Person:
Gutiérrez Uzquiza, Álvaro

Loading...
Profile Picture
First Name
Álvaro
Last Name
Gutiérrez Uzquiza
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Bioquímica y Biología Molecular
Area
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 18
  • Item
    Negative regulation of Akt activity by p38α MAP kinase in cardiomyocytes involves membrane localization of PP2A through interaction with caveolin-1
    (Cellular Signalling, 2007) Zuluaga, Susana; Álvarez-Barrientos, Alberto; Gutiérrez Uzquiza, Álvaro; Benito De Las Heras, Manuel R.; Nebreda, Angel R.; Porras, Almudena; Porras Gallo, María Almudena
    Cardiomyocyte-derived cell lines deficient in p38α are more resistant to apoptosis owing to lower expression of the pro-apoptotic proteins Bax and Fas and upregulation of the ERK survival pathway. Here, we show that increased Akt activity also contributes to the enhanced survival of p38α-deficient cardiomyocytes. We found that the serine/threonine phosphatase PP2A can be targeted to caveolae through interaction with caveolin-1 in a p38α-dependent manner. In agreement with this, PP2A activity associated with caveolin-1 was higher in wild type than in p38α-deficient cells. Akt was also present in caveolae and incubation of wild-type cells with the PP2A inhibitor okadaic acid increases the levels of Akt activity. Thus, p38α-induced re-localization of PP2A to caveolae can lead to dephosphorylation and inhibition of Akt, which in turn would contribute to the decreased survival observed in wild type cells. However, cell detachment impairs the formation of the PP2A/caveolin-1 complex and, as a consequence, phospho-Akt levels and survival are no longer regulated by p38α in detached wild type cardiomyocytes. Our results suggest that p38α can negatively modulate Akt activity, independently of PI3K, by regulating the interaction between caveolin-1 and PP2A through a mechanism dependent on cell attachment.
  • Item
    In vivo production of fluorine-18 in a chicken egg tumor model of breast cancer for proton therapy range verification
    (Scientific reports, 2022) España Palomares, Samuel; Sánchez Parcerisa, Daniel; Bragado Domingo, Paloma; Gutiérrez Uzquiza, Álvaro; Porras Gallo, María Almudena; Gutiérrez Neira, Carolina; Espinosa Rodríguez, Andrea; Valladolid Onecha, Víctor; Ibáñez García, Paula Beatriz; Sánchez Tembleque Verbo, Víctor; Udías Moinelo, José Manuel; Fraile Prieto, Luis Mario
    Range verification of clinical protontherapy systems via positron-emission tomography (PET) is not a mature technology, suffering from two major issues: insufficient signal from low-energy protons in the Bragg peak area and biological washout of PET emitters. The use of contrast agents including O-18, Zn-68 or Cu-63, isotopes with a high cross section for low-energy protons in nuclear reactions producing PET emitters, has been proposed to enhance the PET signal in the last millimeters of the proton path. However, it remains a challenge to achieve sufficient concentrations of these isotopes in the target volume. Here we investigate the possibilities of O-18-enriched water (18-W), a potential contrast agent that could be incorporated in large proportions in live tissues by replacing regular water. We hypothesize that 18-W could also mitigate the problem of biological washout, as PET (F-18) isotopes created inside live cells would remain trapped in the form of fluoride anions (F-), allowing its signal to be detected even hours after irradiation. To test our hypothesis, we designed an experiment with two main goals: first, prove that 18-W can incorporate enough O-18 into a living organism to produce a detectable signal from F-18 after proton irradiation, and second, determine the amount of activity that remains trapped inside the cells. The experiment was performed on a chicken embryo chorioallantoic membrane tumor model of head and neck cancer. Seven eggs with visible tumors were infused with 18-W and irradiated with 8-MeV protons (range in water: 0.74 mm), equivalent to clinical protons at the end of particle range. The activity produced after irradiation was detected and quantified in a small-animal PET-CT scanner, and further studied by placing ex-vivo tumours in a gamma radiation detector. In the acquired images, specific activity of F-18 (originating from 18-W) could be detected in the tumour area of the alive chicken embryo up to 9 h after irradiation, which confirms that low-energy protons can indeed produce a detectable PET signal if a suitable contrast agent is employed. Moreover, dynamic PET studies in two of the eggs evidenced a minimal effect of biological washout, with 68% retained specific F-18 activity at 8 h after irradiation. Furthermore, ex-vivo analysis of 4 irradiated tumours showed that up to 3% of oxygen atoms in the targets were replaced by O-18 from infused 18-W, and evidenced an entrapment of 59% for specific activity of F-18 after washing, supporting our hypothesis that F- ions remain trapped within the cells. An infusion of 18-W can incorporate O-18 in animal tissues by replacing regular water inside cells, producing a PET signal when irradiated with low-energy protons that could be used for range verification in protontherapy. F-18 produced inside cells remains entrapped and suffers from minimal biological washout, allowing for a sharper localization with longer PET acquisitions. Further studies must evaluate the feasibility of this technique in dosimetric conditions closer to clinical practice, in order to define potential protocols for its use in patients.
  • Item
    Met signaling in cardiomyocytes is required for normal cardiac function in adult mice
    (Biochimica et Biophysica Acta (Molecular Basis of disease), 2013) Arechederra Calderón, María; Carmona Mejías, Rita; González-Nuñez, María; Gutiérrez Uzquiza, Álvaro; Bragado Domingo, Paloma; Cruz-González, Ignacio; Cano Rincón, Elena; Guerrero Arroyo, María Del Carmen; Sánchez Muñoz, Aranzazu; López-Novoa, José Miguel; Schneider, Michael D.; Maina, Flavio; Muñoz-Chápuli, Ramón; Porras Gallo, María Almudena
    Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6 months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as β-MHC and ANF, was also observed. By the age of 9 months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-β production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control.
  • Item
    Interacciones entre la ruta de p38α MAPK y las rutas de Rac-1 y C3G en la respuesta a estrés: implicaciones funcionales
    (2010) Gutiérrez Uzquiza, Álvaro; Porras Gallo, María Almudena
    El objetivo general de este trabajo de investigación es la caracterización de las interacciones entre la ruta de la p38α MAPK y de las rutas de Rac-1 y de C3G en respuesta al estrés, así como su implicación funcional utilizando cardiomiocitos y fibroblastos procedentes de ratones deficientes en p38α MAPK.
  • Item
    Germline gain‐of‐function MMP11 variant results in an aggressive form of colorectal cancer
    (International Journal of Cancer, 2022) Martín Morales, Lorena; Manzano Figueroa, Sara; Rodrigo Faus, María; Vicente Barrueco, Adrian; Lorca, Víctor; Núñez Moreno, Gonzalo; Bragado Domingo, Paloma; Porras Gallo, María Almudena; Caldes, Trinidad; Garre, Pilar; Gutiérrez Uzquiza, Álvaro
    Abstract Matrix metalloproteinase-11 (MMP11) is an enzyme with proteolytic activity against matrix and nonmatrix proteins. Although most MMPs are secreted as inactive proenzymes and are later activated extracellularly, MMP11 is activated intracellularly by furin within the constitutive secretory pathway. It is a key factor in physiological tissue remodeling and its alteration may play an important role in the progression of epithelial malignancies and other diseases. TCGA colon and colorectal adenocarcinoma data showed that upregulation of MMP11 expression correlates with tumorigenesis and malignancy. Here, we provide evidence that a germline variant in the MMP11 gene (NM_005940: c.232C>T; p.(Pro78Ser)), identified by whole exome sequencing, can increase the tumorigenic properties of colorectal cancer (CRC) cells. P78S is located in the prodomain region, which is responsible for blocking MMP11's protease activity. This variant was detected in the proband and all the cancer-affected family members analyzed, while it was not detected in healthy relatives. In silico analyses predict that P78S could have an impact on the activation of the enzyme. Furthermore, our in vitro analyses show that the expression of P78S in HCT116 cells increases tumor cell invasion and proliferation. In summary, our results show that this variant could modify the structure of the MMP11 prodomain, producing a premature or uncontrolled activation of the enzyme that may contribute to an early CRC onset in these patients. The study of this gene in other CRC cases will provide further information about its role in CRC development, which might improve patient treatment in the future.
  • Item
    C3G Protein, a New Player in Glioblastoma
    (International Journal of Molecular Sciences, 2021) Manzano Figueroa, Sara; Gutiérrez Uzquiza, Álvaro; Bragado Domingo, Paloma; Cuesta Martínez, Ángel; Guerrero, Carmen; Porras Gallo, María Almudena
    C3G (RAPGEF1) is a guanine nucleotide exchange factor (GEF) for GTPases from the Ras superfamily, mainly Rap1, although it also acts through GEF-independent mechanisms. C3G regulates several cellular functions. It is expressed at relatively high levels in specific brain areas, playing important roles during embryonic development. Recent studies have uncovered different roles for C3G in cancer that are likely to depend on cell context, tumour type, and stage. However, its role in brain tumours remained unknown until very recently. We found that C3G expression is downregulated in GBM, which promotes the acquisition of a more mesenchymal phenotype, enhancing migration and invasion, but not proliferation. ERKs hyperactivation, likely induced by FGFR1, is responsible for this pro-invasive effect detected in C3G silenced cells. Other RTKs (Receptor Tyrosine Kinases) are also dysregulated and could also contribute to C3G effects. However, it remains undetermined whether Rap1 is a mediator of C3G actions in GBM. Various Rap1 isoforms can promote proliferation and invasion in GBM cells, while C3G inhibits migration/invasion. Therefore, other RapGEFs could play a major role regulating Rap1 activity in these tumours. Based on the information available, C3G could represent a new biomarker for GBM diagnosis, prognosis, and personalised treatment of patients in combination with other GBM molecular markers. The quantification of C3G levels in circulating tumour cells (CTCs) in the cerebrospinal liquid and/or circulating fluids might be a useful tool to improve GBM patient treatment and survival.
  • Item
    Coordinated activation of the Rac-GAP β2-chimaerin by an atypical proline-rich domain and diacylglycerol
    (Nature Communications, 2013) Gutiérrez Uzquiza, Álvaro; Colon-Gonzalez, Francheska; Leonard, Thomas A.; Canagarajah, Bertram J.; Wang, HongBin; Mayer, Bruce J.; Hurley, James H.; Kazanietz, Marcelo G.
    Chimaerins, a family of GTPase activating proteins for the small G-protein Rac, have been implicated in development, neuritogenesis and cancer. These Rac-GTPase activating proteins are regulated by the lipid second messenger diacylglycerol generated by tyrosine kinases such as the epidermal growth factor receptor. Here we identify an atypical proline-rich motif in chimaerins that binds to the adaptor protein Nck1. Unlike most Nck1 partners, chimaerins bind to the third SH3 domain of Nck1. This association is mediated by electrostatic interactions of basic residues within the Pro-rich motif with acidic clusters in the SH3 domain. Epidermal growth factor promotes the binding of β2-chimaerin to Nck1 in the cell periphery in a diacylglycerol-dependent manner. Moreover, β2-chimaerin translocation to the plasma membrane and its peripheral association with Rac1 requires Nck1. Our studies underscore a coordinated mechanism for β2-chimaerin activation that involves lipid interactions via the C1 domain and protein-protein interactions via the N-terminal proline-rich region.
  • Item
    C3G Is Upregulated in Hepatocarcinoma, Contributing to Tumor Growth and Progression and to HGF/MET Pathway Activation
    (Cancers, 2020) Sequera Hurtado, Celia; Bragado Domingo, Paloma; Manzano Figueroa, Sara; Arechederra, Maria; Richelme, Sylvie; Gutiérrez Uzquiza, Álvaro; Sánchez Muñoz, Aranzazu; Maina, Flavio; Guerrero, Carmen; Porras Gallo, María Almudena
    The complexity of hepatocellular carcinoma (HCC) challenges the identification of disease-relevant signals. C3G, a guanine nucleotide exchange factor for Rap and other Ras proteins, plays a dual role in cancer acting as either a tumor suppressor or promoter depending on tumor type and stage. The potential relevance of C3G upregulation in HCC patients suggested by database analysis remains unknown. We have explored C3G function in HCC and the underlying mechanisms using public patient data and in vitro and in vivo human and mouse HCC models. We found that C3G is highly expressed in progenitor cells and neonatal hepatocytes, whilst being down-regulated in adult hepatocytes and re-expressed in human HCC patients, mouse HCC models and HCC cell lines. Moreover, high C3G mRNA levels correlate with tumor progression and a lower patient survival rate. C3G expression appears to be tightly modulated within the HCC program, influencing distinct cell biological properties. Hence, high C3G expression levels are necessary for cell tumorigenic properties, as illustrated by reduced colony formation in anchorage-dependent and -independent growth assays induced by permanent C3G silencing using shRNAs. Additionally, we demonstrate that C3G down-regulation interferes with primary HCC tumor formation in xenograft assays, increasing apoptosis and decreasing proliferation. In vitro assays also revealed that C3G down-regulation enhances the pro-migratory, invasive and metastatic properties of HCC cells through an epithelial-mesenchymal switch that favors the acquisition of a more mesenchymal phenotype. Consistently, a low C3G expression in HCC cells correlates with lung metastasis formation in mice. However, the subsequent restoration of C3G levels is associated with metastatic growth. Mechanistically, C3G down-regulation severely impairs HGF/MET signaling activation in HCC cells. Collectively, our results indicate that C3G is a key player in HCC. C3G promotes tumor growth and progression, and the modulation of its levels is essential to ensure distinct biological features of HCC cells throughout the oncogenic program. Furthermore, C3G requirement for HGF/MET signaling full activation provides mechanistic data on how it works, pointing out the relevance of assessing whether high C3G levels could identify HCC responders to MET inhibitors.
  • Item
    Biological and Mechanical Synergies to Deal With Proton Therapy Pitfalls: Minibeams, FLASH, Arcs, and Gantryless Rooms
    (Frontiers in Oncology, 2021) Mazal, Alejandro; Vera Sánchez, Juan Antonio; Sánchez Parcerisa, Daniel; Udías Moinelo, José Manuel; España Palomares, Samuel; Sánchez Tembleque Verbo, Víctor; Fraile Prieto, Luis Mario; Bragado Domingo, Paloma; Gutiérrez Uzquiza, Álvaro; Gordillo, Nuria; García, Gastón; Castro Novais, Juan; Pérez Moreno, Juan María; Mayorga Ortiz, Lina; Ilundáin Idoate, Amaia; Cremades Sendino, Marta; Ares, Carme; Miralbell, Raymond; Schreuder, Niek
    Proton therapy has advantages and pitfalls comparing with photon therapy in radiation therapy. Among the limitations of protons in clinical practice we can selectively mention: uncertainties in range, lateral penumbra, deposition of higher LET outside the target, entrance dose, dose in the beam path, dose constraints in critical organs close to the target volume, organ movements and cost. In this review, we combine proposals under study to mitigate those pitfalls by using individually or in combination: (a) biological approaches of beam management in time (very high dose rate “FLASH” irradiations in the order of 100 Gy/s) and (b) modulation in space (a combination of mini-beams of millimetric extent), together with mechanical approaches such as (c) rotational techniques (optimized in partial arcs) and, in an effort to reduce cost, (d) gantry-less delivery systems. In some cases, these proposals are synergic (e.g., FLASH and minibeams), in others theyare hardly compatible (mini-beam and rotation). Fixed lines have been used in pioneer centers, or for specific indications (ophthalmic, radiosurgery,…), they logically evolved to isocentric gantries. The present proposals to produce fixed lines are somewhat controversial. Rotational techniques, minibeams and FLASH in proton therapy are making their way, with an increasing degree of complexity in these three approaches, but with a high interest in the basic science and clinical communities. All of them must be proven in clinical applications.
  • Item
    Direct proton range verification using oxygen-18 enriched water as a contrast agent
    (Radiation Physics and Chemistry, 2021) España Palomares, Samuel; Sánchez Parcerisa, Daniel; Ibáñez García, Paula Beatriz; Sánchez Tembleque Verbo, Víctor; Udías Moinelo, José Manuel; Valladolid Onecha, Víctor; Gutiérrez Uzquiza, Álvaro; Bäcker, Claus Maximilian; Bäumer, Christian; Herrmann, Ken; Fragoso Costa, Pedro; Timmermann, Beate; Fraile Prieto, Luis Mario
    We propose the use of O-enriched water as a suitable contrast agent for potential in-vivo range verification in proton therapy. The low energy production threshold of 18F (2.6 MeV, proton range in water of 115 μm) leads to tissue activation in very close proximity to the maximum dose deposition, facilitating accurate range verification with off-line PET imaging. This idea has been explored in a phantom experiment. A 3D-printed phantom containing inserts with 18Oenriched water was irradiated with a 100-MeV, 8 × 8 cm2 proton beam, and the induced activity was measured with a small-animal PET-CT 30 min after irradiation. The images obtained were compared against Monte Carlo simulation using TOPAS. Good agreement was observed between reconstructed and simulated activity profiles (within 40% for specific 18F activity), with excellent spatial match to the simulated dose deposition. Because of the long half-life of 18F, the specific activity of the contrast agent could be separated and was clearly observed for more than 2 h after irradiation. Activity distribution maps were used to determine the position of the Bragg peak within 2 mm for three different regions of interest. These results show the potential of 18O-enriched water as a contrast agent in proton therapy.