pi pi -> K [K^bar] scattering up to 1.47 GeV with hyperbolic dispersion relations

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this work we provide a dispersive analysis of ππ -> K [K^bar] scattering. For this purpose we present a set of partial-wave hyperbolic dispersion relations using a family of hyperbolas that maximizes the applicability range of the hyperbolic dispersive representation, which we have extended up to 1.47 GeV. We then use these equations first to test simple fits to different and often conflicting data sets, also showing that some of these data and some popular parameterizations of these waves fail to satisfy the dispersive analysis. Our main result is obtained after imposing these new relations as constraints on the data fits. We thus provide simple and precise parameterizations for the S, P and D waves that describe the experimental data from K [K^bar] threshold up to 2 GeV, while being consistent with crossing symmetric partial-wave dispersion relations up to their maximum applicability range of 1.47 GeV. For the S-wave we have found that two solutions describing two conflicting data sets are possible. The dispersion relations also provide a representation for S, P and D waves in the pseudo-physical region.
© The Author(s) 2018 JRP and AR are supported by the Spanish project FPA2016-75654-C2-2-P. AR would also like to acknowledge the financial support of the Universidad Complutense de Madrid through a pre-doctoral scholarship. We would also like to thank B. Moussallam and J. Ruiz de Elvira for fruitful discussions, as well as J. Miranda for her comments and corrections
Unesco subjects