Influence of Fe and Al doping in the stabilization of the anatase phase in TiO_2 nanoparticles

Thumbnail Image
Full text at PDC
Publication Date
Vásquez, G. Cristian
Andrea Peche-Herrero, M.
Alemán Llorente, Belén
Ramirez-Castellanos, Julio
Gonzalez-Calbet, José M.
Piqueras de Noriega, Javier
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Royal Soc. Chemistry
Google Scholar
Research Projects
Organizational Units
Journal Issue
Anatase TiO_2 nanoparticles doped with Al or Fe have been synthesized via a modified Pechini method which allows to reach high control in size and composition. Microstructural analysis onfirms the good crystallinity of the doped anatase nanoparticles with average sizes around 5 nm and dopant cationic concentrations up to 30 %. Anatase to rutile transition (ART) has been thermally driven and analyzed as a function of the doping. Thermo-diffraction measurements indicate that the phase transition can be either promoted or inhibited by Fe or Al doping, respectively. The influence of Al and Fe doping in the phase transition has been discussed by means of Raman spectroscopy, Photoluminescence and X-ray Photoelectron spectroscopy, with special attention paid to the role played by Ti^(3+) at the surface. Anatase phase has been stabilized up to temperatures above 900 ºC by appropriate Al doping
© The Royal Society of Chemistry 2012. This work was supported by MINECO (Projects MAT2011-23068, MAT 2012-31959 and Consolider Ingenio CSD 2009-00013). Authors are grateful to National Centre for Electron Microscopy (CNME) at Universidad Complutense de Madrid.
1 S.C. Roy, O.K.Varghese, M. Paulose and C.A. Grimes, ACS Nano, 2010, 4, 1259-1278. 2. M. Gratzel. Nature, 2001, 414, 338-344 3. D. A. H. Hanaor and C. C. Sorrell, J. Mater. Sci., 2011, 46, 855-874 4. R.Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 2001, 293, 269-271. 5. G. C. Vásquez, M. A. Peche-Herrero, D. Maestre, A. Cremades, J. Ramírez-Castellanos, J.M. González-Calbet and J. Piqueras. J. Phys. Chem. C, 2013, 117, 1941. 6. E. Setiawati and K. Kawano, J. Alloys Compd., 2008, 451, 293. 7. H. Cheng and A. Selloni. Phys. Rev. B, 2009, 79, 092101. 8 D.P.Singh, A. George, R. V. Kumar, J.E. ten Elshof and H. Wagemaker, Phys. Chem. C, 2013, 117, 19809-19825 9. B.Sun, P.G. Smirniotis, Catal. Today, 2003, 88, 49. 10. T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Appl. Catal. A 2003, 244, 383–391 11. S. Riyas, G. Krishnan and P.N. Mohandas. Adv. Appl. Ceram., 2007, 106, 225. 12. M.P. Pechini, 1967 U.S. Patent No. 3330697. 13. 2014, OEPM Patent P201400722. 14. M. Vila, C. Díaz-Guerra and J. Piqueras. Appl. Phys. Lett., 2012, 101, 071905. 15. T. Ohsaka, F. Izumi and Y. Fujiki, J. Raman Spectr., 1978, 7, 321-324. 16. L. Miao, S. Tanemura, S. Toh, K. Kaneko and M. Tanemura. J. Cryst. Growth., 2004, 264, 246-252. 17. F. Tian, Y. Zhang, J. Zhang and C. Pan, J. Phys. Chem. C, 2012, 116, 7515-7519. 18. S.V. Chong, N. Suresh, J. Xia, N. Al-Salim and H. Idriss. J. Phys. Chem. C, 2007, 111, 10389-10393. 19. A. Li Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F.O. Ernst, K. Wegner and S.E. Pratsinis. J. Appl. Phys., 2005, 98, 074305. 20. Anna Iwaszuk and Michael Nolan, J. Phys.: Condens. Matter, 2011, 23, 334207. 21. Y. J. Choi, Z. Seeley, A. Bandyopadhyay, S. Bose and S. A. Akbar, Sensors and Actuators B, 2007, 124, 111–117. 22. J.C. Parker and R.W. Siegel, J. Mater. Research, 1990, 5, 1246-1252. 23. U. Gesenhues and T. Rentschler, Journal of Solid State Chemistry, 1999, 143, 210-218. 24. J. Zhang, X. Chen, Y. Shen, Y. Li, Z. Hu and J. Chu. Phys. Chem. Chem. Phys., 2011, 13, 13096-13105. 25. Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen and S.X. Wang, Appl. Phys Lett., 2001, 78, 1125. 26. R. Sanjinés, H. Tang, H. Berger, F. Gozzo, G.Margaritondo and F. Levy, J. Appl. Phys., 1994, 75, 2945. 27. S. Ghosh, G.G.Khan, K. Mandal, A. Samanta and P.M.G. Nambissan. J. Phys. Chem. C., 2013, 117, 8458. 28. D.P. Colombo, K.A. Roussel, J. Saeh,D.E. Skinner, J.J. Cavaleri and R.M. Bowman, Chem. Phys. Lett., 1995, 232, 207 29. C.C. Mercado, F.J. Knorr, J.L. McHale, S.M. Usmani, A.S. Ichimura and L.V.Saraf. J. Phys. Chem. C, 2012, 116, 10796. 30. Y. Zhang, L. Wu, E. Xie, H. Duan, W. Han and J. Zhao. J. Power Sources, 2009, 189, 1256. 31. S. Sahoo, A.K. Arora and V. Sridharan. J. Phys. Chem. C, 2009, 113, 16927. 32. R. Shirley, M. Kraft and O. R. Inderwildi. Phys. Rev. B, 2010, 81, 075111. 33. Qi Wu, Junjie Ouyang, Kunpeng Xie, Lan Sun, Mengye Wang, Changjian Lin, Journal of Hazardous Materials, 2012, 199– 200, 410. 34. M. Kayama, H. Nishido, S. Toyoda, K. Komuro, A.A. Finch, M.R. Lee and K. Ninagawa. Am. Mineralogist, 2014, 99, 65. 35. S. George, S. Pokhrel, Z. Ji, B.L. Henderson, T. Xia, L. Li, J.I. Zink, A.E. Nel and L. Mädler, J. Am. Chem. Soc., 2013, 133, 11270. 36. Q. Yu, L. Jin,C. Zhou, Solar Energy Materials & Solar Cells, 2011, 95, 2322. 37. H. Zhang, J.F. Banfield, J. Phys. Chem B., 2000, 104, 34813487. 38. H. Zhang, J.F. Banfield, Chem. Mater., 2005, 17, 3421. 39. V. Etacheri, S. Pillai, M.K. Seery and S. J. Hinder, Adv. Funct. Mat. 2011, 21, 3744-3752.