Simultaneous co-delivery of neuroprotective drugs from multiloaded PLGA microspheres for the treatment of glaucoma

Research Projects
Organizational Units
Journal Issue
Glaucoma is a multifactorial neurodegenerative disorder and one of the leading causes of irreversible blindness globally and for which intraocular pressure is the only modifiable risk factor. Although neuroprotective therapies have been suggested to have therapeutic potential, drug delivery for the treatment of ocular disorders such as glaucoma remains an unmet clinical need, further complicated by poor patient compliance with topically applied treatments. In the present study we describe the development of multi-loaded PLGA-microspheres (MSs) incorporating three recognised neuroprotective agents (dexamethasone (DX), melatonin (MEL) and coenzyme Q10 (CoQ10)) in a single formulation (DMQ-MSs) to create a novel sustained-release intraocular drug delivery system (IODDS) for the treatment of glaucoma. MSs were spherical, with a mean particle size of 29.04 ± 1.89 μm rendering them suitable for intravitreal injection using conventional 25G-32G needles. Greater than 62% incorporation efficiency was achieved for the three drug cargo and MSs were able to co-deliver the encapsulated active compounds in a sustained manner over 30-days with low burst release. In vitro studies showed DMQ-MSs to be neuroprotective in a glutamate-induced cytotoxicity model (IC50 10.00±0.94 mM versus 6.89±0.82 mM in absence of DMQ-MSs) in R28 cell line. In vivo efficacy studies were performed using a well-established rodent model of chronic ocular hypertension (OHT), comparing single intravitreal injections of microspheres of DMQ-MSs to their equivalent individual single drug loaded MSs mixture (MSsmix), empty MSs, no-treatment OHT only and naïve groups. Twenty one days after OHT induction, DMQ-MSs showed a significantly neuroprotective effect on RGCs compared to OHT only controls. No such protective effect was observed in empty MSs and single-drug MSs treated groups. This work suggests that multi-loaded PLGA MSs present a novel therapeutic approach in the management of retinal neurodegeneration conditions such as glaucoma.
Unesco subjects
[1] S.R. Flaxman, R.R.A. Bourne, S. Resnikoff, P. Ackland, T. Braithwaite, M.V. Cicinelli, A. Das, J.B. Jonas, J. Keeffe, J.H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, A. Silvester, G.A. Stevens, N. Tahhan, T.Y. Wong, H.R. Taylor, S. Vision Loss Expert Group of the Global Burden of Disease, Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis, Lancet Glob Health, 5 (2017) e1221-e1234. [2] M. Lawlor, H. Danesh-Meyer, L.A. Levin, I. Davagnanam, E. De Vita, G.T. Plant, Glaucoma and the brain: Trans-synaptic degeneration, structural change, and implications for neuroprotection, Surv Ophthalmol, (2017). [3] R. Asaoka, H. Murata, M. Yanagisawa, Y. Fujino, M. Matsuura, T. Inoue, K. Inoue, J. Yamagami, The association between photoreceptor layer thickness measured by optical coherence tomography and visual sensitivity in glaucomatous eyes, PLoS One, 12 (2017) e0184064. [4] B.S. Ashimatey, B.J. King, W.H. Swanson, Retinal putative glial alterations: implication for glaucoma care, Ophthalmic Physiol Opt, 38 (2018) 56-65. [5] A.I. Ramirez, R. de Hoz, E. Salobrar-Garcia, J.J. Salazar, B. Rojas, D. Ajoy, I. Lopez-Cuenca, P. Rojas, A. Trivino, J.M. Ramirez, The Role of Microglia in Retinal Neurodegeneration: Alzheimer's Disease, Parkinson, and Glaucoma, Front Aging Neurosci, 9 (2017) 214. [6] J. Qu, D. Wang, C.L. Grosskreutz, Mechanisms of retinal ganglion cell injury and defense in glaucoma, Exp Eye Res, 91 (2010) 48-53. [7] A. Pascale, F. Drago, S. Govoni, Protecting the retinal neurons from glaucoma: lowering ocular pressure is not enough, Pharmacol Res, 66 (2012) 19-32. [8] D.R. Anderson, S. Normal Tension Glaucoma, Collaborative normal tension glaucoma study, Curr Opin Ophthalmol, 14 (2003) 86-90. [9] European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition - Chapter 3: Treatment principles and options Supported by the EGS Foundation: Part 1: Foreword; Introduction; Glossary; Chapter 3 Treatment principles and options, Br J Ophthalmol, 101 (2017) 130-195. [10] M.T. Pardue, R.S. Allen, Neuroprotective strategies for retinal disease, Prog Retin Eye Res, (2018). [11] C. Nucci, R. Russo, A. Martucci, C. Giannini, F. Garaci, R. Floris, G. Bagetta, L.A. Morrone, New strategies for neuroprotection in glaucoma, a disease that affects the central nervous system, Eur J Pharmacol, 787 (2016) 119-126. [12] A. Baltmr, J. Duggan, S. Nizari, T.E. Salt, M.F. Cordeiro, Neuroprotection in glaucoma - Is there a future role?, Exp Eye Res, 91 (2010) 554-566. [13] R. Russo, G.P. Varano, A. Adornetto, C. Nucci, M.T. Corasaniti, G. Bagetta, L.A. Morrone, Retinal ganglion cell death in glaucoma: Exploring the role of neuroinflammation, Eur J Pharmacol, 787 (2016) 134-142. [14] C. McMonnies, Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy, J Optom, 11 (2018) 3-9. [15] G. Tezel, Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences, Prog Retin Eye Res, 25 (2006) 490-513. [16] N. Cuenca, L. Fernandez-Sanchez, L. Campello, V. Maneu, P. De la Villa, P. Lax, I. Pinilla, Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases, Prog Retin Eye Res, 43 (2014) 17-75. [17] B.G. Short, Safety evaluation of ocular drug delivery formulations: techniques and practical considerations, Toxicol Pathol, 36 (2008) 49-62. [18] P. Mitchell, A systematic review of the efficacy and safety outcomes of anti -VEGF agents used for treating neovascular age-related macular degeneration: comparison of ranibizumab and bevacizumab, Curr Med Res Opin, 27 (2011) 1465-1475. [19] I.B.-O. V. Andrés-Guerrero, P. Pastoriza, I.T. Molina-Martinez, Rocí. Herrero-Vanrell, Novel technologies for the delivery of ocular therapeutics in glaucoma, Journal of Drug Delivery Science and Technology, 42 (2017) 181-192. [20] I. Bravo-Osuna, V. Andres-Guerrero, A. Arranz-Romera, S. Esteban-Perez, I.T. Molina- Martinez, R. Herrero-Vanrell, Microspheres as intraocular therapeutic tools in chronic diseases of the optic nerve and retina, Adv Drug Deliv Rev, (2018). [21] X. Rong, W. Yuan, Y. Lu, X. Mo, Safety evaluation of poly(lactic-co-glycolic acid)/poly(lacticacid) microspheres through intravitreal injection in rabbits, Int J Nanomedicine, 9 (2014) 3057- 3068. [22] I. Bravo-Osuna, V. Andres-Guerrero, P. Pastoriza Abal, I.T. Molina-Martinez, R. Herrero- Vanrell, Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases, Drug Deliv Transl Res, 6 (2016) 686-707. [23] M. Zhao, E. Rodriguez-Villagra, L. Kowalczuk, M. Le Normand, M. Berdugo, R. Levy-Boukris, I. El Zaoui, B. Kaufmann, R. Gurny, I. Bravo-Osuna, I.T. Molina-Martinez, R. Herrero-Vanrell, F. Behar-Cohen, Tolerance of high and low amounts of PLGA microspheres loaded with mineralocorticoid receptor antagonist in retinal target site, J Control Release, 266 (2017) 187- 197. [24] L.B. García-Caballero C., Arranz-Romera A., Molina-Martínez I.T., Bravo-Osuna I., Young M., Baranov P., Herrero-Vanrell R., Photoreceptor preservation induced by intravitreal controlled delivery of GDNF and GDNF/melatonin in rhodopsin knockout mice, Molecular Vision, 24 (2018) 733-745 [25] N.V. Saraiya, D.A. Goldstein, Dexamethasone for ocular inflammation, Expert Opin Pharmacother, 12 (2011) 1127-1131. [26] G. Zhang, S. Liu, L. Yang, Y. Li, The role of Dexamethasone in clinical pharmaceutical treatment for patients with cataract surgery, Exp Ther Med, 15 (2018) 2177-2181. [27] C.J. Brady, A.C. Villanti, H.A. Law, E. Rahimy, R. Reddy, P.C. Sieving, S.J. Garg, J. Tang, Corticosteroid implants for chronic non-infectious uveitis, Cochrane Database Syst Rev, 2 (2016) CD010469. [28] P.O. Lundmark, S.R. Pandi-Perumal, V. Srinivasan, D.P. Cardinali, R.E. Rosenstein, Melatonin in the eye: implications for glaucoma, Exp Eye Res, 84 (2007) 1021-1030. [29] P. Wongprayoon, P. Govitrapong, Melatonin as a mitochondrial protector in neurodegenerative diseases, Cell Mol Life Sci, 74 (2017) 3999-4014. [30] A.W. Siu, G.G. Ortiz, G. Benitez-King, C.H. To, R.J. Reiter, Effects of melatonin on the nitric oxide treated retina, Br J Ophthalmol, 88 (2004) 1078-1081. [31] S.A. Andrabi, I. Sayeed, D. Siemen, G. Wolf, T.F. Horn, Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for antiapoptotic effects of melatonin, FASEB J, 18 (2004) 869-871. [32] G.P. Littarru, L. Tiano, Clinical aspects of coenzyme Q10: an update, Nutrition, 26 (2010) 250-254. [33] P. Forsmark-Andree, C.P. Lee, G. Dallner, L. Ernster, Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles, Free Radic Biol Med, 22 (1997) 391-400. [34] A. Virmani, F. Gaetani, Z. Binienda, Effects of metabolic modifiers such as carnitines, coenzyme Q10, and PUFAs against different forms of neurotoxic insults: metabolic inhibitors, MPTP, and methamphetamine, Ann N Y Acad Sci, 1053 (2005) 183-191. [35] J.D. Hernandez-Camacho, M. Bernier, G. Lopez-Lluch, P. Navas, Coenzyme Q10 Supplementation in Aging and Disease, Front Physiol, 9 (2018) 44. [36] B.M. Davis, K. Tian, M. Pahlitzsch, J. Brenton, N. Ravindran, G. Butt, G. Malaguarnera, E.M. Normando, L. Guo, M.F. Cordeiro, Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension, Mitochondrion, 36 (2017) 114-123. [37] G.M. Seigel, Review: R28 retinal precursor cells: the first 20 years, Mol Vis, 20 (2014) 301- 306. [38] J.C. Morrison, W.O. Cepurna, E.C. Johnson, Modeling glaucoma in rats by sclerosing aqueous outflow pathways to elevate intraocular pressure, Exp Eye Res, 141 (2015) 23-32. [39] J.C. Morrison, DeFrank, M. P. & Van Buskirk, E. M. , Comparative microvascular anatomy of mammalian ciliary processes, IOVS, 28 ( 1987) 1325–1340. [40] J.C. Morrison, C.G. Moore, L.M. Deppmeier, B.G. Gold, C.K. Meshul, E.C. Johnson, A rat model of chronic pressure-induced optic nerve damage, Exp Eye Res, 64 (1997) 85-96. [41] B.M. Davis, L. Guo, J. Brenton, L. Langley, E.M. Normando, M.F. Cordeiro, Automatic quantitative analysis of experimental primary and secondary retinal neurodegeneration: implications for optic neuropathies, Cell Death Discov, 2 (2016) 16031. [42] F.M. Nadal-Nicolas, M. Jimenez-Lopez, M. Salinas-Navarro, P. Sobrado-Calvo, J.J. Alburquerque-Bejar, M. Vidal-Sanz, M. Agudo-Barriuso, Whole number, distribution and coexpression of brn3 transcription factors in retinal ganglion cells of adult albino and pigmented rats, PLoS One, 7 (2012) e49830. [43] K. Park, Controlled drug delivery systems: past forward and future back, J Control Release, 190 (2014) 3-8. [44] K.K. Jain, Current status and future prospects of drug delivery systems, Methods Mol Biol, 1141 (2014) 1-56. [45] R. Herrero-Vanrell, I. Bravo-Osuna, V. Andres-Guerrero, M. Vicario-de-la-Torre, I.T. Molina-Martinez, The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies, Prog Retin Eye Res, 42 (2014) 27-43. [46] R.N. Weinreb, T. Aung, F.A. Medeiros, The pathophysiology and treatment of glaucoma: a review, JAMA, 311 (2014) 1901-1911. [47] B.M. Davis, L. Crawley, M. Pahlitzsch, F. Javaid, M.F. Cordeiro, Glaucoma: the retina and beyond, Acta Neuropathol, 132 (2016) 807-826. [48] R.W. Nickells, G.R. Howell, I. Soto, S.W. John, Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy, Annu Rev Neurosci, 35 (2012) 153-179. [49] L. Zhao, G. Chen, J. Li, Y. Fu, T.A. Mavlyutov, A. Yao, R.W. Nickells, S. Gong, L.W. Guo, An intraocular drug delivery system using targeted nanocarriers attenuates retinal ganglion cell degeneration, J Control Release, 247 (2017) 153-166. [50] R. Jeyanthi, Mehta, R. C., Thanoo, B. C., and DeLuca, P. P. , Effect of processing parameters on the properties of peptide containing PLGA microspheres, J. Microencapsulation, 14 (1997) 163-174. [51] T.G. Park, Lee, H. Y., and Nam, Y. S., A new preparation method for protein loaded poly(D,L-lactic-co-cjlycolic acid) microspheres and protein release mechanism study, J. Controlled Release, 55 (1998) 181-191. [52] Y. Yeo, K. Park, Control of encapsulation efficiency and initial burst in polymeric microparticle systems, Arch Pharm Res, 27 (2004) 1-12. [53] R. Herrero-Vanrell, M.F. Refojo, Biodegradable microspheres for vitreoretinal drug delivery, Adv Drug Deliv Rev, 52 (2001) 5-16. [54] V. Andres-Guerrero, M. Zong, E. Ramsay, B. Rojas, S. Sarkhel, B. Gallego, R. de Hoz, A.I. Ramirez, J.J. Salazar, A. Trivino, J.M. Ramirez, E.M. Del Amo, N. Cameron, B. de-Las-Heras, A. Urtti, G. Mihov, A. Dias, R. Herrero-Vanrell, Novel biodegradable polyesteramide microspheres for controlled drug delivery in Ophthalmology, J Control Release, 211 (2015) 105-117. [55] L. Al Haushey, M.A. Bolzinger, C. Bordes, J.Y. Gauvrit, S. Briancon, Improvement of a bovine serum albumin microencapsulation process by screening design, Int J Pharm, 344 (2007) 16-25. [56] P.R. Nepal, H.K. Han, H.K. Choi, Enhancement of solubility and dissolution of coenzyme Q10 using solid dispersion formulation, Int J Pharm, 383 (2010) 147-153. [57] D.H. Paik, S.W. Choi, Entrapment of protein using electrosprayed poly(D,L-lactide-coglycolide) microspheres with a porous structure for sustained release, Macromol Rapid Commun, 35 (2014) 1033-1038. [58] E.S. Farboud, S.A. Nasrollahi, Z. Tabbakhi, Novel formulation and evaluation of a Q10- loaded solid lipid nanoparticle cream: in vitro and in vivo studies, Int J Nanomedicine, 6 (2011) 611-617. [59] T. Musumeci, C. Bucolo, C. Carbone, R. Pignatello, F. Drago, G. Puglisi, Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits, Int J Pharm, 440 (2013) 135-140. [60] S.D.a.U. Subuddhi, Controlled delivery of dexamethasone to the intestine from poly(vinyl alcohol)–poly(acrylic acid) microspheres containing drug-cyclodextrin complexes: influence of method of preparation ofinclusion complex, RSC Advances, 4 (2014) 24222–24231. [61] P.J. Checa-Casalengua, C. Bravo-Osuna, I. Tucker, B. A. Molina-Martinez, I. T. Young, M. J., Herrero-Vanrell, R., Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure, J Control Release, 156 (2011) 92-100. [62] L. Guo, T.E. Salt, A. Maass, V. Luong, S.E. Moss, F.W. Fitzke, M.F. Cordeiro, Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo, Invest Ophthalmol Vis Sci, 47 (2006) 626-633. [63] R.L. Gross, S.H. Hensley, F. Gao, S.M. Wu, Retinal ganglion cell dysfunction induced by hypoxia and glutamate: potential neuroprotective effects of beta-blockers, Surv Ophthalmol, 43 Suppl 1 (1999) S162-170. [64] X. Luo, V. Heidinger, S. Picaud, G. Lambrou, H. Dreyfus, J. Sahel, D. Hicks, Selective excitotoxic degeneration of adult pig retinal ganglion cells in vitro, Invest Ophthalmol Vis Sci, 42 (2001) 1096-1106. [65] J.K. Sandhu, S. Pandey, M. Ribecco-Lutkiewicz, R. Monette, H. Borowy-Borowski, P.R. Walker, M. Sikorska, Molecular mechanisms of glutamate neurotoxicity in mixed cultures of NT2-derived neurons and astrocytes: protective effects of coenzyme Q10, J Neurosci Res, 72 (2003) 691-703. [66] S. Vishnoi, S. Raisuddin, S. Parvez, Glutamate Excitotoxicity and Oxidative Stress in Epilepsy: Modulatory Role of Melatonin, J Environ Pathol Toxicol Oncol, 35 (2016) 365-374. [67] L. Papucci, N. Schiavone, E. Witort, M. Donnini, A. Lapucci, A. Tempestini, L. Formigli, S. Zecchi-Orlandini, G. Orlandini, G. Carella, R. Brancato, S. Capaccioli, Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property, J Biol Chem, 278 (2003) 28220-28228. [68] D. Lee, M.S. Shim, K.Y. Kim, Y.H. Noh, H. Kim, S.Y. Kim, R.N. Weinreb, W.K. Ju, Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in a mouse model of glaucoma, Invest Ophthalmol Vis Sci, 55 (2014) 993-1005. [69] R.J. Reiter, D.X. Tan, J.C. Mayo, R.M. Sainz, J. Leon, Z. Czarnocki, Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans, Acta Biochim Pol, 50 (2003) 1129-1146. [70] R.J. Reiter, D.X. Tan, C. Osuna, E. Gitto, Actions of melatonin in the reduction of oxidative stress. A review, J Biomed Sci, 7 (2000) 444-458. [71] I. Antolin, B. Obst, S. Burkhardt, R. Hardeland, Antioxidative protection in a high-melatonin organism: the dinoflagellate Gonyaulax polyedra is rescued from lethal oxidative stress by strongly elevated, but physiologically possible concentrations of melatonin, J Pineal Res, 23 (1997) 182-190. [72] Y. Urata, S. Honma, S. Goto, S. Todoroki, T. Iida, S. Cho, K. Honma, T. Kondo, Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells, Free Radic Biol Med, 27 (1999) 838-847. [73] J.C. Mayo, R.M. Sainz, P. Gonzalez-Menendez, D. Hevia, R. Cernuda-Cernuda, Melatonin transport into mitochondria, Cell Mol Life Sci, 74 (2017) 3927-3940. [74] R.J. Reiter, S. Rosales-Corral, D.X. Tan, M.J. Jou, A. Galano, B. Xu, Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas, Cell Mol Life Sci, 74 (2017) 3863-3881. [75] P. Patino, E. Parada, V. Farre-Alins, S. Molz, R. Cacabelos, J. Marco-Contelles, M.G. Lopez, C.I. Tasca, E. Ramos, A. Romero, J. Egea, Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices, Neurotoxicology, 57 (2016) 61-68. [76] E. Sanchez-Lopez, M.A. Egea, B.M. Davis, L. Guo, M. Espina, A.M. Silva, A.C. Calpena, E.M.B. Souto, N. Ravindran, M. Ettcheto, A. Camins, M.L. Garcia, M.F. Cordeiro, Memantine- Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma, Small, 14 (2018). [77] A. Dibas, M.H. Yang, S. He, J. Bobich, T. Yorio, Changes in ocular aquaporin-4 (AQP4) expression following retinal injury, Mol Vis, 14 (2008) 1770-1783. [78] M. Liu, L. Guo, T.E. Salt, M.F. Cordeiro, Dendritic changes in rat visual pathway associated with experimental ocular hypertension, Curr Eye Res, 39 (2014) 953-963. [79] M.S. Ward, A. Khoobehi, E.B. Lavik, R. Langer, M.J. Young, Neuroprotection of retinal ganglion cells in DBA/2J mice with GDNF-loaded biodegradable microspheres, J Pharm Sci, 96 (2007) 558-568. [80] C. Jiang, M.J. Moore, X. Zhang, H. Klassen, R. Langer, M. Young, Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma, Mol Vis, 13 (2007) 1783-1792. [81] C. Andrieu-Soler, A. Aubert-Pouessel, M. Doat, S. Picaud, M. Halhal, M. Simonutti, M.C. Venier-Julienne, J.P. Benoit, F. Behar-Cohen, Intravitreous injection of PLGA microspheres encapsulating GDNF promotes the survival of photoreceptors in the rd1/rd1 mouse, Mol Vis, 11 (2005) 1002-1011. [82] P.D. Drew, J.A. Chavis, Inhibition of microglial cell activation by cortisol, Brain Res Bull, 52 (2000) 391-396. [83] L. Vardimon, I. Ben-Dror, N. Avisar, A. Oren, L. Shiftan, Glucocorticoid control of glial gene expression, J Neurobiol, 40 (1999) 513-527. [84] I.P. Hargreaves, Coenzyme Q10 as a therapy for mitochondrial disease, Int J Biochem Cell Biol, 49 (2014) 105-111. [85] E. Kilic, D.M. Hermann, S. Isenmann, M. Bahr, Effects of pinealectomy and melatonin on the retrograde degeneration of retinal ganglion cells in a novel model of intraorbital optic nerve transection in mice, J Pineal Res, 32 (2002) 106-111. [86] C. Kaur, V. Sivakumar, R. Robinson, W.S. Foulds, C.D. Luu, E.A. Ling, Neuroprotective effect of melatonin against hypoxia-induced retinal ganglion cell death in neonatal rats, J Pineal Res, 54 (2013) 190-206. [87] G. Tezel, The immune response in glaucoma: a perspective on the roles of oxidative stress, Exp Eye Res, 93 (2011) 178-186. [88] C. Nucci, R. Tartaglione, A. Cerulli, R. Mancino, A. Spano, F. Cavaliere, L. Rombola, G. Bagetta, M.T. Corasaniti, L.A. Morrone, Retinal damage caused by high intraocular pressureinduced transient ischemia is prevented by coenzyme Q10 in rat, Int Rev Neurobiol, 82 (2007) 397-406. [89] L. Jing, M.T. He, Y. Chang, S.L. Mehta, Q.P. He, J.Z. Zhang, P.A. Li, Coenzyme Q10 protects astrocytes from ROS-induced damage through inhibition of mitochondria-mediated cell death pathway, Int J Biol Sci, 11 (2015) 59-66. [90] M. Bhardwaj, A. Kumar, Neuroprotective mechanism of Coenzyme Q10 (CoQ10) against PTZ induced kindling and associated cognitive dysfunction: Possible role of microglia inhibition, Pharmacol Rep, 68 (2016) 1301-1311. [91] G. Hollo, J. Vuorinen, J. Tuominen, T. Huttunen, A. Ropo, N. Pfeiffer, Fixed-dose combination of tafluprost and timolol in the treatment of open-angle glaucoma and ocular hypertension: comparison with other fixed-combination products, Adv Ther, 31 (2014) 932- 944. [92] G. Hollo, F. Topouzis, R.D. Fechtner, Fixed-combination intraocular pressure-lowering therapy for glaucoma and ocular hypertension: advantages in clinical practice, Expert Opin Pharmacother, 15 (2014) 1737-1747. [93] S. Guven Yilmaz, C. Degirmenci, Y.E. Karakoyun, E. Yusifov, H. Ates, The efficacy and safety of bimatoprost/timolol maleate, latanoprost/timolol maleate, and travoprost/timolol maleate fixed combinations on 24-h IOP, Int Ophthalmol, 38 (2018) 1425-1431. [94] M. Aihara, M. Adachi, H. Matsuo, T. Togano, T. Fukuchi, N. Sasaki, J.A.C.S. groupdagger, Additive effects and safety of fixed combination therapy with 1% brinzolamide and 0.5% timolol versus 1% dorzolamide and 0.5% timolol in prostaglandin-treated glaucoma patients, Acta Ophthalmol, 95 (2017) e720-e726. [95] J. Rodriguez Villanueva, I. Bravo-Osuna, R. Herrero-Vanrell, I.T. Molina Martinez, M. Guzman Navarro, Optimising the controlled release of dexamethasone from a new generation of PLGA-based microspheres intended for intravitreal administration, Eur J Pharm Sci, 92 (2016) 287-297. [96] L.G. Martins, N.M. Khalil, R.M. Mainardes, Plga Nanoparticles and Polysorbate -80-Coated Plga Nanoparticles Increase in the Vitro Antioxiant Activity of Melatonin, Curr Drug Deliv, (2017). [97] S. Kumar, R. Rao, A. Kumar, S. Mahant, S. Nanda, Novel Carriers for Coenzyme Q10 Delivery, Curr Drug Deliv, 13 (2016) 1184-1204.