Person:
López Montero, Iván

Loading...
Profile Picture
First Name
Iván
Last Name
López Montero
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Física
Area
Química Física
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Polar ammoniostyryls easily converting a clickable Q1 lipophilic BODIPY in an advanced plasma membrane probe†
    (Journal of Materials Chemistry B, 2023) Serrano-Buitrago, Sergio; Muñoz Úbeda, Mónica; Almendro Vedia, Víctor Galileo; Sánchez-Camacho, Juan; Lora Maroto, Beatriz; Moreno, Florencio; Bañuelos, Jorge; García-Moreno, Inmaculada; López Montero, Iván; Moya Cerero, Santiago De La; Moreno Jiménez, Florencio
    A very simple, small and symmetric, but highly bright, photostable and functionalizable molecular probe for plasma membrane (PM) has been developed from an accessible, lipophilic and clickable organic dye based on BODIPY. To this aim, two lateral polar ammoniostyryl groups were easily linked to increase the amphiphilicity of the probe and thus its lipid membrane partitioning. Compared to the BODIPY precursor, the transversal diffusion across lipid bilayers of the ammoniostyryled BODIPY probe was highly reduced, as evidenced by fluorescence confocal microscopy on model membranes built up as giant unilamellar vesicles (GUVs). Moreover, the ammoniostyryl groups endow the new BODIPY probe with the ability to optically work (excitation and emission) in the bioimaging-useful red region, as shown by staining of the plasma membrane of living mouse embryonic fibroblasts (MEFs). Upon incubation, this fluorescent probe rapidly entered the cell through the endosomal pathway. By blocking the endocytic trafficking at 4 °C, the probe was confined within the PM of MEFs. Our experiments show the developed ammoniostyrylated BODIPY as a suitable PM fluorescent probe, and confirm the synthetic approach for advancing PM probes, imaging and science.
  • Item
    Dissimilar-at-boron N-BODIPYs: from light-harvesting multichromophoric arrays to CPL-bright chiral-at-boron BODIPYs
    (Organic Chemistry Frontiers, 2023) Ray, César; Avellanal-Zaballa, Edurne; Muñoz Úbeda, Mónica; Colligan, Jessica; Moreno Jiménez, Florencio; Muller, Gilles ; López Montero, Iván; Bañuelos, Jorge; Lora Maroto, Beatriz; Moya Cerero, Santiago De La
    We report a workable and easy approach for the direct post-multifunctionalization of common BODIPYs (F-BODIPYs) with minimal interference to the starting photophysical behavior. It entails the easy transformation of an F-BODIPY into the corresponding N-BODIPY by using a dissimilarly-N,N′-disubstituted bis(sulfonamide), which is easily obtained from ethane-1,2-diamine. This approach is exemplified by the rapid synthesis of a selected battery of unprecedented dissimilar-at-boron N-BODIPYs, which are rationally designed to act as efficient multichromophoric arrays for light harvesting by excitation energy transfer, as specific bioprobes for fluorescent imaging, or as efficient chiroptical dyes exhibiting visible circular dichroism and circularly polarized luminescence. Noticeably, this approach has led to the synthesis of the first CPL-bright chiral-at-boron BODIPYs, a significant novelty in BODIPY chemistry and CPL emitters