniae-induced IPD, is associated with biofilm formation. Although the capsule is the main pneumococcal virulence factor, the formation of pneumococcal biofilms might, in fact, be limited by the presence of capsular polysaccharide (CPS). Methodology/Principal Findings We used clinical isolates of 16 emerging, non-PCV13 serotypes as well as isogenic transformants of the same serotypes. The biofilm formation capacity of isogenic transformants expressing CPSs from NVT was evaluated in vitro to ascertain whether this trait can be used to predict the emergence of NVT. Fourteen out of 16 NVT analysed were not good biofilm formers, presumably because of the presence of CPS. In contrast, serotypes 11A and 35B formed ≥45% of the biofilm produced by the non-encapsulated M11 strain. Conclusions/Significance This study suggest that emerging, NVT serotypes 11A and 35B deserve a close surveillance.